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A natural question, of great generality, various special forms of 
which are often asked in differential topology, is the following: 

Let Mi, Mi be differentiable w-manifolds, <f>: M\—»M2 a continuous 
map which is a homotopy equivalence between M\ and M2. When is 
there a differentiable isomorphism 

<3>: Mi—> M2 

in the same homotopy class as 0? 
For example, there is the Poincaré Conjecture which poses the 

question when Mi is an w-sphere (see Smale [2], Stallings [3]). 
I should like to suggest a certain simpleminded "stabilization" 

of the above question. 
I shall say that 3> is a ^-equivalence between Mi and M2, denoted : 

$ 
M i - > M 2 

(*) 

for k a non-negative integer, if $ is a differentiable isomorphism be
tween MiXRk and M2XRk, 

$ : M i X Rk-+M2 X Rk. 

Now our original question may be reformulated as follows: 
(Pt) If <t>: Mi—>M2 is a homotopy equivalence, when is there a 

^-equivalence 

Mi —» M2 

in the same homotopy class as <f>7 (I.e., such that 

M i X Rk -^ M a X R" 

* , I 
M i > M% 

is homotopy commutative.) 
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In the above terminology, a O-equivalence is simply a differentiable 
equivalence. It is easy to give examples of homotopically equivalent 
manifolds which are not O-equivalent, however are ^-equivalent for 
some fe^O. Thus, if Kz is the complement, in Rz of the Artin-Fox wild 
knot [ l ] , the imbedding <j>: KZ—*RZ provides a homotopy equivalence 
between the two manifolds. Nevertheless, they are not O-equivalent. 
After Stallings [3], Kz and Rz are 2-equivalent. In [8], a manifold 
W* is constructed which is a compact contractible 4-manifold whose 
boundary dW* is nonsimply connected, and such that int W4 is not 
differentiable isomorphic to RA. It is proved, however, that W*XI^P 
and, in particular, 

int IF4 « R\ 
(1) 

More generally, it is a consequence of J. H. C. Whitehead's theory 
of Simple Homotopy Type [6; 7] that if An is a compact contractible 
differentiable w-manifold, there is a k^O such that AnXlk is com-
binatorially isomorphic with In+k, 

In the negative direction, Whitehead proves that for the lens 
spaces 

Li = L(i, 7) = Sz/(Z7)iy i = 1, 2 

even though L\ is homotopically equivalent to L2, Lx XAk is not com-
binatorially equivalent to L2XA* for any fe^O. This follows from his 
more general theorem: 

Let Mi, M2 be differentiable w-manifolds. They are of the same 
simple homotopy type if and only if Mi X A* is combinatorially equiv
alent to M2 XA*. 

DEFINITION 1. A homotopy equivalence <j>: M\-^M1 between two 
differentiable «-manifolds will be called a k-differential homotopy 
equivalence if 

(I) <t>*T(M2) + U = T{MX) + U 

where T(M) is the tangent bundle of the differentiable manifold M, 
I* is is the trivial &-plane bundle, © is the Whitney sum operation, 
and if ƒ: X—>F is a continuous map between X and F, E—>TF a 
bundle over F, ƒ*E refers to the "pull back" bundle via the map ƒ. 

Mi and M2 will be called differentially homotopically equivalent if 
they are fe-differentially homotopically equivalent for some fe^O. 
Clearly a necessary condition for any affirmative solution of (P^) is 
that the map </>: Mi—>M2 be a ^-differential homotopy equivalence. 
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This note is written as a partial statement of results to appear in 
a later paper. A sketch of the proof of one of the theorems is given. 
I am very thankful to John Milnor for discussions, for his sending me 
a copy of [5] which suggested the main theorem, and for his im
provements of my presentation. 

THEOREM 1. Let Mu M2 be compact differentiable n-manifolds with-
out boundary. Then Mi and M2 are differentially homotopically equiv
alent if and only if they are k-equivalentfor k^n + 2. 

Thus, to pass from questions involving O-equivalence to analogous 
questions involving ^-equivalence for large k, is to pass from differen
tial topology to homotopy theory. The problem, given two (k + 1)-
equivalent manifolds Mi, M2, of determining whether or not they are 
fe-equivalent seems to have vague formal similarities with the prob
lem of descent of the groundfield in algebraic geometry and also with 
the Witt Group in the theory of quadratic forms. (Let Vi, V2 be two 
algebraic varieties defined over a field k, which are birationally equiv
alent when considered over an extension field K. When are they 
birationally equivalent over k?) 

There are also analogous notions of stable equivalence for other 
differentio-topological entities: 

DEFINITION 2. Two imbeddings ƒ, g: M—>W will be called k-isotopic 
if the imbeddings 

ƒ*: M XR*->WXRk, 

gk: MXRk-*WXRk 

defined by: 

fk(m,r) =f(m), 

gk{m, r) = g(m) 

are globally isotopic. 
DEFINITION 3. Let 

«i: G-> Aut(Afi), 

a2: G->Aut(M2) 

be differentiate actions of the group G on the manifolds Mi, M2. 
Then &i and a2 are called fe-equivalent if the "extended" actions 
af\ a(

2
k) of G on MiXRk, M2XRk obtained by letting G act trivially 

on Rk are differentially equivalent (in the sense that there is a 
differentiable isomorphism 



380 BARRY MAZUR (July 

4>:Mi X Rk->M2X Rk 

sending off* to 0$). 
I expect that there are theorems analogous to Theorem 1, for these 

notions of fe-equivalence, linking them to homotopy theoretic condi
tions also (for large enough k). There is a generalization of Theorem 1 
to vector bundles: 

THEOREM 2. Let E, F be differentiable k-plane bundles over compact 
n-manifolds without boundary, for k^n+2. 

Then E is differentially homotopic to F if and only if E is isomorphic 
to F, as differentiable manifolds. 

COROLLARY 1. Let M\, Ml be compact n-manifolds without boundary 
such that <f>: M\—*M1 is a homotopy equivalence. If rf[, 77* are differenti
able k-plane bundles over M?, Ml such that 

(II) T(M1) + 77! = <t>*T(M2) + 0*r/2 

and if Ei^E(rji) ( i = l , 2) are the total spaces of rji, considered as 
differentiable manifolds, then E\^E2. 

COROLLARY 2. If M\, M% are compact differentiable manifolds with 
boundaryf and of the same homotopy type, if U\, U2 are open tubular 
neighborhoods of their "canonical" imbedding in Rn+k (k^n + 2), then 
Ui~U*. 

Employing the ideas of Stallings for the proof of the Generalized 
Poincaré Conjecture, n^5, the following may be shown: 

THEOREM 3. Let W be a differentiable manifold without boundary, 
dim W^6. Let f: M—>W be an imbedding of M, a compact manifold 
without boundary, in W, which is a homotopy equivalence. Let E = E(£), 
the total space of the differentiable vector bundle £, where ^z=v{f)@\, 
v{f) being the normal bundle of the imbedding f: M—>W, and 1 is the 
trivial line bundle. 

Then E is combinatorially isomorphic with WXR. 

The conclusion of Theorem 2 concerns the differential structure of 
the unbounded total space of differentiable vector bundle. 

For any £, a differentiable vector bundle over M, E = E(£), the 
total space, let there be a Riemannian metric on £ in the sense of 
[4, p. 37], and call 

E(r) = {sG£||HI M > ' > 0 . 
Then E(r) is a differentiable manifold with boundary S(r) 
= { x £ E | ||#|| =r}. I t is easily seen that int E{r) « E . I t is a conse-
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quence of J. H. C. Whitehead's theory of Simple Homotopy Type 
that : 

THEOREM (WHITEHEAD [7]). Let E, F be k-plane bundles over com
pact differentiable n-manifolds without boundary, such that k is suffi
ciently large (k^k(Mi, M2) where k(Mi, M2) is a constant depending 
upon M\ and M2) such that E, F admit Riemannian metrics and E is of 
the same differential homotopy type as F. Then E{r) is combinatorially 
isomorphic with F{r) if and only if E(r) has the same simple homotopy 
type as F(r). 

The theorem of Whitehead stated above may be improved to fit 
this context as follows: 

THEOREM 4. Under the situation of the previous theorem, one has: 
E(r) is differentiably isomorphic with F{r) if and only if E(r) and F(r) 
have the same simple homotopy type. 

COROLLARY. If M\, Ml are differentiable manifolds {compact, with
out boundary), of the same differential homotopy type, then M? is of the 
same simple homotopy type as Ml if and only if 

M X D « M2X D 

for large enough k. 

The theorems stated above have generalizations to arbitrary mani
folds, not necessarily compact without boundary ; however the notion 
of differential homotopy type must be altered somewhat. 

SKETCH OF THE PROOF OF THEOREM 2. Let 2ft denote the set of 
m a p s / : Mi—>M2 satisfying these properties: 

(1) ƒ: My—>M2 is an imbedding, 
(2) / ( int Mi) is open in M2, 
(3) f(Mi)QintM2. 

Such maps will be called open interior imbeddings. 
INJECTIVE LIMITS. For any sequence of manifolds and maps, 

S: Mi -> M2 -» Mz -> • • • , fi G 9TC 
/ l f2 3̂ 

a natural differential structure may be placed on the injective limit, 
Inj Lim (S), in an obvious manner. 

If 

4>: E-+F, 

4f\ F->E 
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are maps, </>, (̂ESflZ, consider the sequence 

S (* ,* ) : £ _ > F - - > £ - > F - > . • • 
<Ê V' <Ê W 

obtained by iteration. Define 

X(4>, $) = Inj Lim 5(*, iW 

considered as a differentiate manifold. 
If/: E-+E is a map,/£9TC, consider the iterated sequence 

S(J): £ - > £ - > £ - > 
f f f 

Define X( / ) = Inj Lim S(f). 
It is tautological that 

(III) X(<t> o ^ ) « X(tf>, *) « X(^ o 0). 

DEFINITION 3. Let *>: £ - > £ , P G O T . 

Then E will be called v-movable if for all p: E—Œ, p £ M , which are 
homotopic to v> and a: E-^E an automorphism of E homotopic to 
the identity automorphism, there exists an automorphism fi:E—>E 
homotopic to the identity, such that 

v 
£ - > E 

«i Pi 
E^E 

is commutative. 
E is called movable if it is p-movable for some v homotopic to the 

identity. 

PROPOSITION 1. Let E be movable and let f: E—»£, fGM, be homo-
topic to the identity] then: 

X(f) « int E. 

PROPOSITION 2. Let E be a differentiable k-plane bundle over a com
pact n-manifold without boundary, such that k^n+2. Let r>0. Then 
E(r) is movable. 

Proposition 2 comes essentially from the following technical 
lemma: 

LEMMA. Let E be a differential vector bundle over a compact manifold 
M. Let i: M-+E denote the zero cross-section, and W a manifold. Let 

f,g:E->W, Age™ 
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such that 

foi = go i. 

Then there is an automorphism 

a: W-+W, 

a real number r > 0 , 
and 

a linear bundle automorphism 

X: £ - > E 

M 

such that X: E(r) ^E(r) for which 

E(r) -> W 
ƒ 

J, X J, a 

E(r) -> W 
g 

is commutative. 

PROPOSITION 3. Let E, F be differentiate k-plane bundles over com
pact n-manifolds without boundary, k^n+2. 

If E and F are differentiably homotopic, there exist maps 

<t>: E(r) -> F(r) $: F(r) -> E(r), 0, ^ G 9TC, r > 0 

such that (j> and \J/ are two-sided homotopy inverses. 

The proof of Theorem 2 follows from these three propositions. For 
the hypotheses of Theorem 2 are the hypotheses of Proposition 3. 
Therefore, we are guaranteed a <£, yf/ as in Proposition 3, and 

<l>0\l/~ lF(r), \pO<l>~ l^r(r). 

By Propositions 1 and 2, 

X(<f> o $) ~ int F{r) « F, 

X(^ o <t>) « int £ 0 ) « E. 

By (III) 

F « XfaotfO « X(^o4>) « E 

proving the theorem. 
T H E HAUPTVERMUTUNG. I t is a result of Whitehead that the lens 
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spaces Li, L2 are not of the same simple homotopy type. Thus 
LiXA* is combinatorially inequivalent to L2XA* for any k^O. 

However, L\ and L2 are of the same differential homotopy type. 
(They are of the same homotopy type [7], and all orientable 3-
manifolds are parallelizable, so they have the same differential 
homotopy type.) 

It is a consequence of Theorem 1 that LiXR2 is differentiably iso
morphic with L2XRb. 

Using these results, Milnor has constructed finite complexes K\, 
K\ which are topologically isomorphic yet are combinatorially in-
equivalent, thus contradicting the Hauptvermutung. 

K\ = {Li X A5) \J C{d(Li X A6 ) } , i = 1, 2 

where C{X} denotes the cone over X. That K\ is topologically iso
morphic to K% can be seen since K\ is (topologically) the one-point 
compactification of LiXR5 ( i = l , 2). 
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