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1. Introduction. The theory of Martin boundaries associated with 
Markov processes has been established for the two typical and 
simplest classes; Brownian motions [2; 6] and Markov chains on a 
denumerable space [3; 5; 9] . The purpose of this note is to give some 
general conditions under which one can construct the Martin bound­
ary and derive the Martin representation of excessive functions,1 gen­
eralizing the method in [ó] and [9]. Either of our conditions ((C), 
(D) or (E)) is satisfied, for example, by sufficiently wide classes of 
diffusion processes and space-time processes as well as by the two 
classes cited above and so our results can be connected with and 
applied to some subjects in analysis such as differential equations or 
convolution transforms. 

Two different cases are discussed separately. One of them (§3) is 
for the class of Markov processes such that there is a potential kernel 
of function type. In this case we shall also show a method of deter­
mining the potential kernel of function type which is somewhat differ­
ent from Hunt 's method in [4, I I I ] . The other case (§4) is for the 
class of regular step processes [lO] (including Markov chains) with 
the step measures having density functions. A full proof will appear 
elsewhere. 

2. Definitions and notations. Let S be a locally compact, noncom-
pact, separable Hausdorff space and Xy a temporally homogeneous 
Markov process on S satisfying Hunt 's condition (A) [4, I, pp. 48 -
50]. Following [ l ] , such X is called a Hunt process. For the details 
of the definition see [ l ; 4; 7] . Let xt denote the path functions of 
Xt Px and Ex the probabilities and expectations for X starting at x 
and a A the hitting time for a subset A of S, inf {*>0, xt<EA}. We 
shall always assume that X is transient: Px (<TKC< °°) = 1 for every x 
and every compact K of 5, where Kc means the complement of the 
set K. For a measurable function u defined on 5, Ex(u(xt)) and 
Ex(u(xaA)) are denoted by Htu(x) and HAU(X) respectively. We shall 
say u s superharmonic if it is positive2 and if it satisfies u(x) <^HACU(X) 

1 Meyer [7, Part II] also discussed this problem without introducing the bound­
ary. His approach is based on Choquet's representation theorem for compact convex 
sets. 

2 The word 'positive' is used in the sense of 'non-negative.' 

386 



MARKOV PROCESSES AND MARTIN BOUNDARIES 387 

for every x and every Borel subset A with compact closure. In par­
ticular if equality holds in the above relation, u is called harmonic. 
Any superharmonic function satisfies u^Htu for every t and any 
harmonic function is excessive (i.e., u^Htu and Htu—*u as /—>0). 
Let {Kn} be a sequence of compact sets increasing to S. A function 
u is said to be a potential if it is excessive and if HKe

nu(x)—>0 as n-* oo 
for every x such that u(x) < + °°. An excessive function u is said to 
be extreme if, whenever w = Ui+u2 with #1 and w2 both excessive, each 
Ui is a constant multiple of w. 

Consider the nth jump time an(w)==o,
n^i(w)+<ri(wa+_l)

z with 
<Ti(w) = inf {t >0, x*(w) 7^Xo(w)} and define q(x) = [Ex((Ti) J""1 and 
TT(X, ^4) =Px(x<riÇzA). The point # is called a sojourn state of 0<g(x) 
< o o , A Hunt process X is said to be a regular step process if all points 
of S are sojourn states and if limnH>00 <rn is not smaller than the life 
time of X. We shall say a positive function u is w-superharmonic if 
uèjZTU = fir(-> dy)u(y) and w-harmonic if u = iru. For a regular step 
process, the three notions "excessive," "superharmonic" and a7r-
superharmonic" coincide with each other. Any harmonic function is 
7r-harmonic but some additional condition will be needed for the 
converse statement. 

Finally we introduce notations for some function families on 5; 
(B = the family of all bounded measurable functions on 5, (B0 = {/G(B 
and ƒ vanishes outside of some compact se t} , C = the family of all 
bounded continuous functions on 5, Co = (B(/~>te and £>o = a countable 
family of functions in Co such that any function ƒ in Co is uniformly 
approximated by some sequence of functions in 5)0 vanishing outside 
of the carrier of ƒ. 

3. When X has a potential kernel of function type. Let ? be a 
<r-finite measure on 5 with £(G)>0 for any open set G, Ga(x, A) 
= foe-atPx(xteA)dt for a > 0 and GJ(x)=Jf{y)Ga(x, dy). We shall 
now introduce the condition (A) that Gaf G C for every ƒ of (B and 
that there are measures G*(#, •) defined on S such that G*f 
= ff(y)Gt( •, dy) G C for every f of & and 

ƒ f(x)Gag(x)^dx) - ƒ g(x)G*af(x)Z(dx) 

for every ƒ, g Ö/ (BO cwd, jfor every ƒ o/ C, aG*/ converges boundedly 
and uniformly on any compact set to ƒ as a—>«>. Note that the 
measure G*(x, •) is unique if it exists. A positive and measurable 

* The symbol v)\n_x denotes the shifted path defined by x^w+e^J—xt+c^iw). 



388 HIROSHI KUNITA AND TAKESI WATANABE [May 

function ƒ is said to be co-excessive if aG%f S f and the left side increases 
to the right side as a—* oo. Since both Ga and G* satisfy the resolvent 
equation, G0(#, A) =lim«^o Ga(x, A) and G*(x, A) =*limaH.o G*(x, A) 
give measures on S for each x. Corresponding to Hunt 's condition 
(G) [4, I I I ] , we introduce the condition (B) that both Go(xf A) and 
G*(x, A) is bounded in xfor any compact set A. 

LEMMA 1. Under the conditions (A) and (B) there exists uniquely the 
function G{x, y) such that (i) G0(x, dy) = G(x, y)%{dy), (ii) G*(y, dx) 
= G(x, y)£(dx)> (Hi) G(-, y) is excessive for each y and (iv) G(x, •) 
is co-excessive for each x. 

With the kernel G(x, y) one can establish results like those obtained 
by Hunt [4, I I I , §18]. We shall now state only the Riesz decomposi­
tion of excessive functions. For each y, G( •, 3/) is extreme and so it is 
either a potential or harmonic. Define SP = {y ; G( •, y) is a potential} .4 

Every excessive function u, finite almost everywhere relative to the 
measure £, can be decomposed uniquely (including the determination 
of the measure v) in the form 

u = I G(-, y)v(dy) + (a harmonic function). 
J sP 

Let 7 be a cr-finite measure on 5. To introduce the Martin boundary 
(relative to 7) we shall further assume either of the following condi­
tions: (C) yG(y)~fy(dx)G(x> y) is strictly positive and continuous 
on S} allowing the value infinity or (D) the conditions (A) and (B) 
are satisfied for %(A)*=fy(dx)Go(x1 A). With (C) let tt(x, y) be 
G(x, y)/yG(y) if 7G(;y) < 00 and zero if 7G(;y) = 00. With (D) the cor­
responding G(x> y) is denoted by K(X, y). In both cases, fn(y) 
^ f f (%)*(%> y)%(dx)(E<5 for every ƒ of (Bo- Let px be the metric of one 
point compactification of S and 

t >N ^ 1 \My)-U(y)\ 
p*{y, y ) = Z* T : 1 , I , / N—TT/TT ' 

n-i 2» 1 + I My) - U(yf) I 
where {/n} == £>0. The completion M of S by p = pi+P2 is called the 
Martin space and 5 5 = ikf—S, the Martin boundary. Both M and dS 
are compact metric spaces and the relative topology of 5 coincides 
with the original one. If ƒ G Co, fn(y) has a continuous extension to ikf, 
so that fn{rj), yÇzdS, determines uniquely a measure K{dx, rj). 

LEMMA 2. /c(x, y) is extended uniquely to SXM in such a way that% 

for each rj(E:dS, K(», rj) is excessive and K(dxy ??) = /c(x, rj)^(dx). 
4 If £ is an excessive measure [4, I] of X, we have S^Sp. 



1963] MARKOV PROCESSES AND MARTIN BOUNDARIES 389 

The reduced function of an excessive function may be defined for 
any Borel set of M. But, for short, we shall here confine ourselves to 
the simplest case. Let D be a closed set of dS, {Gn} a sequence of 
open sets in M decreasing to D and [G»]~ GnC\S. The function 
TïDU — lima+oo aG<x(limn~*> H[Gn)u) is called the reduced function of u 
to D. Such a function is harmonic. The set of boundary points t\ such 
that T3{V}U is not identically zero for some 7-integrable excessive 
function u is denoted by (dS)i and the set SPC\ {y\ fy(dx)K(x, y) = 1} , 
by Si* The set Mi — *SiU(3S)i is said to be the essential part of M. A 
point 77 of dSis in (dS)i if and only if fy(dx)"H{v}ic(x, rj) — 1, If rç<E(ô5)i, 
K(-, rj) is extreme and harmonic, Both Si and (dS)i are Borel sets of 
M. 

THEOREM 1. Suppose that the condition (C) or (D) is satisfied. Then 
every y-integrable and excessive function u^ can be represented uniquely 
in the form 

u(x) = I K(X, rj)n(dr}), 
J Mi 

using a bounded measure \x on M\. The total mass of \x is concentrated 
on (dS)i if and only if u is harmonic. 

Here is an alternative classification of the essential part Mi, which 
implies a new approach to the boundary theory. We consider the case 
of the condition (D) being satisfied. Moreover we assume that M is 
nothing but the completion of S by p2 above.7 Then there exists a 
Markov process X' defined on M such that K(X, •) is excessive rela­
tive to X' for each x of S. Such X' need no longer be a Hunt process 
but a process such as was discussed by Ray [8]. The set M—Mi co­
incides with the set of all branching points [8, p. 45] of X\ 

4. The case of regular step processes. For a regular step process 
X, the assumptions of the preceding section are not satisfied unless 
5 is a denumerable space, so that we shall need a different treatment. 
In this section we are interested in the Martin representation of 
7T-harmonic functions and harmonic functions for some class of regu­
lar step processes. First we assume that TT(#, A) is absolutely continu­
ous relative to some <r~finite measure m with m(G)>0for any open set G. 
Let 7r(x, y) be the density function, wn(xf y) = /irtt""1(ac, z)ir{z, y)m(dz) 
and G(x, y) = X)JT=I irn(x, y). The finiteness of G(x, y) is also assumed. 

6 In case the condition (D) is satisfied, we have 5 = 5i. 
6 Such u is necessarily finite almost everywhere relative to £, 
7 It is expected that this assumption will be dropped, 
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Let 7 be a measure such that yG(y) ~fy(dx)G(x, y) is strictly positive 
on S. The function K(X, y) is defined as G(x, y)/yG(y) if yG(y) < <*> 
and as zero if yG(y) = oo. Finally we assume that fic(y) 
—ff (%)*(%> y)m{dx) belongs to <B whenever f is in Co. The above state­
ments in italics are referred to as the condition (E). The Martin 
boundary dS, the reduced function "EDu and the essential part 
(55)i of the boundary are defined in the same way as in the previous 
section. The definition of K(X, IJ) for rj £ dS is as follows. As in the 
previous section to each point rjEidS corresponds a measure ic(dx, rj) 
such that ff(x)ic(dx, rj) coincides with the continuous extension of 
fn(y) to the boundary for every ƒ in Co. Define K(X, rj) = fr(x, y)ic(dy, rj) 
for rj(£dS. Such K(X, rj) may depend on the choice of the version of the 
densities ir{x> y) satisfying the condition (E), while dS and (dS)x do 
not so depend. Moreover, we are not sure that *(•, rj) is excessive. 
However, one can prove that, if rçG(ôS)i, n(dx, rj) is absolutely con­
tinuous relative to m(dx) and *(•, rj) is not only 7r-harmonic but also 
harmonic. Moreover, (3S)i is a Borel set of dS. 

THEOREM 2. Suppose that the condition (E) is satisfied and u is a 
y-integrable function. Then the following three conditions are equivalent 
to each other, (i) u is harmonic, (ii) u is ir-harmonic. (iii) u is expressible 
in the form 

u(x) = I K(X, rç)/x(<fy), 

using a bounded measure jit. Moreover the above integral representation 
is unique. 

REMARK. If X is of discrete time parameter (i.e., Markov chain), 
the condition (E) may be imposed to the transition function H(x, A) 
instead of 7r(x, -4). But (E) is more natural to be imposed to T than 
to H. Also note that H(x, A) — ô(x, A) = q(x) [TT(X, A) — 5(x, ^4)] and 
H(x, A)=TT(X, A) if H(x, {#}) = (), where ô(x, A) denotes the unit 
measure at x. 
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Let X be a compact Hausdorff space and A a complex linear alge­
bra of continuous complex-valued functions defined on X. Suppose A 
is normal on X, i.e., for every pair of disjoint closed sets Ko, Ki in X, 
there exists a function /G-4 such that /(2£0) = 0 and f(Ki) = 1. Does 
it follow that every continuous complex-valued function on X can 
be uniformly approximated by functions in A? With the additional 
assumption that A is closed under complex conjugation, it follows 
by the Stone-Weierstrass theorem. (Trivially, if A is normal then A 
separates points.) The same theorem implies that the analogous ques­
tion in the case of real-valued functions has an affirmative answer. 
However, in the complex-valued case it need not be so. An example 
will be given which demonstrates this. In this example, the space X 
is a suitably chosen compact set in the complex plane. The algebra 
is R(X), the algebra of all functions which can be uniformly approxi­
mated on X by rational functions whose poles lie outside X. It will be 
shown that R(X) is normal on X and is a proper sub-algebra of C(X)t 

the algebra of all continuous complex-valued functions on X. Since 
R(X) is closed under uniform limits, this will be sufficient. 

Two lemmas are needed to accomplish this. One is a modification 
of an observation of Mergelyan [l] . The second represents a slight 
extension of a result due to Beurling [2]. 

1 The research in this paper forms part of the author's doctoral dissertation, 
submitted to the Massachusetts Institute of Technology, Spring, 1963. 


