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1. Definitions and notation. Let M be an orientable, differentiate 
manifold of dimension In and let £ = (E^ M, R2n, x) denote the tan­
gent bundle of M ; we assume the structural group of £ has been re­
duced from the full linear group to the special orthogonal group 
SO{2ri). By definition, M admits an almost complex structure if and 
only if the associated fibre bundle rç = (i£, M, Tn, p) admits a cross 
section;1 here Tn denotes the homogeneous space SO{2n)/U(n). In 
this paper, we will study the obstructions to a cross section for any 
fibre bundle 0=(E, B, Fn , p) with structural group SO(2n) and base 
space B a CW-complex. If s: Bq-*E is a cross section of 6 over the 
g-skeleton of the base space B> then the obstruction to extending 5 
over the (q + 1) -skeleton is denoted by 

Since 0 is a bundle with structural group SO(2n), the following 
characteristic classes are defined : 

(a) Integral Stiefel-Whitney classes, 

Wi(6) G H*(B, Z), 3 g i g 2n - 1, i odd. 

(Recall that 2- Wi(fl)=Q.) 
(b) Euler-Poincaré class, W2n(6)eH2»(B, Z). 
(c) Pontrjagin classes pi(0)GHu(Bt Z), O^t^n. 

In an analogous manner, if £ is a fibre bundle with base space B and 
structural group U(n), the Chern classes of £ will be denoted by 
Ci®eH*KB, Z),0Si£n. 

2. Statement of results. The homotopy group 7rg(rn) is called stable 
if q<2n— 1 ; it is well known that the stable homotopy groups Tq(Tn) 
for fixed q and variable n are all isomorphic; see Gray [4, p. 432]. 
The stable homotopy groups of Tn have been determined by Bott 
[2]; he showed that in the stable range, 

1 Standard references on the subject of almost complex structures are Ehres-
mann's lecture at the 1950 International Congress of Mathematicians [3] and the 
last section of Steenrod's book [l0]. 

The author would like to take this opportunity to acknowledge that his proof of 
the two theorems announced in Abstract 60T-24, Notices Amer. Math. Soc. vol. 
7 (1960) p. 1001, contains an apparently irreparable gap. Whether or not these 
two theorems are correct is not known. 
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7Ta(rn) = Z for q = 2 mod 4, 

(1) ïTg(rn) = Z2 for g = 0 or - 1 mod 8, 

^«(Fn) = 0 for all other values of q. 

LEMMA 1. The first nonstable homotopy group 7r2n-i(rn)(w>0) is as 
follows: 

for n s 0 mod 4, 

f or n s 1 mod 4, 

for w = 2 mod 4, 

for w = 3 mod 4. 

This result for n = 0 mod 4 is due to Bruno Harris. The results for 
the other three cases are easier; they are proved by considering the 
homotopy sequences of some well-known fibre bundles and using the 
results listed in a paper of Kervaire [9]. 

Recall that the vanishing of the integral Stiefel-Whitney classes 
W2q+i(0) is a well-known necessary condition for the existence of a 
cross section of the fibre bundle 0=(E, B, Tn, p) (see Steenrod [10, 
p. 212]). On the other hand in the stable range the obstruction to a 
cross section in dimension 4fe+3 will be an integral cohomology class 
in view of (1). I t is natural to conjecture that there should be some 
relation between this obstruction and the Stiefel-Whitney class 
W W 0 ) . 

THEOREM I. Let s: Bq—>E be a cross section of the bundle 0 over the 
q-skeleton, where q = 4k+2 and q<2n — l. Then 

w /M / QQte^Ks) fore even, 

l (1/2) (2k) y*Ks) for k odd. 

REMARK 1. For q = 2, this theorem asserts that W%(d) =cz(s), which 
is of course well known. For q = 6, the result becomes W^(0) =c7(s), 
a result announced by Ehresmann without proof in 1950 [3]. 

REMARK 2. In case Hq+l(B, Z) has no ^-torsion for any prime 
p^2k, then the condition TFtf+t(o)=0 implies that cq+1(s)=0. 

REMARK 3. This theorem bears a slight similarity to formula (ii) of 
Lemma (1, 1) of Kervaire [8]. The proof here is more difficult be­
cause Tw is not a topological group and 6 is not a principal bundle. 

REMARK 4. This theorem implies divisibility conditions on the 
integral Stiefel-Whitney classes. For example, if ô = (£ , B, p) is a 
bundle with group SO(2w), n^6, such that HB(B, Z2) =H\B, Z2) = 0 
and Wz(6) = W7(0) = 0 , then Wn(0) is divisible by 24. 

7T2n- l (r„) = 

{Z + Zi 
Z(„-iyl 

z 
Z(n-\)\i% 
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As motivation for the next theorem, recall that if the bundle 0 
admits a cross section s, then the structural group can be reduced 
from SO(2n) to the subgroup U(n). Let £ denote the U(n) bundle 
thus defined (£ depends on the cross section s) and £«•(£), I =5^=l̂ > its 
Chern classes. Then the following relations must hold between the 
Pontrjagin classes pi(d) and the Chern classes ct(£) : 

(2) (-1)*M0) = E (-1) '*(Ö*,(Ö, 0 ^ ^ « 
vfi=2fc 

(see Hirzebruch, [6, Satz 4.5.1, p. 68]). In addition, the top Chern 
class and the Euler-Poincaré class are equal: 

(3) WUB) = cn(Q. 

Now assume that n is even, n = 2k, and that s: B2n~1-^E is a cross 
section of 6 over the 2n —1 skeleton. The obstruction c2n(s) 
ÇiH2n(Bt 7T2n-i(rn)) is an integral class if w==2 mod 4, while c2n(s) 
^£0*(5)+*!*($) *f w^O mod 4, where cj* is a n integral class and (%n is 
a mod 2 cohomology class. 

THEOREM II. For n = 2k, ft odd, 

E (-l)^(ÖCy(Ö - (-1)*M«) = 4-^W 

while for n = 2ft, ft eflew, //MS same formula holds true with c2n(s) replaced 
by its integral component, c%*(s). In this formula, c0(£), * * * > cn-i(£) 
are /&£ C^rw classes of the U(n) bundle £ induced over B2n~x by st while 

Theorems I and II give information about the obstructions to a 
cross section of 6 in all cases of importance where the coefficient 
group is infinite cyclic. Further information is needed in case the 
coefficient group is Z2. The first such case is the following: Assume 
s: B7—>E is a cross section of 0 = (E, Bf Tn, p) over the 7-skeleton and 
n > 4. Then cB(s) is a mod 2 cohomology class. The existence of 5 im­
plies that Wz(6), Ws(0), and W7(d) vanish, and that the fibre Tn is 
totally nonhomologous to zero in dimensions ^ 8 with any coeffi­
cients.2 (H*(Tn, Z) is torsion free.) In dimensions g 8, ü * ( r » , Z) is a 
polynomial ring2 on generators xE:H2(Tny Z) and 3>£/J6(rn, Z). I t 
follows that there exist elements uÇzH2(E, Z) and v(EH*(Et Z) such 
that 
(4) i*(u) = x, i*(v) » y, 

where i: Tn-+E is the inclusion map. 

* These assertions follow easily from the facts about the cohomology of Tn stated 
in the next section. 
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LEMMA 2. Given the cross section s, it is possible to choose u and v so 
that (4) is satisfied and s*(u) — s*(v) = 0. Conversely, given the coho-
mology classes u and v satisfying (4), there exists a cross section s: B7—>£ 
such that s*(u) =S*(Ü) = 0 . 

Next, it may be shown that Sq2y = x* (mod 2). Since the fibre is 
totally nonhomologous to 0 in dimensions ^ 8 , there exist unique 
mod 2 cohomology classes b2l b2l h, fat b* on B such that 

Sqh = u* + p*(bs) + p*fa)-u + p*(bt) -U* 
(5) 

+ p*{b2)-u
z + p*(b2)-v (mod 2) 

(the subscripts denote the degree). 

THEOREM I I I . If u and v are chosen to satisfy (4) and s*(u)=s*(v) 
= 0, and bsÇzHs(B, Z2) is chosen to satisfy (5), then 

c*(s) = ft8. 

This theorem essentially asserts that determination of c\s) re­
quires the computation of Sq2:H*(E, Z)-*H*(Et Z2), where H*(E) 
is considered as a module over H*(B). This computation is a t present 
a very difficult problem. 

An easy computation using Lemma 2 shows that if 5o, Si: B7—Œ 
are cross sections, then there exist cohomology classes d2Q:H2(B% Z) 
and dsGH*(B, Z) such that 

(6) c*(sQ) - c*(st) = Sq2d* + (<Z2)
4 (mod 2). 

Moreover, given s0, d2, and d6, there exists a cross section Si such that 
this equation holds true. 

COROLLARY. If 6 = (E, B, Tn, p) is a bundle with structural group 
SO(2n), n>4 such that Wz(0) = W7(d) = 0 and 

H*(B, Z2) = Sq2H«(B, Z) + Sq*Sq2H2(B, Z) 

then 6 admits a cross section over the 8-skeleton of B. 

3. Some remarks on the proof of these theorems. We use the 
method of R. Hermann [5] to study the obstructions to cross sections 
of the bundle 0 = (E, Bf Tn, p). This method utilizes a Moore-Post-
nikov decomposition of the fibre space 0, which in turn requires 
some knowledge of a Postnikov decomposition of the fibre Tn. In 
order to use a Postnikov decomposition of Tn it is necessary to study 
the cohomology of Tn. The following are the relevant facts: 

(a) rw is torsion free; additively, its integral cohomology groups 
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are isomorphic to those of the following product of even dimensional 
spheres: 

S2 X S4 X S6 X • • • X S2""2 

(see Borel, [l, p. 203]). 
(b) The integral cohomology ring H*(Tn, Z) has a simple system 

of generators (in the sense of Borel, [l, p. 141 ]) ai, a2, • • • , an-i, with 
a» of degree 2i. These generators satisfy the following relations, 
which completely determine the structure of the integral cohomology 
ring: 

CL\ — a% = 0, 

«2 ~ 2ai«s + on = 0, 
2 

as — 2«2«4 + 2aiufó — «6 = 0, 

an_2 — 2an-8<*n-i = 0, 

«n-l = 0. 
(c) In any fibre bundle 0 = (£, B, Tn) p) with group SO(2n), the 

generators «i, • • • , an-i listed above are transgressive ; the trans­
gression of the generator a» is the integral Stiefel-Whitney class 
W2i+i(fl) (modulo the ideal generated by Ws, • • • , W^t-i). 

(d) In the fibre space p: BU{n)-^BSo{2n) determined by the inclu­
sion U{n) CSO(2n), the homomorphism i*: H*(BU(n), Z)->H*(Tn, Z), 
where i: Tn-^Bu(n) is the inclusion map, satisfies 

.•*(*) = 2ay, 
i*(cn) = 0. 

Here CjÇzH23'(Bu(n)t %) denotes the universal Chern class. 
(e) From (c), one can determine the Steenrod squares in H*(Tn, Z2). 

It is necessary to reduce modulo 2 and use the known formulas of 
W. T. Wu for the squares of the Stiefel-Whitney classes. 

(f) It follows from (d) that i*:H*(BU(nh Zp)-^H*(Tn, ZP) is a 
homomorphism onto for any odd prime p\ hence the formulas of 
Serre and Borel for the Steenrod reduced powers in H*(BV(n), Zp) 
determine those in iï*(r«, Zp). 

From these facts, one can determine enough information about the 
Postnikov invariants of Tn to prove Theorems I, II and III by Her­
mann's method; full details will be published elsewhere.3 

3 These results may perhaps be regarded as a first small step in the program men­
tioned by Hirzebruch in the middle of p. 127 of his 1958 lecture [7]. 
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Note that all our results.extend to analogous theorems about the 
almost contact manifolds of Gray [4]; for example, an orientable 
7-dimensional manifold admits an almost contact structure if and 
only if Wz = 0 (since W7 = 0 automatically). 
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