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Let K be an algebraic number field of degree n+1 over the ra-

tionals. The conjugates K©®, K® ... K® are arranged so that
KO KO ... K® are real and
KGteth) = KR, (E=1,2,---,59).

Here r+2s=mn. It will be assumed throughout that =0, so that K©®
isreal. Numbers in K are denoted by Greek letters, superscripts being
used for the corresponding conjugates. We shall frequently omit the
superscript (; this identification of K with K® will cause no confu-
sion. Trace and norm of elements of K are denoted by S and N,

respectively.

Let Bo, - - -, B» be elements of K which are linearly independent
over the rationals. It is well known that infinitely many sets of ra-
tional integers (¢o, q1, * - *, ¢») can be found satisfying,

(1) g0 > 0, g.cd.(go, q1, - - -, qa) = 1,
and (omitting the superscript )
B qg; —1-1/n .
(2) —J_J<Cq0 ’ (.7:11"')”):
Bo  qo

with the constant C=1. It will be shown here how to determine all
solutions of (1), (2). From this will be deduced not only the known
fact that if C is too small (2) has no solutions, but also the hitherto
unknown result that the sharper inequalities

l qoB; — q;ﬂol < Cgitin(log go)=t/ =1,
I qoBn — quﬂol < Cqit/n,

have infinitely many solutions.

This result sharpens some of the conclusions of Cassels and Swin-
nerton-Dyer (I), but does not furnish any further evidence for or
against the conjecture of Littlewood which is considered in their
paper.

A number of interesting problems can be raised in connection with
(3). In one direction it can be asked whether # —1 of the inequalities
(2) can be improved with factors which are not all the same; e.g.,
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(3) (j=1,"',ﬂ—1),
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one might conjecture that we can find infinitely many solutions of
the inequalities

| goB; — g80| < Caii*/f;(q0),
I qoﬁn - Qn60| < qu_lln,

with fi(go) - - - fa-1(qo) =log go and fi(go) 21 (=1, - - - , n—1).

A much more difficult set of problems is in the direction of the
Thue-Siegel-Roth theorem, in which one tries to specify the functions
f;i in such a way that the corresponding inequalities have at most a
finite number of solutions. In view of Roth’s theorem one might con-
jecture that f;=¢;° would have the indicated effect, but this is by
no means obvious.

The numbers By, * - -, B, form the basis of a module M. Denote
by R the set of all integers p in K such that p8 is in M whenever 8 is
in M. Clearly R is a ring. By the Dirichlet theory of units, we may
find a basis €, - * -, €4, of the units in R. Since the only roots of
unity in K are +1 (because K is real) every unit e in R is uniquely
expressible in the form

(j=1:“')n'_1))

C)) e=+eer e
Let Ci=max; j1,...,.+s |log| €] |. Then, for any real number T we
can find integers g, - -+, gr4s such that
- 1 rte § — 1
—n 1T - 7C1§ Eg;l loge;)l <—-—n lT—i-‘2~C1,
j=1

(i=1,~-‘,r+s),

and, since N(¢;) =1,

n sy n
T——2—C1< > gilloge| = T+7C1.

j=1
Using (4) with the sign chosen so that ¢>0, we obtain
©) | e®| < Coetin

with a constant C;=¢€1 which depends only on the ring R. A unit
e¢>1 which satisfies (5) will be called dominant. We have proved that
for every real T">1 there is a dominant unit e satisfying 7 <e<(C37.

The elements é of K, such that S(68) =a rational integer for every
Bin M, form another module D. A basis 8y, 01, - - -, 6, of D is obtained
by solving the equations
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1 i=7
(6) S@Bs) = {0 Ei ;ﬁz G,j=0,---,m).
Because of the discreteness of D, there is, among the nonzero ele-
ments of D, one whose norm has minimal absolute value; this mini-
mal norm will be denoted by v. Note also that if pisin R and & in D
then pé is in D.

Choose d=aodp+a:d;+ - -+ +a.6, in D so that 88,>0 and
g.c.d.(ao, @s, - - - ,a,)=1.1f eis a unit in R and ed=gobo+q:6:1+ - - *
+¢.6, we must have g.c.d.(qo, - * -, ¢gs) =1. Forif g.c.d.(qo, - * * , qn)
=g, it is clear that ¢~'ed is in D, whence e l¢"'ed=¢ 10 isin D and ¢
divides g.c.d.(ao, - - -, @a) =1.

As defined above, we have

) e = S(eaﬁk)’ (k =0,---, ”)-

Thus, if we assume that e is dominant, we have

I qiBo — QOﬂkl = Z (.31?)/30 - Bkﬁgj))s(j)é(j) ‘
® =
< Cyelim, (k=1,---,m),
while

I g0 — 65/30| - E e(i)’s(i)ﬂgj)

j=1

—1/n
< C4€ .

The last two inequalities imply (2). The constants C;, Ci, C depend
on @, - - *, @y, but we may remove this dependence if the choice of
8 is made from a fixed bounded region.
Suppose conversely that (1) and (2) hold (with some C>0). De-
fine { =qodo+ - - - +¢nbs, so that { isin D. We have
w 13 @, QoK ® .
¢ = =2 (gBo — 988 + — 20 B (@=0,---,n).
Bo j=1 Bo =0
It follows easily from (6) that the last sum is 1 or 0 according as =0
or 2#0. Thus

l?-ﬂl — Cgr'i» 35 | 8],
Bo

=1
while

) —-1/n

| <ce ™3 187, G=1,---,n).

=1

|¢
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Choose a dominant unit € such that | go/Bo| < €< Cp|go/Bo| and set
8= 4 eI{ with the sign chosen so that §>0. Then

0<s<1+C|B| g0 "X |5,

=1
while
0< 69 <cl %" X 157
Thus i=1
0< |NE| < Cnéqng > 6;:')' a+ O(qo—l—l/n))

=1 j=1
< (C C)nCy,
where C; depends only on Bo, * * +, Ba. It follows that 8 is an element
of D which lies in a bounded region (which will be vacuous if
C=v1/n/C,CY™ and that the g, are given by (7).
The proof of (3) is based on a special choice of § in (7) together
with a sharper form of (5) for a certain infinite set of dominant units.
To obtain the latter, let
%) {61?””8‘”"8;%, G=1,---,1),
e =
* limgtinttintie. (j=gy 41, -, 7r+5),
where ¢; and ¥ are real and ej= +1.
If the dominant unit € is given by (4) we have

r+s
> k] = |10g|e‘/"e(")|| < Cy, G=1,--+,r+5).
k=1
Also, we can find rational integers %; such that
r+s8
| @m)targe® | = | 35 Wage + | S 1/2.
k=r41

Now there are at least M +1 distinct dominant units € in the inter-
val 1 Se<eM+DnC1 By the well known schubfachprinzip of Dirichlet

we may therefore find two—-call them 7 and f§—such that 1=60<9
<eM+DnCL

| 1og’ ,,1/n,,(i)| — log |01/n0<n| | < 20/ MM (=2, r45)
and
,,—1| arg n® — arg 0(i)| < MU, G=r+1,--,r+59).
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Thus the unit e=17/0 satisfies 1 <e<C}T (where T =¢M"C1) and

I lOg lell"e(j)l | < 2(C: n/log T)l/("—l); (.7 =2, » 7+ S),

| arg e(i)l < 2n(Cinflog DYVD, (G=r+1,.--,r4s).
Moreover, since
r r+8
Dlog | eme@| +2 3 log | etfme®| =0,
j=1 j=r41
we have also

| log | ell"e(l)” < 2(n — 1)(Cin/log T)

It follows that
€D = | | exp(iarg ) = e1/(1 4+ O(log T)~Y »—D),
(.7= 1,"',1’+S),

1/(n—-1)

©)

which is the required refinement of (5).
If we choose § =6, in (7) and make use of (6) and (9) we can im-
prove (8) as follows:

I qiBo — QOBkI = e—un< Z (B,?)ﬁo _ .Bkﬁ;j))&(,j) + 0(10g T)—ll(n—l)>
=1
_ {O(e-un(log T)-1(—1) (=1,---,n—1)
= O(é_”n) (k _ n).

This, together with 1 <e<C3T, implies (3).
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