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With a Hubert algebra with identity (HAI) we mean a Hubert 
space with inner product (x, y) which is also an associative Banach 
algebra with identity e\ the norm ||x|| = (x, x)112 satisfying 

d) NMMHMI, 
(2) IMI = i . 

An HAI is called real if it is a real Hilbert space and a real algebra; 
complex if it is complex in both respects. 

As a consequence of a result on the geometric properties of the 
unit sphere in Banach algebras, originally due to Bohnenblust and 
Karlin [2], one easily gets 

THEOREM 1. A complex Hilbert algebra with identity is isomorphic 
to the complex numbers. 

(This is a rephrasing of [3, Corollary 2, p. 25].) 
In connection with this, it was conjectured by I. Kaplansky1 that 

every real HAI must be isomorphic to the reals, complexes or quater­
nions. The object of this note is to prove that this is true. (Of 
course if condition (2) or the assumption of identity is dropped there 
are many other examples.) In particular, we will see that the given 
conditions imply that the norm must satisfy 

Ml-Ml-Ml, 
in other words be an absolute value. 

The proof depends partly on techniques developed in [3]. We start 
with two preliminary results. 

PROPOSITION 1. For an element x in a real HAI the conditions 

1° («, x) = 0, 
2° ||exp ax\\ = 1 for all real a 

are equivalent. 

PROOF. We define 

1 Personal letter, April, 1963. I want to thank Professor Kaplansky for directing 
my attention to this enjoyable problem. 
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(3) $(%) = max lim crl(\\e + a$x\\ - 1) 

and will show that 1° and 2° are both equivalent to ^ ( x ) = 0 . (This 
condition means, geometrically, that the line e+ax is a tangent of 
the unit sphere at e.) Straightforward computation gives yp{x) 
= | (e, x) | , hence 1° is equivalent to \l/(x) = 0. 

But we also have (see [3, p. 25]) that 

(4) \ft(x) = max lim or1 log||exp a$x\\. 

Assume that \{/(x)=0 and let h(a)=log | |expo#||. Then h is a sub­
additive function on the real line with h(0) = 0 and non-positive right 
and non-negative left derivative at 0. Such a function must be iden­
tically 0 [3, p. 24]. Thus \f/(x) = 0 implies ||exp ax\\ = 1 and since the 
reverse implication is immediate from (4) the proof is complete. 

I t is now clear that we can express each element x uniquely as 
x=z£e+x' where (e, x') = 0 and ||exp ax'\\ = 1 for all a. 

PROPOSITION 2. In a real H AI there are no topologically nilpotent 
elements except 0. 

PROOF. Assume that lim^oo ||xn | |1/n = 0 for some x. Since 

(5) ||exp«*|| ^Z-^HIHI 

we see, by comparing coefficients, that 

(6) | |expa#|| = 0(expo| a\ ), | a\ —> <*>, 

for every S>0 . Assume now that x — Çe+x' with (e, x')=0. Then, 
from Proposition 1, 

(7) 11exp ax\\ = 11exp a(£e + x')\\ = exp o£-||exp ax'\\ = exp a£. 

From (6) and (7) it follows that £ = 0 and hence ||exp a#|| = l. If ƒ 
is a continuous linear functional the function 

<p: <p(a) « f (exp ax) = f(e) + J2 — ƒ(**) 
n-i n\ 

can be continued analytically to an entire function <p in the complex 
plane. Estimates analogous to (5) and (6) show that <p, as an entire 
function, is at most of order 1, minimum type. Since it is bounded 
on the real axis a Phragmén-Lindelöf theorem [l, p. 84] tells that 7p 
is a constant. Hence f(x) = 0 for every ƒ and x = 0. 
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THEOREM 2. A real Hubert algebra with identity is isomorphic to the 
real numbers, the complex numbers or the quaternions. 

PROOF. We take an x ^ O and let Cx be the closed subalgebra 
spanned by x and e. From Proposition 2 follows that Cx is semi-simple, 
hence isomorphic to an algebra Cx of continuous functions on a com­
pact space <j> under a map y—»$ = $(<£>). An element yÇz.Cx has inverse 
in Cx if and only if $(<£>) =^0 for all <£>£<£. If y — rje+y' with (e, y') = 0 
we have $(<p) —ri + (y')^(<p). Since exp ay' is bounded, exp a(y')^ is 
also bounded and (yf)^ has only imaginary values. Thus the func­
tions in Cx have constant real parts. If x = %e+x' we have 

*(*) = £ + (<r(*>) 
and if £T^0, x(<p)j^0 and » has an inverse. If £ = 0 we must have 
( s 'P foO^O (since x?*Ö), but also (*2Pfo>) = *2(<p) = (*'P2foO 
= real, since (x')^ is imaginary-valued. Then (x2)^ is a nonzero 
constant, x2 has inverse and x has inverse. 

Thus we have shown that every x^O has an inverse. Since the 
only normed real division algebras are the reals, the complexes and 
the quaternions the theorem is proved. 

Utilizing Proposition 1, it is a simple matter to verify that the 
familiar norms for the complexes and quaternions are unique as real 
H AI norms, and so a given H AI norm, satisfying (1) and (2), is in 
fact an absolute value. 

REMARK. In Theorems 1 and 2 we need not assume the algebra to 
be complete. If A satisfies all the axioms for an H AI except complete­
ness, its completion (as a normed space) is an HAI and hence, accord­
ing to Theorem 1 or 2, finite-dimensional. Then A is also finite-dimen­
sional and automatically complete. 
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