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THEOREM. Let f(2) be an entire function of order p, and let ¢(r) denote
the number of points of the circle Izl =7 at which f(z) is real. Then
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It has been shown by Pélya and Schoenberg [1] that the curve
w=f(re*¥) crosses any straight line at least as often as the curve
w=V,(re®*). Taking this line to be the real axis, let ¢(7), d.(r) respec-
tively, denote the number of points of Izl =7 at which f(2), Va.(z) are
real. Then

é(r) = ¢a(r).
If N,(r) is the number of zeros of V,(2) in |z| =<vr, then by the argu-
ment principle, ¢,(r) = N.(r) and thus

o(r) = N, (r) (n=0,1,2,---).
Suppose that in the circle |z| =pu, Va(2) has at least p zeros. Then for
7ZpPa
3 o(r) 2 p.

We have now the theorem of Montel (see [2, p. 113]) that in the

circle
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the polynomial

a0+ a1z + -+ -+ au2"
has at least p zeros. Applying this to (2), we can take
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Now if €>0 is given, we have for all
| .| < An—niG+o (4>1)

while, for infinitely many n,l bnl =n—e=9 Thus
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for infinitely many #. Hence for such #,
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Now let a be fixed, 0<a<1, and take p=an; then for infinitely
many %
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Hence from (3) with p=an,

S((Bnll =) (~@) > o
and putting r = { Bnl/¢—9} 1/~ there is a sequence of values of 7
tending to infinity along which

¢(1’) = aB (o d—a)(p—e)
whence
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and the result follows since ¢>0 and 0 <a <1 were arbitrary.
We ask: (a) can the sign of inequality hold in (1)? (b) isit true that

log »

lim sup

=p
n-— 0 10g Tn

where 7, is the modulus of the zero of largest modulus of (2)?
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