LIE AND JORDAN STRUCTURES IN SIMPLE,
ASSOCIATIVE RINGS

I. N. HERSTEIN

1. Introduction. In classifying the simple, finite-dimensional Lie
algebras over the field of complex numbers, Cartan and Killing
showed that, outside of five isolated examples, these fall into four in-
finite families.

These four infinite families are, roughly speaking, the matrices of
trace 0 and the skew-symmetric matrices under some involution de-
fined for the algebra of matrices.

It is natural to ask whether the simplicity of these sets of matrices,
as Lie algebras, is really a consequence of the simplicity of the algebra
of all » X% matrices over a field, as an associative ring.

We shall see that this is indeed the case. The simplicity of an asso-
ciative ring, and by this we mean any simple ring, with no chain con-
ditions assumed (it can even be a radical ring) forces the simplicity
or almost-simplicity of certain natural nonassociative structures ob-
tained from the elements and operations of the forementioned asso-
ciative ring.

However, our prime motivation for undertaking these studies is not
the mere desire to generalize these well-known results of Cartan and
Killing from the classical case of matrices to arbitrary simple rings.
Rather, the foremost reason for investigating these structures is to
provide a tool, a set of techniques, an approach, for answering purely
associative questions about the associative structure of these simple
rings.

As we proceed in the exposition and development of the researches
carried out to date we shall, from time to time, point out how the
nonassociative theorems proved can be exploited to prove theorems
about simple rings; theorems in whose statements and conclusions
these nonassociative structures play no role. These applications, we
feel, are but the first ones that have been made. We hope that these
techniques will be used advantageously more and more to prove other
theorems.

Aside from sketching the use of the results in special cases, we
shall give no proofs. These can be found in the appropriate references
given.
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2. The Lie and Jordan structure of R. Given any associative ring
R we can render it into a Lie ring by defining, for any two elements
a, bER a new product, the Lie product, defined by [a, b]=ab—ba.
Similarly we can make of it a Jordan ring by introducing the Jordan
product @-b=ab-+ba. In characteristic 2, of course, these two struc-
tures coincide.

It is natural to expect that the associative properties of the ring R
should reflect heavily in the properties of R as a Lie and a Jordan
ring. The influence on these of the assumption that R is a simple
ring will be our main concern.

It is appropriate at this point to point out that, in general, in con-
sidering such questions as we shall, be they about the appropriate
ideal structure, homomorphisms, derivatives, the Jordan situation is
much easier to study than the corresponding Lie one. One reason for
this is that in the Lie case the center of R constantly gets in our way,
so much so, that many questions, completely answered for the Jor-
dan case are virtually untouched in their Lie analogs.

An additive subgroup, U, of R will be called a Lie ideal of R if,
whenever #€ U and rER, then [u, 7] =ur —ru € U. Similarly it will
be called a Jordan ideal of R if, whenever & U and r&R, then
u-r=ur+ru&cU.

Any ordinary, two-sided ideal of R is automatically both a Lie ideal
and a Jordan ideal of R. The converse, however, need not hold—
many examples exist of subsets which are Lie ideals or Jordan ideals
but which are not ideals of R.

Suppose now that R, as an associative ring, is simple; that is, R
has no nontrivial two-sided ideals. We restrict R in no other way.
The usual procedure for proving theorems about R is to produce a
two-sided ideal and then, knowing that this ideal can only be (0) or
R, we read off the relevant consequences from this knowledge.

Manifestly the definitions of Lie or Jordan ideals are less restrictive
than that of an ordinary ideal. Hence they are easier to produce. If
we could characterize them tightly, once such an ideal is produced,
knowing what possible subsets of R could serve as candidates for
such an ideal, we could draw conclusions about the situation at hand
from this knowledge. Our aim then becomes, amongst other things,
to get such a close characterization of the Lie ideals and of the Jordan
ideals of R.

For the Jordan structure the situation is extremely clear-cut for we
have [9].

TaEOREM 1. If R is a simple ring of characteristic different from 2 and
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if U is a Jordan ideal of R then either U=(0) or U=R. In other words
R is simple as a Jordan ring.

No such simple dichotomy can exist for R as a Lie ring. For, if Z
is the center of R then any additive subgroup of Z trivially provides
us with a Lie ideal of R. At the other end of the spectrum, (if [4, B]
denotes the additive subgroup of R generated by all ab—ba for a€ 4
and bEB) [R, R] and any additive subgroup of R which contains
[R, R] is automatically a Lie ideal of R. At best we can only hope to
prove a result which will tell us how any given ideal of R is situated
relative to these extremes, Z and [R, R)]. This is accomplished for
us by [9].

THEOREM 2. Let R be a simple ring and let U be a Lie ideal of R. Then
either UCZ or UD|R, R] except if R is of characteristic 2 and is of
dimension 4 over its center Z.

The exception is indeed an exception. For, if we take R to be the
ring of 2 X2 matrices over a field F of characteristic 2, the set of all

b a,

provides us with a Lie ideal of R which neither is in Z nor contains
[R, R].
A crucial step en route to establishing Theorem 2 is to prove

a,b= F}

THEOREM 3. Let R be a simple ring and suppose that U is both a Lie
ideal and an ordinary subring of R. Then either UCZ or U=R except
in the case that R is of characteristic 2 and is 4-dimensional over its
center.

We point out this result (Theorem 3) because we shall now show
some purely associative results about R which are consequences of it.

If T is a subset of R, let T denote the subring of R generated by T.
Using Theorem 3 it is easy to prove

COROLLARY 1. If R is simple and not a field then [R, R]=R.
CoRrOLLARY 2. If R is simple, [[R, R], [R, R]]=[R, R].

The third, and most interesting corollary, widely generalizes a re-
sult of Dieudonné [7]. He proved it for division algebras which are
finite-dimensional over their centers. We shall now show it holds for
arbitrary simple rings.

Let R be a simple ring of characteristic different from 2 and suppose
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that in R there is defined an involution *, that is, a mapping of R
into itself satisfying:

(1) a** = q,
(2 (a4 b)* = a* + %,
3) (ab)* = b*a*

for all ¢, bER.

Let S={xER|x*=x} and K= {xER|x*=—x}; S is the set of
symmetric elements and K that of skew-symmetric elements of R
under the involution *. Since the characteristic is not 2 it is trivial
that R=S+K. In [11] we proved

CoROLLARY 3. If R is a simple ring of characteristic different from 2
and if either Z=(0) or if R is more than 4-dimensional over Z then
S=R.

PRrOOF. By its very definition S is a subring of R. We claim, in addi-
tion, that it is a Lie ideal of R. For, if ¢ €S and s&€.S then certainly
as—saES. On the other hand if ¢ES and €K we assert that
ak—ka€S. To prove this it is enough to prove it for the elements
a &3S of the form a=s153 - + - 55, 5;ES. But ak—ka= (sik—ks1)s;y -
Sntsi(ssk—Rs2)ss + - - st - - - Fs1852 - - - Saa(snk—Eks,). However, as
is easy to show, if s€S, k€K then sk—ksCS. Thus ak—kaES. Since
R=S+K, we obtain that [S, R]CS. That is S is a Lie ideal of R.

Consequently, by Theorem 3, either S=R or SCZ. The first pos-
sibility is the desired conclusion. Suppose, then, that the second one
prevails. Then certainly SCZ. In particuar, if k€K since k*E.S, we
have that k2&Z. Now if rER, r=s-+k, where sESCZ, and k€K,
whence (r—s)?=k*ESZ, and so r2—2rs+s2—k2=0. Therefore every
element in R satisfies a quadratic equation over Z. Using standard
results from the Jacobson structure theory of primitive rings (see, for
instance, [17]) it can be shown that R is at most 4-dimensional over Z.

Here, too, the exception is a true exception. If one takes the divi-
sion ring of quaternions over the real field with its usual * the sym-
metric elements are merely the reals and they certainly do not gener-
ate the whole ring.

Of much greater difficulty and depth is the fact that if R is more
than 4-dimensional over Z then K= R. More can be said: K can be
shown to generate R in a very specific and nice manner. This was done
by Baxter [6] in his thesis. We shall return to rings with involution
and Baxter’s result later.

3. Lie ideal structure of [R, R]. Whereas R has some natural Lie
ideals, namely the additive subgroups of Z and those containing
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[R, R}, in the classical case of matrices over fields it has been known
for a long time that [R, R], which in this special situation is nothing
but the matrices of trace 0, except for its intersection with the scalars
(which need not be (0) in characteristic # #0) is a simple Lie algebra.
So, again, let R be any simple ring. An additive subgroup U of
[R, R] is called a Lie ideal of [R, R]if [U, [R, R]]CU.
The key result in this direction is [10].

THEOREM 4., If R is a simple ring and if U is a Lie ideal of [R, R]
then either U= [R, R] or UCZ except if R is of characteristic 2 and is
4-dimensional over Z. In other words, [R, R]/ZN[R, R] is a simple
Lie ring.

Using Theorem 4 it is an extremely easy matter to prove

THEOREM 5. If R is simple and U is an additive subgroup of R such
that [U, [R, R]1C U then either UCZ or UD[R, R] except in the case
that R is of characteristic 2 and is 4-dimensional over Z.

Alternate proofs of Theorems 4 and 5 have been given by Amitsur
[1] and Schenkman [25]. Also special forms of these results for par-
ticular classes of rings were obtained by Jacobson and Rickart [19].

Theorem 5, too, enables us to prove a theorem about the associa-
tive structure of simple rings. Baxter [5] used it to give a new proof of
a result of Hattori [8]. Amitsur [2], about the same time, noticed
that the same method will yield a great deal more. His precise result is

THEOREM 6. Let R be a simple ring and let T be a subring of R in-
variant under all automorphisms of R. If R has an idempotent e#0, 1
then either TCZ or T =R except if R is the ring of 2 X2 matrices over
the integers mod 2.

Actually, as we shall see in the proof, Amitsur only requires that
T is invariant under inner automorphisms. Moreover, one can drop
the assumption that T is a subring to that in which it is merely an
additive subgroup of R; in that case the conclusion reads that TCZ
or TDI[R, R].

Hattori’s theorem is the special case in which R has descending
chain condition (and is not a division ring). Since these always have
nontrivial idempotents, Amitsur’s result is seen to be a broad gen-
eralization of that of Hattori. These results are related to the Brauer-
Cartan-Hua theorem which holds for subdivision rings of division
rings [17]. If one should want to set up a Galois theory of general
simple rings, a result like Theorem 6 would be absolutely basic. As
Amitsur pointed out by an example, one can not prove Theorem 6 for
arbitrary simple rings. However, it would be interesting to weaken
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the condition that the ring have an idempotent to something less.

Proor. Suppose that a ER satisfies ¢?=0. The mapping ¢: R—>R
defined by ¢(x) =(14a)x(1 —a) (the unit element is purely formal)
is an automorphism of R. Hence, by assumption, ¢(7) C7. Thus if
tET, o) =t+at—ta—ata©T. Whence for all t& T and all e ER satis-
fying a*=0, at—ta—ata&T. If there is a A5£0, 1 in the centroid of R
then (\a)?=0, hence Aat—Ata —N%ata € T. The net result of this is that
AMA—1)(at—ta) ST (if we assume, as we may, that T is an algebra
over the centroid) and so at—ta&T. Therefore, if the centroid of R
is not GF(2), [T, a]CT for all elements a ER such that a2=0.

If a*=b2=0 and (ET then (ab—ba)t—i(ab—0ba)=/ (at—ta)b
—b(at—ta) +a(bt—tb) — (bt —tb)a, and since both at—ia, bt —ib are in
T and a*=02=0, by the above, (ab—ba)t—t(ab—ba)&T.

All that remains is to show that in the presence of a nontrivial
idempotent in R every element in [R, R] can be written as a sum of
elements whose squares are zero and commutators thereof. If this
were so, then by the results of the above paragraph [T, [R, R]]CT
would be a consequence. But then Theorem 5 would tell us that either
TCZ or TD[R, R]. In the latter case, since T is a subring of R, by
Corollary 1 to Theorem 2 we would have that T'=R. This, of course,
would have established the theorem.

All that remains is to show that every element in [R, R] can be
written as the sum of elements whose square is zero and of elements
of the form ab—ba where a?=0%2=0.

If aER, a=cae+eae' +e'ac+e'ae’ where ¢ =1—e. Thus [R, R] is
generated by elements of the form [eae, ebe], [eae, ebe’], [eae, 'be],
[e'ae’, e'be’ ], [e'ae’, e'be], [e'ae’, ebe’]. Now [eae, ebe’ | =eaebe’ and its
square is 0. We are left with the pieces eRe and ¢’Re’. Also Re’'R=R,
whence eRe=¢Re'Re; that is, eae is a sum of elements of the form
ebe’ce. Thus it is enough to prove the result for elements of the form
[eae’be, ece]. But [eae’be, ece] = [eae’, e'bece] — [ecebe’, e'ae] and each
constituent on the right hand side inside the brackets has square 0.
A similar argument works for ¢/Re’. This completes the proof.

Theorem 6 enables us to prove many theorems about the represen-
tations of elements of R in special forms, whenever R has an idem-
potent, for it is not difficult to construct subrings of R invariant un-
der all automorphisms. To cite one such, the additive subgroup gen-
erated by all elements which are right-quasi-regular is invariant un-
der all automorphisms; if the ring has a unit element, the additive
subgroup generated by invertible elements also is, etc.

In a slightly different direction Theorem 2 might give us an ap-
proach to simple nil rings. Suppose, for instance, that R is a simple
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nil ring with infinite centroid. In R let T be the subring generated by
all elements whose square is 0. Clearly T is invariant under all auto-
morphisms (but of course R no longer has any idempotents). If eER
then for some integer #, a” =0, and so the mapping x—(1 —a)x(1 —a)™!
=(1—a)x(1+a+a?+ -+ + +a™1) is an automorphism of R. Thus it
takes T intoitself. Hence, if t&T, —at-+ta —ata+ta®—ata®+1tad -

€ T. However, if \ is in the centroid of R, (Aa)"=0 for the same # as
is used for a. Thus A(—at+ta) +\2(—ata+ta?) - - - ET. If the cen-
troid is infinite, using a Vandermonde determinant argument we can
conclude that at—ta is in T for all t&T and all e€R. Thus T is
both a Lie ideal and a subring of R. By Theorem 2, T=R or TCZ.
Since R is a simple nil ring, Z=(0). Thus we are left with T'=R. That
is any element of R is in a subring generated by a finite number of
elements whose square is 0.

The conjecture is that a simple nil ring must be trivial. However,
as we pointed out in [9] to show this it is enough to prove that such
a ring is locally nilpotent. When the centroid is infinite the above
discussion reduces the problem even further, namely, to proving that
the subring generated by a finite number of elements whose square is
0 must be nilpotent. Admittedly, the problem so reduced still looks
extremely formidable and difficult, but at least it has been narrowed
down to a very special and specific problem. Moreover it affords us a
program, an approach, to this important question.

4. Simple rings with involution. So far we have only discussed the
extension to arbitrary simple rings of the first family of simple Lie
algebras over the complex field, namely the matrices of trace 0. The
other three classes arise from skew matrices under some involution.
Our discussion now will have these as a motivating guide.

We now turn to general simple rings R with an involution *. As
we did earlier in this paper, for such rings we assume that R is not
of characteristic 2 and that S and K denote, respectively, the sym-
metric and skew-syminetric elements of R under this involution.

A simple check verifies that if @, 8&.S then ab+baES. Therefore
S itself forms a Jordan subring of R. One might ask whether S, as a
Jordan ring, is simple. Similarly it is easy to see that if ¢, b& K then
ab—baEK. Hence K is a Lie subring of R; likewise [K, K] is a Lie
subring of R. Here, too, one might ask for a characterization of the
Lie ideals of K and of [K, K]. These questions are answered com-
pletely in [6; 11].

Before stating the relevant results, one should point out that this
situation should be more difficult than the discussion of the Lie and
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Jordan structure of R or of [R, R]. The reason for such an expecta-
tion might be that K and S are rather far from being subrings of R.
Given an element s&S (or K) only rarely dces as fall back in S (or
K). Thus many arguments used in studying R and [R, R] which de-
pended on the fact that both elements a and xa behave in a certain
manner no longer can be used. This forces the introduction of differ-
ent types of techniques which tend to make the discussion more diffi-
cult. However, even here, the Jordan results turn out to be signifi-
cantly simpler than the corresponding Lie results.

There is an additional difficulty that should be pointed out. The
4 X4 matrices, over a field, under the ordinary transpose do not be-
have well. This must show up somewhere in the proofs. True, the 2 X2
matrices afforded us difficulties before, but that was to be expected
since these are as small as a noncommutative simple algebra can
possibly be. The 4 X4 matrices are not; thus they should force cer-
tain special considerations. They do! This also accounts for the pres-
ence in the statements of some theorems of the assumption that the
algebra is more than 16-dimensional over its center.

The first result in these directions [11] is about the Jordan struc-
ture of .S and is precise and decisive. It is

THEOREM 7. If R is a simple ring of characteristic different from 2
with an involution then S is a simple Jordan ring.

As was pointed out earlier, if the center of R is (0) or if R is more
than 4-dimensional over its center, S, the subring generated by S, is
all of R. This was relatively easy as a consequence of the results about
the Lie ideal structure of R.

Even more important for our purposes, and considerably deeper
and more difficult is the following result [11].

THEOREM 8. If the center of R is (0) or if R is more than 4-dimensional
over its center, then K, the subring of the simple ring R generated by K,
is R.

In studying rings with involutions two possibilities arise:

(1) ZNK =(0); that is, \* =N\ for all AEZ. In this case the involu-
tion is said to be of the first kind.

(2) ZNK##(0); that is, there is a As#0&Z such that A\*= —)\.
Here the involution is said to be of the second kind.

The following general statement can be made: for involutions of
the second kind the problems are usually easy, whereas for involu-
tions of the first kind they usually are not. The reason for this is that
if A€Z, and N*= —As#0 then K=\S. Hence, since we know, by
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Theorem 8, a great deal about S, we can transfer this information
easily to K. Unfortunately no such method exists for involutions of
the first kind.

As in the case of R, K itself has some natural Lie ideals, namely
ZNK and [K, K]. What we strive to do is to locate any other Lie
ideal of K relative to these two.

Our first theorem in this direction [11] is

THEOREM 9. If R is a simple ring with involution of characteristic not
2 and if R is more than 16-dimensional over Z then any Lie ideal, U, of
K must satisfy either UCZ or UD|[K, K].

We shall not indicate the proof but do single out two steps in this
proof.

(1) We show that if UD [K, K] and U Z is a Lie ideal of K then
U must be 3-dimensional over Z.

(2) Using (1) and a series of counting arguments one shows that R
is at most 131-dimensional over Z.

The latter reduces the problem to finite-dimensional algebras, and
hence, to total matrix algebras. Since the bound on the dimension is
131, we are at worst involved with the 11 X 11 matrices. But here the
situation is completely described [18] so one can use this description
to complete the proof of Theorem 9.

As an immediate corollary of Theorem 9 we can prove

COROLLARY. If Risas in Theorem 9, then [[K,K], [K,K]]=[K,K].

It is natural to investigate [K, K] as a Lie ring. Baxter did this
and in [6] he proved

THEOREM 10. If R is as in Theorem 9 and if U is ¢ Lie ideal of
[K, K] then either UCZ or U= [K, K. That is, [K, K]/UN[K, K]
1s a simple Lie ring.

Using all this information about the Lie ideal structure of K and
of [K, K] Baxter then proceeded to prove a theorem about the repre-
sentation of symmetric elements in simple rings with involutions
which even seems to be new for matrices. This result is a purely asso-
ciative one, whose statement and conclusion do not involve these
nonassociative structures. It is

THEOREM 11. Let R be a simple ring of characteristic not 2 with an
involution. If R is more than 16-dimensional over Z then every sym-
metric element in R can be written as a sum of squares of skew-symmetric
elements of R with coefficients 1.
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Thus we see that SCXK in a very particular way; since KCK and
since R=S4K, Theorem 11 is seen to be a strong generalization of
Theorem 8.

In [14] we presented an alternate proof of Baxter’s theorem. We
did so by discussing subsets of S closed under Lie products with K
and subsets of K closed under Jordan products with S. For these
“cross-over” subspaces we proved

THEOREM 12. If R is as in Theorem 11 then

(1) if UCK and if Uo S={us+su/ucU, SES} is contained in
U then U=(0) or U=K.

(2) if VCSand [V, [K, K]|CV then either VCZ or VO[K, S].

(NotE: In (2) we also require that Ris not of characteristic 2 or 3.)

Another interesting consequence of Baxter’s theorem is the follow-
ing. Suppose K as a vector space over Z (actually, over SNZ) is
finite-dimensional, of dimension #. Then K o K, the additive sub-
group of R generated by all ab+ba, a, bEK, is of dimension at most
n? over Z. But KoK =S by Theorem 11, hence S is of dimension at
most n? over Z. Since R=.S+K this forces R to be finite-dimensional
over Z, in fact, of dimension at most #+n2

5. Jordan homomorphisms and derivations of prime rings. Run-
ning parallel to the study of the ideal structure of the various Lie
and Jordan subsystems of a ring R are the problems of the mappings
which preserve these structures. Of equal interest are also the analo-
gous questions about their derivations.

Motivated from a quite different direction—certain questions in
projective geometry—Ancochea [3; 4] initiated investigations of
mappings ¢ of division algebras finite-dimensional over their centers
such that ¢(a+b) =¢(a) +¢(d) and ¢(a?) =¢(a)? for all @, b in the
division algebra. He also assumed the characteristic was not 2. Prob-
ing deeper he also determined the nature of such mappings for the
ring of all matrices over a field. Hua [16], by making use of a pretty,
formal identity involving inverses, extended Ancochea’s result to
general division rings. Kaplansky [22] redefined these semi-auto-
morphisms to include the case of characteristic 2 by insisting that
¢(aba) =¢(a)p(d)d(a) and showed that the previous results carried
over to mappings from one finite-dimensional simple algebra onto
another. The results proved usually read that ¢ must be an automor-
phism or anti-automorphism.

Jacobson and Rickart [19] considered such mappings for a special
class of primitive rings and obtained some general results; the conclu-
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sions of these usually stated that such mappings were direct sums of
automorphisms and anti-automorphisms.

In a paper a few years after these [12] we extended these results
to cover arbitrary prime rings—this class includes all primitive and
simple rings. However, we assumed that the characteristic was not
2 or 3. Smiley [26] simplified our proof, extended it to cover char-
acteristic 3 and, using Kaplansky’s modification of the definition,
showed the result then also held in characteristic 2.

A prime ring R is one in which ¢Rb = (0) implies that a=0 or 5=0.
A Jordan homomorphism ¢ of one ring, R, into another, R’, is a map-
ping such that ¢(a+b) =¢(a) +¢(b) and ¢(a?®) =¢(a)%foralla,b ER. In
characteristic 2 we demand a little more, namely, that ¢(aba)
=¢(a)p(d)p(a). The theorem we proved reads

THEOREM 13. If ¢ is a Jordan homomorphism of any ring R onto o
prime ring R’ then ¢ is either a homomorphism or an anti-homomor-
phism.

In particular, for a simple ring R the mappings which preserve its
Jordan structure are merely automorphisms or anti-automorphisms
of its associative ring structure.

What can one say about the derivations of this structure? Let us
recall that a derivation of a ring R is a mapping of R into itself such
that 6(a-+0b)=26(a)+06(b) and 6(ab) =6(a)b+ad(b) for all a, bER.
Thus a Jordan derivation is an additive mapping 6(a 0 b)) =8(a) o b
+a o 6(b) or, neglecting the effect of characteristic 2, §(a%) =ad(a)
+8(a)a. We use the latter as our definition of Jordan derivation. In
[13] we proved

THEOREM 14. If 6 is a Jordan derivation of a prime ring R then 6 is
an ordinary derivation of R except in the case in which R is a commuta-
tive integral domain of characteristic 2.

Thus for derivations, too, the (Jordan) derivations of the Jordan
structure of a simple, associative ring turn out to be nothing more
than those induced by the ordinary derivations of this ring as an
associative ring.

For the other natural Jordan subsystem of R, namely the set of its
symmetric elements S in the case that R has an involution defined
on it, Jacobson and Rickart [20] proved that, given a ring R=A4,
where n =3 if the involution on R is such that for the matrix units
eii, € =e;; and if every symmetric element in R is of the form r+47*,
then any Jordan homorphism of S can be lifted to an associative
homomorphism of R in a unique way.



528 I. N. HERSTEIN [November

In an unpublished piece of work, for general simple rings R with
involution, we proved that a Jordan automorphism of the symmetric
elements of R can be extended to a mapping ® on [R, R] such that
®(ab—ba) =P(a)P(b) —2(b)®P(a). One would conjecture that any
Jordan homomorphism of S can be realized as the restriction of an
automorphism of R. Although little has been done, in the general
case, on Jordan derivations of S, here too one might conjecture that
these are merely restrictions, to S, of ordinary derivations of R.

In [12] we generalized the notion of a Jordan homomorphism to
that of an #-Jordan map, namely an additive mapping, ¢, of R into
R’ such that ¢(a”) =¢(a)" for all eER. For these we proved

THEOREM 15. If ¢ is an n-Jordan homomorphism of R onto the
prime ring R', which is of characteristic larger than n (or 0) and if R
has a unit element then ¢ = er where T is either a homomorphism or an
anti-homomorphism of R onto R’ and where € is an (n— 1)st root of unity
lying in the center of R'.

It would be a reasonable question to study #-Jordan automor-
phisms of the set of symmetric elements of a simple ring with involu-
tion; for odd #, such questions about the skew-symmetric elements
should also be worthy of investigation. Naturally one could ask the
analogous questions about #-Jordan derivations of appropriately con-
ditioned prime rings; by such mappings we would mean additive maps
6 such that

8(a”) = 8(a)a™ ' + ad(a)ar? 4+ - - - 4+ a1 (a).
We leave the discussion of Lie mappings to the last section.

6. Possible areas of research. In closing this paper we should like
to point out several areas and problems that seem to us to be worthy
of some attention:

1. The questions mentioned at the end of the last section about
Jordan mappings and derivations of the symmetric elements of a
simple ring with involution. Of somewhat lesser interest, but still
challenging, are those problems related to the #-Jordan automor-
phisms and derivations, for odd 7, of the skew-symmetric elements.

2. The very important and interesting problem of finding all the
Lie mappings of simple (or, perhaps, even of prime) rings. That is,
characterize all additive mapping of a simple ring R into a ring R’
such that Y(ab—ba) =y¢(a)¥(d) —¢(b)¢¥(a). In the case of matrices
these are, roughly speaking, of the form ¢ 47 where ¢ is either an
automorphism or the negative of an anti-automorphism and where 7
is a trace-like mapping into the scalars.
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We would conjecture that a similar result holds for general simple
rings. In this full generality little progress has been made. However,
as a test case, in characteristic 2, in a joint paper [15] with Kleinfeld
we proved that a Lie mapping of a simple ring which preserves cubes
must be an automorphism or an anti-automorphism.

3. The analogous question to that in Problem 2 for Lie deriva-
tions, that is, mappings d such that d[a, b]= [d(a), b]+[a, d()],
would be of interest to investigate. In an unpublished work Kaplan-
sky has shown that if the ring has » X# matrix units, with » =3, then
any Lie derivation is an ordinary one plus an additive map into the
center.

4. Problems 2 and 3 in the setting of the simple or almost-
simple Lie rings [R, R] and [R, R]/ZN[R, R] are worthy of serious
attention.

5. To settle the very difficult questions above for the skew-
symmetric elements, K, of a single ring and their associated simple
or almost-simple Lie rings [K, K] and [K, K]/ZN[K, K] offers a
real challenge. The nature of the 8 X8 matrices over fields under
transpose promises interesting side difficulties.

6. In [21], Kaplansky showed that a primitive ring satisfying a
polynomial identity was finite-dimensional over its center. In [6],
Baxter ran into special rings, with many extra conditions imposed,
in which the skew elements satisfied a polynomial identity. In his
special case he showed that the ring itself had to satisfy a polynomial
identity? Is this true in general? Martindale [23], has shown that a
primitive algebraic algebra with involution, whose symmetric ele-
ments satisfy a polynomial identity, is finite-dimensional over its
center. This lends some support to our conjecture that a simple ring
whose symmetric (or skew-symmetric) elements satisfy a polynomial
identity is finite-dimensional over its center.

7. If R is a simple ring with an involution of the first kind is
K =[K, K]? For matrices this can be shown using trace arguments;
an argument settling the general case might provide techniques that
could substitute, in other situations, for the kind of trace arguments
used in matrices.

8. One could apply the results on the Lie and Jordan structures
to studying more purely associative questions. A few samples:

(a) If R is a simple ring with a nonzero zero-divisor and if T is a
subring of R invariant under all the automorphisms of R, is TCZ or
T=R?

(b) If R is a simple ring, and if the nilpotent elements R form a
subring W of R, is W=(0) or W=R?
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(c) In the special case of (b), wherein any two nilpotent elements
of R commute is it true that R must have no nilpotent elements?

(d) If R is a simple ring with a nontrivial zero-divisor, is every
ab—ba in R a sum of nilpotent elements?

(e) If R is simple and has a nonzero nil right-ideal is R itself nil?
This is a special case of the Koethe problem.

9. The study of multiplicative analogs and variants of the Lie

question for the group of invertible elements in simple rings with
unit elements. See [24].
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