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1. Introduction. Let {X(f), t€T} be a stochastic process with
{(Q, ®, P,),acA } , as the family of underlying probability spaces.
Here T is an interval on the real line and 4 is a subset of the eu-
clidian k-space, indexing the probability measures on &. If
A=Up 4; (A:NA;=,i5j), then a major problem in the inference
theory of stochastic processes is to decide, on the basis of one realiza-
tion of the process at the f-points on a subset of T, the correct sub-
family P,, a & A4;. Another problem is to estimate « in some optimal
way. The purpose of the present paper is to report some further de-
velopments on these problems (cf. [3;7]), and in particular to present
the results that are valid without assuming the processes to be sta-
tionary, Markovian, or the like. A new feature here is to introduce
Wald’s theory [9] in the present general set up, and also to include
“explosive” processes [6]. Of course the study of special processes
is of interest and it is then possible to use special techniques too
(cf., e.g., [3, pp. 233-247; 5]), but they are not considered here.

2. The testing problem. Let H; denote the hypothesis that a € 4,
1=1, - - -, m. For nontriviality of the testing problem the distinct-
ness of the hypotheses must be assumed. If P, is a probability meas-
ure for «E 4, then, following [1], the hypotheses H; are said to be
distinct if there exists a set E in ®, such that for all ;& A4, and all
a;EA; (1)), it is true that Po(E)#P4(E), 1, j=1, - - -, m. Now
suppose that the finite dimensional distributions of the process are
absolutely continuous relative to the Lebesgue measure, u, with
densities fi,...,e,(®1, * * *, %a; @), Or fulx, &), depending on aE A4,
where {,< - - - <t,arein T. Here « (scalar or vector) is assumed not
to depend on #n. (See, however, Theorem 2 below.) Also the 4; are
closed bounded and connected subsets.(This last assumption is not
essential. It simplifies the formulations.)

The following regularity conditions are imposed on f,(x, @):

1. For each %, f.(x, ) is a continuous function of a.

2. If @ is a o-field of Borel sets of 4, then f.(x, @) is jointly meas-
urable relative to ® X@, and that the carriers of f,(x, &) remain
invariant for a & 4.

1 This work was supported in part under the grant NSF-G 14832.
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3. If &(@) is any probability measure (prior distribution) on @
assigning positive measure to each 4;, then

() fana(x, @) faWi(Q)fale, @)dE(@) —fa(®, &) faWi(@)farr(%, @)dE(c)
is either non-negative or nonpositive for all #(=n,, large) and a€ 4;,
where W;(a) is a bounded measurable function (weight function) on
A such that Wi(a) =0 if a4, and positive otherwise.

DEFINITION. Let &4(x) be the probability that H; is chosen when
(%1, + + +, %) is observed, where D _m, 6%(x) =1. The vector function
8,(x)= (8, - - -, 8" is called a decision function. The function 8,(x)
is said to be a Bayes solution (relative to £(a) and Wi(e)), to the
testing problem if, and only if, the following is true:

For all x and #(=n,), 8;(x) =1 whenever

t: < min (tf.,j i j=1--,m), t: = f Wi(e)fa(®, e)dé(c).
A

The following result states that such a solution is possible in the
general case also. More precisely,

TrEOREM 1. Let { X (1), tE€ T} be a real separable stochastic process
without fixed points of discontinuity [P., aEA] and with finite dimen-
sional density functions [p], fu(x, @) satisfying Conditions 1-3 above.
Then, relative to any prior distribution £(c) on Q and weight functions
Wi(o) satisfying Condition 3, there exists an essentially unique Bayes
solution for testing the distinct hypotheses H;, 1=1, - - -, m, based on a
set of n (Zmo large) observations on the process at t; of D, a dense de-
numerable subset of T. Moreover the class of Bayes solutions is an es-
sentially complete class.

REeEMARK. Condition 3 has content only if 4; have more than one
point. If each 4;is a one point set, then taking £(c) as a discrete meas-
ure concentrating symmetrically on the points of 4, it is seen that
(*) is always satisfied being identically zero.

To prove the theorem, one considers the stochastic variables?
V¥=£(X)/8(X), 15%j (f, are defined above) and shows that under
the given conditions, for every fixed sequence, { VY nz 1} forms a
sub (or super) martingale according as the one or the other inequality
obtains in (*). Then by an application of the corresponding theorem
(cf. [2, p. 354]) one shows that { Y¥} has a limit and is independent
of the sequence involved. Then by a detailed analysis of the limit, via
Andersen-Jessen Theorem and the assumption of the distinctness of

2 As usual, the stochastic variables are denoted by capitals and the values as-
sumed by them by the corresponding small letters.



74 M. M. RAO [January

hypotheses, all the other conclusions of the theorem are established.
If m=2, and A;, 4: are one point sets, Y reduces to the likelihood
ratio [2, p. 93 and p. 348]. (Cf. also [7].)

In the above result it was assumed that, in f.(x, @), o does not de-
pend on #. This may be relaxed. For simplicity the case m =2 will be
considered with W taking only (0, 1) values.

ConpitioN 3. If £,(@) is a probability measure on @, which assigns
positive measure to both 4; and 4, (which are now subsets of the
space of bounded measurable or continuous functions on T°), and
which satisfies the compatibility conditions (i.e., &.(eu, « * + , @1, ®)
=£u—1(al) tt an—-l)s etC.) then

Sanr(®, @) fA f"(x’ a)dén(a) — fn(x; @) L fn+1(x> o) dény1(a)

is either non-negative or nonpositive.
Now the following result can be stated:

THuEOREM 2. If the Conditions 1, 2, 3’ are assumed instead of 1, 2, 3
of Theorem 1, and the rest of the hypothesis holds, then also there exists
an essentially unique Bayes solution for the testing problem as in that
result.

A great deal of the work on second order processes, [3], can be
unified and slightly extended [7], using the results on Karhunen
representation and the martingale theory [2]. In the second order case,
Hilbert space methods are also available but they are used in estima-
tion problems more conveniently than in the testing problem.

3. Estimation problems. Let the index set 4 be a subset of the
euclidian k-space, and the family {P,, €A} be dominated by a
fixed o-finite measure X\ on ®, with densities { S, ) } L If @a(w) is an
estimator of a, the problem concerns its consistency and efficiency
properties. It is first noted that, by extending a method given in
[3, p. 230], if f2(w, @) is M-integrable for each aE& 4, it is possible to
generate infinitely many nontrivial (even unbiased) estimators &(w)
of @. To choose optimal estimators one considers their efficacy rela-
tive to a risk function (e.g., variance). The following general result
giving a lower bound is useful for that purpose. Let W,(¢) be a sym-
metric (in each component) convex, non-negative function of
t=(t, - -+, tx) depending on « also, which is jointly measurable in ¢
and «, and such that W,(0)=0.

THEOREM 3. Let the family of density functions [\], f(w, @) for aEA
satisfy the following conditions:



1963] SOME INFERENCE THEOREMS IN STOCHASTIC PROCESSES 75

1. For almost all w, Di(w, @) =08 log f(w, o) /da;, 1=1, - « -, k exists
and | Di| < Mi(w), where Mi(w) is N-integrable, for all aEA.

2. For at least one 1, D;50, on a set of positive N\-measure.

3. If for some p (1), WY(t) is a symmetric convex function similar
to Wa(-) defined above, then E.,(I D,—I N<ow,i=1,: .,k aE&A, where
E, denotes expectation under the P, measure, and q=p/(p—1).

Then, for any estimator T'(w) = (T (w), « + +,Tu(w)) of a=(avs, * - *,0%)
in A, the lower bound for the risk function,

R(T,a) = E(Wo(T1 — a1, * + +, T — a)),

1s given by
b 1 (a) b}, (a) E., (G) ?
R(T,e) 2 W“(Ea(c:)’ ’Ea(G)>' {Slip [W] } p>1

where G= ) iy | Di|, and bi@)= D .1 E«(TiD;), and where the
supremum is taken over all p for which WY?(+) is convex. If p=1, then
EYe(G) is taken as the essential supremum of G, and with this inter-
pretation the same bound given above is valid in this case also.

It is useful to note that bi(e) =1, for all 4, if T(w) is an unbiased
estimator, and then the lower bound does not depend on T so that
an estimator whose risk function is smaller, compared with this
bound, may be considered optimal. The result is proven after a slight
extension of Theorem 7 of [4]. It reduces to a result of [3, p. 248],
if k=1 and W,(t) =¢% Other risk functions can be considered using
the results of [4].

The method of maximum likelihood (m.l.) is very useful for estima-
tion problems in processes [3]. The associated questions of con-
sistency and limit distributions of estimators now become very diffi-
cult however. The simplest Gaussian process {X w N 1} defined by

**) Xet+aXea+ -+ aXer =&,

where ¢ are independent Gaussian (mean zero, variance one and
e,=0, t<0), leads to the consistency questions of &;, for which no
known theorem is applicable even for the case k=1, if ]a[ =1. One
important result is in [8], which however gives the solution only for
kE=1and Ia] < 1. By direct calculations, using the structure of (**),
consistency can be settled in a number of cases even if k>1, [6],
but no general result is available, If k=1, such a result can be given
as follows:

THEOREM 4. Let {X,, n= 1} be a (discrete) stochastic process whose
Jfinite dimensional distributions are absolutely continuous relative to a
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fixed o-finite measure N defined on (2, ®) of the process, with densities
fa(x, © ¢+ o, %a, @), or fu(x, ), depending on a real parameter o, where
Fale, 0n) #Zfu(x, o), a.e. [N] if ar7aa. Suppose that f.(x, @) satisfies the
conditions:

1. 9f./0c, 8%./0a? exist and, for each x, are continuous functions of
a4 (closure of A) where A is a bounded nondegenerate interval. These
are dominated by G(x) and H(x), where E,(G(X)) and E,(H(X)) are
bounded for all a & 4.

2. Cp(a) =E.(0 log f./9¢c) exists and C,(a)—® as n— o for aSA.

3. If ¢u(@)=0 log fu/0c, and ¢, (a)=0¢,/0c, then for a given
B>0 there exists an M such that E.(lubw |¢d (o) /Ca(@)) S M < o
forall e, &' €A, |a—a'| <B.

4. Given 0<8<1, there exists an €>0, such that for aS 4, and all n,
Pr{|¢/ (@)]/Cal@)Z &} 21—0.

Then the m.l. equation ¢,(c) =0 has a root &, which is a consistent
estimator of o (i.e., &, converges in probability to a, as n— ),

This theorem is a considerable extension of the main result of [8]
as it also covers many “explosive” processes. In particular the process
(**) for k=1is covered by it. The proof can be given on classical lines
with some essential changes.

THEOREM 5. Every consistent m.l. estimator, given in Theorem 4, has
the following property: There exist two sequences of random variables
{W.} and { V.} on the same probability space {Q, ®, P.} such that

lim E,(W,) = 0 = lim Pr{V, =0},

n—>x fn—wo

lim Ea(Wi) =1=lim Ea(Vn):

fn—r w0 n— 0

lim {v/Co(@)(8n — @) — (Wa/Va)} = 0.

n— oo

REMARK. The above property may be called weak asymptotic effi-
ciency of the estimators, extending a classical concept [8].

4. Other possibilities. The multidimensional extension of Theorem
4 presents considerable difficulties since the matrix valued random
variables converge, in this generality, almost always to singular
matrices (cf. [6, p. 216, Remarks 2 and 3]) and the crucial Condition
4 above has to be formulated differently. A multidimensional exten-
sion of [8], which is weaker than that of Theorem 4 can be given
without too much difficulty. Also, viewing the prediction problem as
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an extension of estimation theory some interesting results can be ob-
tained.
The details and some extensions will appear elsewhere.
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