ON GROUPS WITH FINITELY MANY INDECOMPOSABLE INTEGRAL REPRESENTATIONS

BY A. HELLER AND I. REINER¹

Communicated by Daniel Zelinsky, January 19, 1962

1. **Introduction.** The purpose of this note is to sketch a proof of the following theorem.

THEOREM. If G is a finite group having finitely many non-isomorphic indecomposable integral representations then for no prime p does p^3 divide the order of G.

It is known that the same hypothesis implies that all the Sylow subgroups of G are cyclic; thus they are cyclic of order p or p^2 . We do not know whether the converse is true. On the other hand, we have shown elsewhere [1] that a cyclic group of order p^2 has finitely many non-isomorphic integral representations.

In the same place it is shown that the above theorem follows from this proposition:

PROPOSITION. Let G be a cyclic group of order p^3 . Then G has infinitely many non-isomorphic indecomposable representations over the p-adic integers.

We outline below the proof of this proposition, which will appear in full elsewhere.

2. Construction of indecomposables. Let Λ be a ring such that the Krull-Schmidt theorem holds for finitely generated left Λ -modules; this is certainly the case for algebras of finite rank over a complete valuation ring [3]. We shall write Hom for Hom_{Λ} and Ext for Ext^{Λ}_{Λ}.

Suppose that M and N are indecomposable Λ -modules such that $\operatorname{Hom}(M, N) = 0$, $\operatorname{Hom}(N, M) = 0$. If $M^{(k)}$ is a direct sum of k copies of M then $\operatorname{Hom}(M^{(k)}, M^{(k)})$ may be identified with the ring of $k \times k$ matrices with entries in $H = \operatorname{Hom}(M, M)$. Also $\operatorname{Ext}(N^{(u)}, M^{(t)})$ consists of $t \times u$ matrices with entries in $\operatorname{Ext}(N, M)$. If $H' = \operatorname{Hom}(N, N)$ then $\operatorname{Ext}(N, M)$ is an (H, H')-bimodule, and $t \times t$ matrices over H and $u \times u$ matrices over H' operate in the obvious way on $\operatorname{Ext}(N^{(u)}, M^{(t)})$.

We shall say that a matrix $X \in \text{Ext}(N^{(u)}, M^{(t)})$ is decomposable if there are invertible matrices T over H and U over H' such that

¹ The research of the second author was supported in part by a research contract with the Office of Naval Research.

$$T \times U = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix},$$

where, of course, B and D need not be square matrices.

LEMMA 1. An extension E of $N^{(u)}$ by $M^{(t)}$ with extension class X is a decomposable module if and only if X is a decomposable matrix.

In order to apply this lemma it is convenient to observe the following consequence.

COROLLARY. Let \tilde{H} , \tilde{H}' be quotient rings of H, H'. Suppose $V \subset \operatorname{Ext}(N, M)$ is an (H, H')-submodule and that \tilde{V} is a quotient of V on which \tilde{H} , \tilde{H}' operate. If X is a matrix with entries in V whose image \tilde{X} in \tilde{V} is (\tilde{H}, \tilde{H}') -indecomposable then the extension corresponding to X is an indecomposable module.

3. Construction of the submodule. In this paragraph we set $\Lambda = E_2 = Z_p^* G_p^2$, where Z_p^* is the ring of p-adic integers, and G_p^2 is cyclic of order p^2 with generator g. We write $C = (g^p - 1)E_2$ and $E_1 = E_2/C$. For any module N, we shall set $\overline{N} = N/pN$.

Now Ext $(C, E_1) \approx \overline{E}_1 \approx \overline{Z}[g]/(g-1)^p$. We define M to be the extension of C by E_1 with extension class g-1. Since $\operatorname{Hom}(E_1, C) = 0$, $\operatorname{Hom}(C, E_1) = 0$, we may apply Lemma 1 with k = 1. Thus M is indecomposable. Further, if $H = \operatorname{Hom}(M, M)$, there is a canonical monomorphism $\rho: H \to \operatorname{Hom}(C, C) + \operatorname{Hom}(E_1, E_1)$ whose image may be described as follows [2].

LEMMA 2. $\rho(H)$ consists of pairs (a_L, b_L) , where $a, b \in E_2$ and the subscript L denotes left multiplication, such that

$$(g-1)(a-b) \in pE_2 + (g-1)^pE_2.$$

Denoting by rad H the Jacobson radical of H, we have the following consequence.

COROLLARY. $\rho(\text{rad }H)$ consists of pairs $(a_L, b_L) \in \rho(H)$ such that $a, b \in \text{rad } E_2 = \rho E_2 + (g-1)E_2$. Thus $\tilde{H} = H/\text{rad }H \approx \overline{Z}$.

Although M is indecomposable this is not true of \overline{M} . We have instead the following result.

LEMMA 3. $\overline{M} = E_2 u \oplus E_2 v$ as an E_2 module, where $pu = pv = (g-1)u = (g-1)^{p^2-1}v = 0$.

Now let V be the submodule $E_2u + E_2(g-1)v$ of \overline{M} . Then, as a consequence of Lemma 2, we have the following result.

- LEMMA 4. V is an H-submodule of \overline{M} and $(\operatorname{rad} H) V = E_2(g-1)^2 v$. Thus $\widetilde{V} = V/(\operatorname{rad} H) V$ is a two-dimensional \widetilde{H} -space with basis \widetilde{u} , \widetilde{v} , the images of u and (g-1)v.
- 4. Proof of the proposition. We now change our notation so that $\Lambda = E_3 = Z_p^* G_{p^2}$ where G_{p^3} is cyclic of order p^3 with generator g_3 . Then $g_3 \rightarrow g$ defines a ring epimorphism $E_3 \rightarrow E_2$; we use this to turn all E_2 -modules into E_3 -modules.

If $N=(g_3^{p^2}-1)E_3$, and M is the module defined in §3, then Hom(M, N)=Hom(N, M)=0 and $\text{Ext}(N, M)\approx \overline{M}$. But H'=Hom(N, N) consists only of left multiplications a_L , $a\in E_3$. Thus $(\text{rad }H')V=E_2(g-1)^2v$ and $\widetilde{H}'=H'/\text{rad }H'\approx \overline{Z}$ operates on \widetilde{V} .

We are now in a position to apply the corollary to Lemma 1. For any integer k let $X^{(k)} \in \operatorname{Ext}(N^{(k)}, M^{(k)})$ be the matrix $X^{(k)} = uI + (g-1)vJ$, where J is any $k \times k$ indecomposable matrix over \overline{Z} . Since the matrices $\tilde{X}^{(k)} = \tilde{u}I + \tilde{v}J$ are clearly \overline{Z} -indecomposable, i.e., (\tilde{H}, \tilde{H}') -indecomposable, the same must be true of the corresponding extensions.

REFERENCES

- 1. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers. I, Ann. of Math. (to appear).
- 2. A. Heller, Homological algebra in abelian categories, Ann. of Math. 68 (1958), 484-525.
- 3. R. G. Swan, Induced representations and projective modules, Ann. of Math. 71 (1960), 552-578.

University of Illinois