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The theory of recurrent events developed by Feller [2] finds one 
of its most important applications in the theory of discrete time 
Markov chains. The object of this note is to summarise a continuous 
time analogue of Feller's theory which can be applied in a similar 
way to continuous time Markov chains. 

1. The following definition of a (discrete time) recurrent event is 
readily seen to be equivalent to that of Feller. A recurrent event on 
a probability space (0, <£, P) is a family 8 = {E(n), n = l, 2, • • • } of 
Cfc-measurable subsets of 0, with the property that, for all positive 
integers n\<n%< • • • < # & , 

P{E(m)E(n2) • • • E(nk)} 

= P{E(m)}p{E(n-z - » i ) - - - E(nk - m)}. 

I t follows that the probability of any event determined by the E(n) 
can be calculated from a knowledge of the numbers 

(2) un = P{ £(»)} , 

and thus much of the interest in the theory of recurrent events is 
centered on the "renewal sequence" {un} . Let us write (R for the class 
of all renewal sequences. 

Because the word "recurrent" has come to be used in a different 
sense in Markov chain theory, we shall avoid it, and use instead the 
term "regenerative" to describe the events to be considered here. 
Then the form of the definition (1) suggests the following continuous 
time analogue. 

A regenerative event S on a probability space (£2, Ct, P) is a family 
of Ct-measurable subsets E(t) (t>0) of 0, having the property that , 
whenever real numbers tj satisfy 

(3) 0 < h < h < • • • < thy 

then 

(4) P{E(h)E(h) • • • £(fe)} = P{E(t1)}P{E(t2 - h) • • • E(tk - h)}. 

The function p(t) defined by 

(5) Pit) - P{E(t)} 

268 



A CONTINUOUS TIME ANALOGUE 269 

will be called the p-function of the event 8. From (4) we have 

(6) p(riE(tÀ « I I #(</- fc-i), 

where /o = 0. Hence a knowledge of pit) determines the probability 
of any subset of Q which belongs to the cr-algebra $ generated by the 
sets E(t). It follows that the study of the properties of the function 
p(t) will play a large part in the theory of regenerative events. 

2. The class of all p-functions is characterised by the following 
theorem. 

THEOREM I. Let p{t) be any real function of t>0, and write 

*(*!, *2, « « • , k) = 1 - E P(th) + Z PitidPith - *id 

+ (-1)* Z *(</.)*(** - */i) • • • P(ht ~ hk-i), 

whenever h, - - • , tk satisfy (3). rAe» tóere existe a regenerative event 
8 wi/A p-function p(t) if and only if, whenever k^l and h, • • • , £* 
satisfy (3), we Aazœ 

(7) 0 ^ *(/ lf • • • , /*) ^ *(*i, • • • , fc-i). 

In particular, every ^-function satisfies the inequalities 

(8) £(*)*(«) ^ Pi* + u) S 1 + p(t)p{u) - max{#(/), ƒ>(**)}. 

Let us say that 8 is standard if £(/)—»1 as /—>(), and let us denote by 
(9 the class of all ^-functions of standard regenerative events. Then 
the inequalities (7) imply a considerable regularity of analytic be­
havior for functions in (P. 

THEOREM II. If p(t) belongs to (?, then p(t) is strictly positive and 
uniformly continuous in 0<t< 00. Moreover, p(t) is of bounded varia­
tion in 0<t<T for every finite T, and is thus differentiable almost 
everywhere in 0 <t < 00. The limit 

(9) q = ]imt-*{l-p(f)} 
f-»0 

exists (possibly infinite), and ifq<<x>, then for all t>0, 

(10) p(t) ^ «r««. 

The proof of these results depends partly on the inequalities (7) 
and (8), and partly on the simple observation that, if p(t)Çz<9, then 
(for any h>0) the sequence {p(nh)} belongs to (R. This remark also 
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leads to the following characterisation of (P. 

THEOREM I I I . A continuous function p(t) belongs to (P if and only 
if there exists a positive measure p on (0, <» ] satisfying 

(11) ƒ (1 - <r*)ii{ix) < oo, 

and such that, for all 0>O, 

(12) r(6) = f p(t)e-$tdt = U + f (1 - e~e*)n(dx) 1 . 

I t follows from (12) that pit) satisfies the Volterra equation 

(13) 1 - p(t) = I p(t — s)n(s> co]ds. 
J o 

The Laplace transform in (12) can be inverted, and this leads to an 
expression for p(t) in the form 

ƒ
• 0 0 

/(X) 
0 

(14) p(t) = ® + I /(A) cos X/dX, 
«J o 

where a = 0, and ƒ(X) is non-negative and integrable. From this we 
deduce the following continuous time analogue of the Erdös-Feller-
Pollard renewal theorem. 

THEOREM IV. If p(t)G(?, then the limit 

(15) a = lim pit) 

exists. 

I t should be remarked that this theorem neither implies nor is 
implied by the Blackwell renewal theorem, and in fact, the theory of 
regenerative events is distinct from continuous renewal theory. 

3. Let 8 be a standard regenerative event, and define the sto­
chastic process Z(t, co)(/>0, co£0) by 

(16) Z(t, co) = 1 (if co G E(t)), Z(f, o) = 0 (otherwise). 

Then Z(t, co) is continuous in probability, and we may suppose (with­
out essential loss of generality) that Z is measurable and well-separa­
ble (in the sense of [ l ] ) . If this is done we may examine the random 
set 

(17) S(o>) = { / ; /> 0, cc G £( / )} . 



1963] A CONTINUOUS TIME ANALOGUE 271 

I t turns out that , if q < 00, then S(co) is (with probability one) made 
up of disjoint intervals, of which only finitely many meet any finite 
subinterval of the real line. If q — 00, the structure of 5(co) is much 
more complex. 

Define r(£, co) to be the "time spent in 8 up to time /," so that 

= f Z(«,o) 
J 0 

(18) r(t, co) = I Z(u, <a)du, 
J 0 

and write T(T, CO) for the (left-continuous) inverse function of r(ft co). 
Then T(r, co) is a process with stationary independent increments, 
and its distributions are given by 

(19) E{e~0T^^} = ér'/r(0). 

We say that 8 is transient if 

ƒ» 00 

p{t)dt 
0 

< 0 0 . 

Then 8 is transient if and only if /x { 00 } > 0 . If this is so, then S(co) 
is bounded with probability one, and the Lebesgue measure T(CO) 
= T( 00, co) of >S(co) is exponentially distributed with mean f = l//x { 00 }. 
If 8 is not transient, then r(co) is infinite with probability one. 

4. Let X(t, co) ( / ^0 , co£Q) be a continuous time Markov chain 
[ l ] with stationary transition probabilities p%j{t) ( i , j = 0, 1, 2, • • • ), 
and suppose that X(0, co) = 0 . Then the event 80 defined by 

(21) E0(t) = {co;X(/,co) = 0} 

is regenerative, with ^-function poo(t). If the chain is standard, so is 
80, and hence 

(22) poo(t) G 6>. 

Thus theorems about regenerative events imply immediately theo­
rems about Markov chains. 

I t turns out that nearly all the known results relating to one state 
of a Markov chain are consequences of the fact that 80 is a regenera­
tive event. An exception to this rule, however, is the theorem of Orn-
stein that poo(t) is differentiable in />() ; there are functions in (P 
which are not everywhere differentiable. 

I t can be shown that, if p(t)Çï(?t then there exists a real-valued 
Markov process X(t, co) such that 

(23) p(t) = P{Xit, co) = 0 | X(0, co) = 0}. 
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Thus any (standard) regenerative event can be represented by a 
Markov process on a continuous state space. It follows, for example, 
that the fact that poo(t) is almost everywhere differentiate is a con­
sequence of the regenerative property of the state 0, but the deeper 
result that poo(t) is everywhere differentiate requires also the dis­
crete nature of the state space. 

It is possible to extend the whole theory to take in properties of 
several states simultaneously, by considering systems of regenerative 
events. In particular, we can examine the transition probabilities 
pij(t) (i^j) of a Markov chain. The theory may also be applied to 
certain Markov processes with continuous state space, and so, via 
the method of supplementary variables, to some non-Markovian 
processes. 

It is hoped to publish elsewhere a detailed account of the theory 
summarised here, and of its various applications. 

I am deeply grateful to Professor D. G. Kendall for much helpful 
discussion, and also to the Department of Scientific and Industrial 
Research for financial support. 
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ORIENTABLE EMBEDDING OF CAYLEY GRAPHS 

BY WILLIAM GUSTIN 

Communicated by J. W. T. Youngs, November 14, 1962 

I present a method whereby a polygonal embedding of a Cayley 
graph in a closed oriented polyhedral surface may be represented as 
the dual of a quotient embedding of a quotient graph and diagrammed 
as a linked network of circuits carrying currents satisfying Kirch-
hoffs node law. By this means, devised to aid construction of tri­
angular embeddings of a complete n node to affirm Heawood's map 
color conjecture [3] in Heffter's dual formulation [4] for those cases 
w = 0, 3, 4, 7 mod 12 where such triangulation is compatible with 
Euler's polyhedral formula, I have been able to solve the cases 
»=3,4 , 7 mod 12, unaware that Ringel [5] had already resolved cases 
WSH3, 7 by a similar though less developed method. Case » s 0 remains 


