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Several years ago [8] we proved that Hubert space is homeo­
morphic with both its unit sphere {#: ||x|| = 1} and its unit cell 
{ x : | | x | | ^ l } . Later [9] we showed that in every infinite-dimensional 
normed linear space, the unit sphere is homeomorphic with a (closed) 
hyperplane and the unit cell with a closed halfspace. I t seems proba­
ble that every infinite-dimensional normed linear space is homeo­
morphic with both its unit sphere and its unit cell, but the question 
is unsettled even for Banach spaces. Corson [4] has recently proved 
that every fc$0-dimensional normed linear space is homeomorphic with 
its unit cell. In the present note, we establish the same result for a 
class of infinite-dimensional Banach spaces which is believed to include 
all such spaces. I t is proved to include every infinite-dimensional 
Banach space which is reflexive, or admits an unconditional basis, or 
is a separable conjugate space, or is a space CM of all bounded con­
tinuous real-valued functions on a metric space M. 

We employ the following tools: 
(1) If E and F are Banach spaces and u is a continuous linear trans­

formation of E onto F, then there exist a constant ra£]0, <» [ and 
continuous mapping v of F into E such that uvx = x, vrx = rvx, and 
\\vx\\ rSw||#|| for all x £ F and rÇiR (the real number space). If G is 
the kernel of u and hy=(uy, vuy—y)(E:FXG for each yÇzE, then h 
is a homeomorphism of E onto FXG. Let \\(p, q)\\ =max (\\p\\, \\q\\) 
for all (p, q)GFXG, and let £y = (|M|/||ft:y||)A:y for all y£E. Then £ is 
a homeomorphism of E onto FXG which carries the unit cell of E 
onto that of FXG. 

(2) If S is a closed linear subspace of a Banach space £ , then E is 
homeomorphic with the product space (E/S) XS and the unit cell of 
E is homeomorphic with the unit cell of this product space (with 
respect to any norm compatible with the product topology). 

(3) In each infinite-dimensional normed linear space, the unit cell 
is homeomorphic with a closed halfspace. 

(4) If Q is an open halfspace in an infinite-dimensional normed 
linear space and p is a point in the boundary of Q, then QVJ {p} is 
homeomorphic with Q. 
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(5) For each / £ L 2 ] 0 , oo [ and tG [0, l [ , let the function 
/*G£ 2 ]0 , oo [ be defined as follows: ftX = tf(tx) for x £ ] 0 , l [ ; ftx 
=f(x+t~-1) for x £ [l , oo [. Then with ?;(ƒ, t) = (ƒ*, t), the transforma­
tion r] is a homeomorphism of L2]0, oo [ x [0, l [on to (L2]0, ° ° [ x ] 0 , l [ ) 
U(L*[l, «>[x{0}). 

The existence of v and m as described in (1) follows from a theorem 
of Bartle and Graves [l , p. 404] (see also Michael [13]). I t is easily 
verified that h is a homeomorphism flO], and homogeneity of h 
follows from that of u and v. Thus the transformation £ is also homo­
geneous. To complete the proof of (1) it suffices to observe that 
(l+w^llyllgllfcyll^Cmllttll+lJllyll for all yEE. Proposition (2) 
results from applying (1) to the canonical mapping u of E onto E/S. 

The result (3) appears in [9]. For (5), see page 29 of [8]. A theorem 
much stronger than (4) is proved on pages 12-28 of [8]. When the 
space is nonreflexive or is an (lp) space, (4) is explicitly a corollary of 
(3.3) on page 27 of [8]. In the general case, it follows from the reason­
ing (though not explicitly from any statement) in [8]. Also, a proof of 
(4) is outlined in [ l l ] . 

A normed linear space / will be called compressible provided the 
space JX[0> l [ is homeomorphic with the space (JX]0, l [ ) 
V(WX{0}) for some closed linear subspace W of infinite deficiency 
in / . (We see by (5) that Hilbert space is compressible.) A space is 
h-compressible provided it is homeomorphic with some compressible 
normed linear space. 

THEOREM. If a Banach space B admits a continuous linear trans­
formation onto a Banach space E which contains an h-compressible 
closed linear proper subspace 5, then B is homeomorphic with the unit 
cell of B. 

PROOF. Let G denote the kernel of the continuous linear trans­
formation of B onto E. By (1), B is homeomorphic with the product 
space P = EXG and the unit cell of B is homeomorphic with the unit 
cell U of P. To establish the theorem, it suffices to show that P is 
homeomorphic with U. Since S is a closed linear proper subspace of 
E, the subspace T = SX {o} must be in a closed hyperplane V in P . 
The unit cell U of P is homeomorphic with VX [0, 1 [ by (3), and V 
is homeomorphic with (V/T) X T by (2), so U is homeomorphic with 
(V/T) X(TX [0, 1 [). Clearly P itself is homeomorphic with VX ]0, 1 [ 
and hence with (V/T)X(TX]0, l [ ) , so to complete the proof it 
suffices to show that TX [0, l [ is homeomorphic with T x ] 0 , l [ . 
Since T is A-compressible, there exist a Banach space / homeomor­
phic with T and a subspace W of infinite deficiency in / such that 
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JX [0,1 [is homeomorphic with (JX ]0,1 [)\J(WX {o}). Let ^denote 
the canonical mapping of / onto J/ W and then let v and h be as in 
(1) above. Then h is a homeomorphism of J onto (J/W)XW, and 
since hw=(0, vd — w) for all wÇzW (where 0 is the neutral element 
of J/W), it follows that hW= {0}xW. Consequently the space 
( J X ] 0 , l[)[U(Wx{o}) is homeomorphic with 

(J/W) X W X JO, 1[ U {0} X W X {0}, 

which in turn is homeomorphic with 

WX {{J/W) X ] 0 , 1 [ W {0} X {0}). 

Since J/W is infinite-dimensional, it follows by (4) that the set 
above is homeomorphic with 

W X ((J/W) X]0,1[), 

and hence with J X ]0, 1 [. Reviewing the information now assembled, 
we see that TX [0, l [ is homeomorphic with TX]0 , l [ , and hence 
that U is homeomorphic with P. This completes the proof of the 
theorem. 

COROLLARY. If an infinite-dimensional Banach space B satisfies at 
least one of the following conditions, then B is homeomorphic with its 
unit cell: 

(a) B is reflexive ; 
(b) B is a linear subspace of a Banach space which admits an uncon­

ditional basis; 
(c) B is a norm-separable w*-closed linear subspace of a conjugate 

space; 
(d) B is the space CN of all bounded continuous real-valued f unctions 

on a normal space N which contains a closed infinite metrizable subset. 

PROOF. In view of the theorem and the fact (by (5)) that Hubert 
space is compressible, it suffices in each case to produce a continuous 
linear transformation of B onto a Banach space E which contains 
a closed linear proper subspace S which is homeomorphic with Hubert 
space. When B is reflexive, let E = B and let 5 be an infinite-dimen­
sional separable closed linear proper subspace of E. Then 5 is reflexive 
and hence (by a theorem of Kadec [7]) homeomorphic with Hubert 
space. 

If B is a subspace of a space which admits an unconditional basis, 
a theorem of James [5] and Bessaga and Peiczynski [2] asserts that 
either B is reflexive or some linear subspace of B is linearly homeo­
morphic with the space (/) or the space (c0). But the latter two spaces 
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are known to be homeomorphic with Hubert space (by results of 
Mazur [12] and Kadee [ó]) and the desired conclusion follows. 

Now suppose B is a separable conjugate space or, more generally, 
that B is a norm-separable w*-closed linear subspace of a conjugate 
Banach space L*. Let ƒ G 5 ^ j o } , x £ L with fx = 1, and 
S= { g £ E : gx = 0}. Then S is a w*-closed linear proper subspace 
of By and must be homeomorphic with Hilbert space by a theorem 
in [lO]. Consequently, B is homeomorphic with its unit cell. 

Finally, let B and N be as in (d). Then there is a countably infinite 
closed subset Z of N which consists of either a discrete set or a con­
vergent sequence together with its limit point. For each 0£C7V let 
u<t> = <l>\ZÇzCZ. Then u is a continuous linear transformation of CN 
onto CZ, and CZ is equivalent to either the space (m) or the space 
(co). In either case, CZ has the A-compressible space (c0) as a closed 
linear proper subspace, and the desired conclusion follows upon apply­
ing the theorem. 

Note that the topological equivalence of every infinite-dimensional 
Banach space with its unit cell would be implied by the generally 
expected affirmative answer to the following question: Are all in­
finite-dimensional separable Banach spaces homeomorphic? Recent 
results on this problem have been obtained by Bessaga and Petczyn-
ski [3]. 

At least for reflexive spaces, the corollary above can be signifi­
cantly improved. The method is that of [8, pp. 30-31] in conjunction 
with the above techniques and the result is as follows: 

THEOREM. Suppose E is an infinite-dimensional reflexive Banach 
space and C is a closed convex subset of E which has nonempty interior. 
Then C is homeomorphic with E and the boundary of C is homeomorphic 
with E or with EXSn for some finite n and n-sphere Sn. 

The following problems seem worthy of mention: Are all infinite-
dimensional separable Banach spaces A-compressible? (An affirmative 
answer implies that every infinite-dimensional Banach space is 
homeomorphic with its unit cell.) Are all infinite-dimensional Banach 
spaces compressible? Are No-dimensional normed linear spaces com­
pressible? Note that for Hilbert space, the compressibility was 
achieved by means of a continuous family of affine homeomorphisms. 
How generally is this possible? 
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