CONICAL SINGULAR POINTS OF DIFFEOMORPHISMS

BY WILLIAM HUEBSCH AND MARSTON MORSE

Communicated by Edwin Moise, May 27, 1961

1. Introduction. The Schoenflies extension Λ_{ϕ} of a differentiable mapping ϕ , constructed in the proof of Theorem 2.1 of [1], has at most a differential singularity of *conical* type (to be defined). This fact has far-reaching consequences which are reflected in the theorems of [2]. Theorem 1.1 below is one of these consequences. No proof of Theorem 1.1 is given here.

Let S be an (n-1)-sphere in a euclidean n-space E and let JS be the closed n-ball in E bounded by S.

THEOREM 1.1. Let z be an arbitrary point of S. A real analytic diffeomorphism f of S into E admits a homeomorphic extension, F, defined over a set $Z \cup z$, where Z is some open neighborhood of JS - z, and $F \mid Z$ is a real analytic diffeomorphism of Z into E.

This extension F of f defines an analytic diffeomorphism of its domain of definition with z deleted, and a homeomorphism with z included. F has no singularity on the interior of S, or on S, except at most at z.

We continue with a detailed exposition leading to a proof of Theorem 2.1.

NOTATION. Let E be the euclidean n-space of points (or vectors) x with rectangular coordinates (x_1, \dots, x_n) . Let ||x|| be the distance of x from the origin O. Set

$$(1.1) S = \{x | ||x|| = 1\}.$$

If M is a topological (n-1)-sphere in E, $\mathring{J}M$ shall denote the open interior of M. The complement of a subset Y of E will be denoted by CY. We use diff as an abbreviation of diffeomorphism.

A C_z^m -diff, m>0. Let $x\to G(x)$ be a homeomorphism into E of an open neighborhood X of a point $z\in E$; if $G\mid (X-z)$ is a C^m -diff into E, G will be called a C_z^m -diff of X into E.

An admissible cone K_z . Let K_z be a closed n-cone in E with vertex z, and with sections orthogonal to A which are closed (n-1)-balls whose centers are on A. The cone K_z is determined by z, A and any one of its orthogonal sections meeting A-z.

A conical point z of G. Let G be a C_z^m -diff into E of an open neighborhood X of z. The point z will be said to be a conical point of G and

 K_z a cone of singular approach to z if there exists a C^m -diff ζ into E of some open neighborhood $U \subset X$ of z such that

$$G(x) = \zeta(x) \qquad (x \in U - K_z).$$

On the supposition that z is a conical point of G we prove the following lemma.

LEMMA 1.1. (i) If μ is a C^m -diff into X of an open neighborhood Y of a point y such that $\mu(y) = z$, then $G\mu$ is a C_y^m -diff of Y into E with conical point y.

(ii) If θ is a C^m -diff of G(X) into E, then θG is a C_z^m -diff of X into E with conical point z.

PROOF OF (i). Suppose that G is represented on $U-K_z$ as in (1.2). Let $W \subset Y$ be an open neighborhood of y so small that $\mu(W) \subset U$, and for some admissible cone K_y

$$\mu(W-K_y) \subset U-K_z.$$

Put $\mu \mid W = \mu_1$. Then $\zeta \mu_1$ is a C^m -diff of W into E, and it follows from (1.2) and (1.3) that

$$(G\mu)(x) = (\zeta \mu_1)(x) (x \in W - K_y).$$

This partial representation (1.4) of $G\mu$ shows that y is a conical point of the C_y^m -diff $G\mu$. This establishes (i).

The proof of (ii) is immediate.

2. The principal theorem. In [1] there is given a C^m -diff ϕ into E of a "shell" neighborhood δ_a of S such that ϕ carries points of δ_a interior to S into points of E interior to the manifold $\phi(S)$, and it is shown (see [1, Theorem 2.1]) that there exists an open neighborhood $U \subset \delta_a$ of S, a point $z \in \mathring{J}S$ and a C_z^m -diff Λ_{ϕ} of $U \cup \mathring{J}S$ into E which extends $\phi \mid U$. The construction of Λ_{ϕ} is carried through in [1] for the case in which ϕ is special, in the sense that ϕ reduces to the identity in the neighborhood of a point Q of S. In this paper we supplement Theorem 2.1 of [1] by proving the following.

THEOREM 2.1. The C_z^m -diff Λ_{ϕ} , as constructed in [1] for a "special" C^m -diff ϕ , has z as conical point.

To prove this theorem we review the necessary parts of the construction of Λ_{ϕ} in [1].

The relevant subsets of E. Let K be the open n-cube [1, p. 273]

$$(2.1) K = \{x \mid -1 < x_i < 1; i = 1, \dots, n\}.$$

Let K' be the subrectangle of K on which $x_n < 0$. Subrectangles $H' \supset L' \supset G'$ of K' are introduced with faces parallel to those of K', of which H' and L' are open and G' closed, while

(2.2)
$$Cl\ H' \subset K', Cl\ L' \subset H'.$$

Let $D = \{x \mid -1 < x_i < 9; i = 1, \dots, n\}$ and set $P = (8, 0, \dots, 0)$.

A radial mapping R of E onto E. R is defined by the equations

(2.3)
$$y_1 - 8 = \frac{x_1 - 8}{2}; \quad y_j = \frac{x_j}{2} \quad (j = 2, \dots, n)$$

and leaves P fixed. If R^r is the r-fold iterate of R and R^0 the identity, the space E admits a trivial partition

(2.4)
$$E = \left[\bigcup_{r=0}^{\infty} R^r(K) \right] \cup P \cup A \qquad (Cf. (5.1) of [1])$$

provided A is suitably chosen.

The mapping T. If B is a bounded subset of E, Int B shall denote the smallest n-rectangle Π in E with faces parallel to the coordinate (n-1)-planes and such that $\Pi \supset B$. In §6 of [1], a C^{∞} -diff T of E onto E is defined. For us the essential properties of T are that

$$(2.5) RT(\overline{K}) \cap T(\overline{K}) = \emptyset, T(\overline{K}) \subset \operatorname{Int}(\overline{K} \cup R\overline{K}).$$

One sets $T_{r+1} = R^r T$, $r = 0, 1, \cdots$.

The cone K_P . Let K_P be the smallest admissible cone with vertex P, with axis the segment of the x_1 -axis on which $x_1 \leq 8$, and with $K_P \supset \operatorname{Int}(\overline{K} \cup R\overline{K})$. One sees that

$$(2.6) K_P \supset T_r(K) \cup G' (r = 1, 2, \cdots).$$

The contraction **a**. This is a C^{∞} -diff of D onto H' which leaves L' pointwise invariant [1, p. 274]. We infer that $\mathbf{a}(P) \in H' - \operatorname{Cl} L'$.

The reflection t. The point Q is the intersection of the positive x_n -axis with S. Let S_Q be an (n-1)-sphere with center Q and diameter $\rho < 1$, so small that $\phi \mid JS_Q$ reduces to the identity. Let t be the reflection of E - Q in S_Q [1, p. 272].

The C^m -diff ω . The domain of definition of ω includes H'-G', and so is an open neighborhood of a(P). Cf. p. 273 of [1].

The mapping ω_e . By Lemma 5.1 of [1], the domain of ω_e includes A, and $\omega_e(x) = x$ on A.

The mapping σ . By Lemma 7.2 of [1] σ is a C_P^m -diff of CG' into E. By this lemma and (2.6), $\sigma(x) = \omega_e(x)$ for $x \in CK_P$. Since $CK_P \subset A$ by (2.4), $\sigma(x) = x$ for $x \in CK_P$. Hence P is a conical point of σ .

The mapping $\lambda_{\omega}a$. For present purposes $\lambda_{\omega}a$ is a mapping for which (cf. (3.6) of [1])

$$(2.7) (\lambda_{\omega} \mathbf{a})(x) = \omega(\mathbf{a}(\sigma^{-1}(x))) (x \in \sigma(D - G')).$$

We verify that P is a conical point of $\lambda_{\omega}a$. The domain of x in (2.7) is open. It contains P since $P \in D - G'$ and $\sigma(P) = P$. Now σ^{-1} maps $\sigma(D - G')$, as a C_P^m -diff, onto D - G', with P a conical point of σ^{-1} . Moreover a(D - G') = H' - G', while ω operates as a C_P^m -diff on H' - G'. Returning to (2.7) observe that $\lambda_{\omega}a$ defines a C_P^m -diff of $\sigma(D - G')$ into E. It follows from Lemma 1.1 (ii) and (2.7) that P is a conical point of $\lambda_{\omega}a$.

Completion of Proof of Theorem 2.1. In accord with the line following (7.19) of [1] and line -13 on p. 275 in [1], $z=t(\mathbf{a}(P))$. By (7.22)" of [1]

(2.8)
$$\Lambda_{\phi}(x) = t(\lambda_{\omega}(t(x))) \qquad (x \in t(H'))$$

(cf. [1, lines 2-3, p. 287]) so that if one sets $\mu(x) = \mathbf{a}^{-1}(t(x))$ for $x \in t(H')$

(2.9)
$$\Lambda_{\phi}(x) = [t(\lambda_{\omega} \mathbf{a})\mu](x) \qquad (x \in t(H')).$$

We now apply Lemma 1.1. The C^{∞} -diff $x \to \mu(x)$ of t(H') into E maps z into P, since z = t(a(P)). From Lemma 1.1 and (2.9) we can then infer that z is a conical point of Λ_{ϕ} , since P is a conical point of $\lambda_{\omega}a$.

This establishes Theorem 2.1.

The generality of singularities of conical type is evidenced by the following theorem. Cf. [2].

THEOREM 2.2. Let F be an arbitrary C_z^m -diffeomorphism into E of an open subset $X \subset E$. There exists a C_z^m -diffeomorphism F^* of X into E for which z is a conical point and which is such that $F^*(x) = F(x)$ except at most in an arbitrarily small prescribed neighborhood of z.

REFERENCES

- 1. William Huebsch and Marston Morse, An explicit solution of the Schoenflies extension problem, J. Math. Soc. Japan vol. 12 (1960) pp. 271-289.
- 2. ——, Schoenflies extensions without interior differential singularity, Ann. of Math., to appear.

Institute for Advanced Study