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1. Introduction. The purpose of this note is to sketch a proof of 
the following theorem. 

THEOREM. If G is a finite group having finitely many non-isomorphic 
indecomposable integral representations then for no prime p does pz 

divide the order of G. 

It is known that the same hypothesis implies that all the Sylow 
subgroups of G are cyclic; thus they are cyclic of order p or p2. We do 
not know whether the converse is true. On the other hand, we have 
shown elsewhere [l] that a cyclic group of order p2 has finitely many 
non-isomorphic integral representations. 

In the same place it is shown that the above theorem follows from 
this proposition: 

PROPOSITION. Let G be a cyclic group of order pz. Then G has in­
finitely many non-isomorphic indecomposable representations over the 
p-adic integers. 

We outline below the proof of this proposition, which will appear in 
full elsewhere. 

2. Construction of indécomposables. Let A be a ring such that the 
Krull-Schmidt theorem holds for finitely generated left A-modules; 
this is certainly the case for algebras of finite rank over a complete 
valuation ring [3]. We shall write Horn for Honu and Ext for Ext^. 

Suppose that M and N are indecomposable A-modules such that 
Hom(M, N) = 0, Hom(N, M) = 0. If Af(*° is a direct sum of k copies 
of M then Horn(M<*>, M™) may be identified with the ring of kXk 
matrices with entries in i ï=Hom(M, M). Also Ext(iV(M), ikf(<)) con­
sists of tXu matrices with entries in Ext(iV, M). If jff' = Hom(iV, N) 
then Ext(iV, M) is an (H, iî')-bimodule, and tXt matrices over H 
and uXu matrices over H' operate in the obvious way on 
Ext(iV<w>, Af<«). 

We shall say that a matrix X£Ext(iV(M), M(0) is decomposable if 
there are invertible matrices T over H and U over H' such that 

1 The research of the second author was supported in part by a research contract 
with the Office of Naval Research. 
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(B 0\ 
TXU = [ ) , 

where, of course, B and D need not be square matrices. 

LEMMA 1. An extension E of N(u) by M(t) with extension class X is 
a decomposable module if and only if X is a decomposable matrix. 

In order to apply this lemma it is convenient to observe the follow­
ing consequence. 

COROLLARY. Let H, H' be quotient rings of H, H'. Suppose 
FCExt(iV, M) is an {H, H')-submodule and that V is a quotient of V 
on which H, H' operate. If X is a matrix with entries in V whose image 
X in V is (H, H')-indecomposable then the extension corresponding to 
X is an indecomposable module. 

3. Construction of the submodule. In this paragraph we set A = E2 

= Z%Gp2, where Z* is the ring of £-adic integers, and Gp* is cyclic of 
order p2 with generator g. We write C = (gp —1)£2 and E\ = E2/C. For 
any module N, we shall set W = N/pN. 

Now Ext (C, Ex) « 2 i « Z [ g ] / ( g - 1 ) * \ We define M to be the exten­
sion of C by Ei with extension class g — 1. Since Hom(Ei, C ) = 0 , 
Hom(C, E i ) = 0 , we may apply Lemma 1 with k = l. Thus M is in­
decomposable. Further, if H= Hom(ikf, M), there is a canonical mono-
morphism p: H—»Hom(C, C)+Hom(£ i , Ei) whose image may be de­
scribed as follows [2]. 

LEMMA 2. p(H) consists of pairs (az,, b£), where a> bÇ.E2 and the sub­
script L denotes left multiplication, such that 

(g- l)(a-b)epE2+(g-l)*E2. 

Denoting by rad H the Jacobson radical of H, we have the follow­
ing consequence. 

COROLLARY. p(rad H) consists of pairs (aLf 6 L ) G P ( J Ï ) such that 
a, berzd E2 = pE2+(g-l)E2. Thus # = i? / rad J ? « Z . 

Although M is indecomposable this is not true of M. We have in­
stead the following result. 

LEMMA 3. M = E2u®E2v as an E2 module, where pu=pv = (g — l)u 
= ( g - l ) * - % = 0. 

Now let F be the submodule E2u+E2(g~ l)v of H. Then, as a con­
sequence of Lemma 2, we have the following result. 
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LEMMA 4. V is an H-submodule of "M and (rad ff)F=E2(g-- l)2z>. 
Thus F = F/(rad H)V is a two-dimensional Ë-space with basis ü, v, the 
images of u and (g — l)v. 

4. Proof of the proposition. We now change our notation so that 
A = Ez = ZP*Gp* where Gp

z is cyclic of order pz with generator g3. Then 
gz—*g defines a ring epimorphism E%—^£2; we use this to turn all E2-
modules into £3-modules. 

If N=(gf—1)EZ, and M is the module defined in §3, then 
Hom(M, N) = Hom(iV", Af) = 0 and Ext(iV, M) « M. But H' 
= Hom(iV, N) consists only of left multiplications ÖL, # £ £ 3 . Thus 
(rad H') V-=E2(g-l)2v and # ' = tf'/rad H'~1 operates on P. 

We are now in a position to apply the corollary to Lemma 1. For 
any integer k let Z<fc)GExt(iV(fc), ikf(fc)) be the matrix XSh) = uI 
+ (g—l)vJ, where J is any kXk indecomposable matrix over Z. Since 
the matrices JCw = üI+vJ are clearly Z-indecomposable, i.e., 
( 5 , B')-indecomposable, the same must be true of the corresponding 
extensions. 
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