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1. Introduction. Let {X(t), tGT} be a stochastic process with 
{(0, <B, P«),ceG^4}, as the family of underlying probability spaces. 
Here T is an interval on the real line and A is a subset of the eu-
clidian fe-space, indexing the probability measures on <B. If 
A =Ujli^U (Air\Aj=01 i?*j), then a major problem in the inference 
theory of stochastic processes is to decide, on the basis of one realiza­
tion of the process at the /-points on a subset of T, the correct sub­
family Pay aÇzAi. Another problem is to estimate a in some optimal 
way. The purpose of the present paper is to report some further de­
velopments on these problems (cf. [3; 7]), and in particular to present 
the results that are valid without assuming the processes to be sta­
tionary, Markovian, or the like. A new feature here is to introduce 
WakTs theory [9] in the present general set up, and also to include 
"explosive" processes [ó]. Of course the study of special processes 
is of interest and it is then possible to use special techniques too 
(cf., e.g., [3, pp. 233-247; 5]), but they are not considered here. 

2. The testing problem. Let Hi denote the hypothesis that aÇ^Ah 

i = l , • • • , tn. For nontriviality of the testing problem the distinct­
ness of the hypotheses must be assumed. If Pa is a probability meas­
ure for a G A, then, following [ l ] , the hypotheses Hi are said to be 
distinct if there exists a set E in <B, such that for all c^G^4» and all 
ajGAj (i-^j), it is true that P«.(£) 9*Paj(E)f i, j = l , • • . , m. Now 
suppose that the finite dimensional distributions of the process are 
absolutely continuous relative to the Lebesgue measure, n, with 
densities /* lf...,*n(»i, • • • , xn; a), or /w(x, a ) , depending on aÇzA, 
where h< • • • <tn are in T. Here a (scalar or vector) is assumed not 
to depend on n. (See, however, Theorem 2 below.) Also the Ai are 
closed bounded and connected subsets. (This last assumption is not 
essential. I t simplifies the formulations.) 

The following regularity conditions are imposed on/ n (x , a): 
1. For each x, fn(x, «) is a continuous function of a. 
2. If Ct is a (T-field of Borel sets of A, then fn(x, a) is jointly meas­

urable relative to (BXŒ, and that the carriers of fn(xf a) remain 
invariant for a G A. 

1 This work was supported in part under the grant NSF-G 14832. 
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3. If %(a) is any probability measure (prior distribution) on <3t 
assigning positive measure to each Ai, then 

(*) fn+i(x, a)fAWi(a)fn(xt a)d£(a)—fn(x, a)fAWi(a)fn+i(x, a)d%(a) 
is either non-negative or nonpositive for all n( è no, large) and aÇ-Ai, 
where Wi(a) is a bounded measurable function (weight function) on 
A such that Wi{a) = 0 if <x£^4» and positive otherwise. 

DEFINITION. Let ô£(x) be the probability that Hi is chosen when 
(#i, • • • , xn) is observed, where X X I S„(x) = l. The vector function 
6n(x) = (5j, • « • , 8™) is called a decision function. The function 8n(x) 
is said to be a Bayes solution (relative to %(a) and Wi(a)), to the 
testing problem if, and only if, the following is true: 

For all x and w(^^o) , 5£(#) = 1 whenever 

/* < min ( 4 i ^ i,j = 1, • • • , *»), U = I Wk(a)fn(x, a)d£(a). 
J A 

The following result states that such a solution is possible in the 
general case also. More precisely, 

THEOREM 1. Let {X(t), tÇUT) be a real separable stochastic process 
without fixed points of discontinuity [Pa, aÇzA] and with finite dimen­
sional density functions [p], fn(x, OL) satisfying Conditions 1-3 above. 
Then, relative to any prior distribution £(a) on (X and weight functions 
Wi(a) satisfying Condition 3, there exists an essentially unique Bayes 
solution for testing the distinct hypotheses Hi, i = 1, • • • , m, based on a 
set of n (àWo large) observations on the process at U of D, a dense de-
numerable subset of T. Moreover the class of Bayes solutions is an es­
sentially complete class. 

REMARK. Condition 3 has content only if Ai have more than one 
point. If each A » is a one point set, then taking %(a) as a discrete meas­
ure concentrating symmetrically on the points of A, it is seen that 
(*) is always satisfied being identically zero. 

To prove the theorem, one considers the stochastic variables2 

Y%=tn(X)/tb(X), i?*j (4 are defined above) and shows that under 
the given conditions, for every fixed sequence, {Y*, n^l} forms a 
sub (or super) martingale according as the one or the other inequality 
obtains in (*). Then by an application of the corresponding theorem 
(cf. [2, p. 354]) one shows that { Y%} has a limit and is independent 
of the sequence involved. Then by a detailed analysis of the limit, via 
Andersen-Jessen Theorem and the assumption of the distinctness of 

2 As usual, the stochastic variables are denoted by capitals and the values as­
sumed by them by the corresponding small letters. 



74 M. M. RAO [January 

hypotheses, all the other conclusions of the theorem are established. 
If m = 2t and Ai, A2 are one point sets, Y% reduces to the likelihood 
ratio [2, p. 93 and p. 348]. (Cf. also [7].) 

In the above result it was assumed that , in fn(x, ot), a does not de­
pend on n. This may be relaxed. For simplicity the case w = 2 will be 
considered with W taking only (0,1) values. 

CONDITION 3' . If £«(<*) is a probability measure on a, which assigns 
positive measure to both Ai and A2 (which are now subsets of the 
space of bounded measurable or continuous functions on T), and 
which satisfies the compatibility conditions (i.e., Jn(ai, • • • , an-\, °°) 
= £n_i(cxi, • • • , an_i), etc.) then 

jfn+i(ff, a) I fn(x, a)d%n(a) — fn(x, a) I fn+i(x, <x)d£n+1(<x) 
J Ai J At 

is either non-negative or nonpositive. 
Now the following result can be stated : 

THEOREM 2. If the Conditions 1, 2, 3 ' are assumed instead of 1, 2, 3 
of Theorem 1, and the rest of the hypothesis holds, then also there exists 
an essentially unique Bayes solution for the testing problem as in that 
result, 

A great deal of the work on second order processes, [3], can be 
unified and slightly extended [7], using the results on Karhunen 
representation and the martingale theory [2 ]. In the second order case, 
Hubert space methods are also available but they are used in estima­
tion problems more conveniently than in the testing problem. 

3. Estimation problems. Let the index set A be a subset of the 
euclidian &-space, and the family {Pa, aÇ.A} be dominated by a 
fixed cr-finite measure X on (B, with densities {/(co, a)}. If ân(o)) is an 
estimator of a, the problem concerns its consistency and efficiency 
properties. I t is first noted that , by extending a method given in 
[3, p. 230], if/2(co, a) is X-integrable for each aÇzA, it is possible to 
generate infinitely many nontrivial (even unbiased) estimators <$(co) 
of a. To choose optimal estimators one considers their efficacy rela­
tive to a risk function (e.g., variance). The following general result 
giving a lower bound is useful for that purpose. Let Wa(t) be a sym­
metric (in each component) convex, non-negative function of 
t=(hi • • • , tk) depending on a also, which is jointly measurable in t 
and a, and such that Wa(0) = 0 . 

THEOREM 3. Let the family of density f unctions [X], /(co, a) for a(EA 
satisfy the following conditions: 
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1. For almost all co, Di(œ, a) = d log f(co, a)/da{, i = 1, • • • , k exists 
and \Di\ <Mi(o)), where Mi(œ) is\-integrable, for all a<EA. 

2. For at least one i, Di?*0, on a set of positive \-measure. 
3. If for some p ( è l ) , WlJv(t) is a symmetric convex function similar 

to Wa(-) defined above, then Ea(\Di\q)<<*> ,i = l, • • • , k, aÇzA, where 
Ea denotes expectation under the Pa measure, and q = p/(p — l). 

Then, for any estimatorT(CO) = (JTI(CO), • • • ,T*(tt)) ofa =(«i , • • •,«*) 
in A, the lower bound for the risk function, 

R(T, a) = EaOVaiTx - «i, • • • , Z* - a*)), 

is gwia by 

wAere G= X)*-i 1-̂ *1 » a w ^ &*(<*)== 52*-1 Ea{TiDj), and where the 
supremum is taken over all p for which WlJv{*) is convex. If p — l, then 
E1,Q(Gq) is taken as the essential supremum of G, and with this inter­
pretation the same bound given above is valid in this case also. 

I t is useful to note that bi(a) = 1, for all i, if T(o)) is an unbiased 
estimator, and then the lower bound does not depend on T so that 
an estimator whose risk function is smaller, compared with this 
bound, may be considered optimal. The result is proven after a slight 
extension of Theorem 7 of [4]. It reduces to a result of [3, p. 248], 
if fe=l and Wa{t)=t2. Other risk functions can be considered using 
the results of [4]. 

The method of maximum likelihood (m.l.) is very useful for estima­
tion problems in processes [3]. The associated questions of con­
sistency and limit distributions of estimators now become very diffi­
cult however. The simplest Gaussian process {Xn, n^l) defined by 

(**) Xt + a i X w + • • • + auXt^ = eh 

where u are independent Gaussian (mean zero, variance one and 
€«==0, t^O), leads to the consistency questions of ai, for which no 
known theorem is applicable even for the case fe=l, if | a | ^ 1 . One 
important result is in [8], which however gives the solution only for 
k = l and \a\ < 1 . By direct calculations, using the structure of (**), 
consistency can be settled in a number of cases even if k>\, [6], 
but no general result is available. If k= 1, such a result can be given 
as follows: 

THEOREM 4. Let {Xn, n à l } be a (discrete) stochastic process whose 
finite dimensional distributions are absolutely continuous relative to a 

file:///-measure
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fixed (T-finite measure X defined on (Q, (B) of the process y with densities 
fn(xi, • • • , %n, ot)y or fn(Xy el), depending on a real parameter a, where 
fn(Xy ai) T^fnipCy «2), a.e. [X] if ai9éa2. Suppose thatfn(xt a) satisfies the 
conditions : 

1. dfn/d(Xy d2fn/da2 exist andy for each x, are continuous functions of 
aÇz~Â (closure of A) where A is a bounded nondegenerate interval. These 
are dominated by G(x) and H(x)t where Ea{G(X)) and Ea(H(X)) are 
bounded f or all a £ 4 . 

2. Cn(a)=Ea(d log fn/da) exists and Cn(a)—>oo as n-*<* for a<EA. 
3. If <j>n(a) = d log fn/doiy and 4>£ (a) = d<t>n/doLy then for a given 

j3>0 there exists an M such that £ a ( l u t v |<£n' (a')\ /Cn(a)) ^M< 00 
forallayOi'ÇiAy \a —af\ </3. 

4. Given 0 <S < 1, there exists an e$>0, such that for a £ 3 " , and all nt 

P r j | 0 w ' ( a ) | / C » ( a ) è € a } è l - 8 . 
!TAew JAe w.Z. equation <j>n(ot) = 0 Aas a r0o£ <2n wAicA is a consistent 

estimator of a (i.e., ân converges in probability to ay as n—>oo). 

This theorem is a considerable extension of the main result of [8] 
as it also covers many "explosive" processes. In particular the process 
(**) for k = 1 is covered by it. The proof can be given on classical lines 
with some essential changes. 

THEOREM 5. Every consistent m.L estimator, given in Theorem 4, has 
the following property: There exist two sequences of random variables 
{ Wn} and {Vn} on the same probability space {Q, (B, Pa} such that 

lim Ea(Wn) = 0 = lim Pr{F« = 0}, 

lim Ea(wl) = 1 = lim Ea(Vn), 

lim {VCj£)(<S„ - «) - (Wn/Vn)} = 0. 
n-*oo 

REMARK. The above property may be called weak asymptotic effi­
ciency of the estimators, extending a classical concept [8]. 

4. Other possibilities. The multidimensional extension of Theorem 
4 presents considerable difficulties since the matrix valued random 
variables converge, in this generality, almost always to singular 
matrices (cf. [6, p. 216, Remarks 2 and 3]) and the crucial Condition 
4 above has to be formulated differently. A multidimensional exten­
sion of [8], which is weaker than that of Theorem 4 can be given 
without too much difficulty. Also, viewing the prediction problem as 
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an extension of estimation theory some interesting results can be ob­
tained. 

The details and some extensions will appear elsewhere. 
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