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1. Let {\.}, {ua} (®=1) be two given sequences of positive num-
bers increasing to infinity, and let §>0. We call the triplet {3, A, ta
a label. If s is a complex variable, s =047, we speak of a solution of
Riemann’s functional equation

an e 5)9(6) = ae-nim {—;— 6= 9} - 9,

pertaining to the label {6, Ny u,,}, if there exist two Dirichlet series
&(s) = D N, ¥(s) = D_baun® (an and b, complex) which do not van-
ish identically, and which admit finite abscissae of absolute conver-
gence, and a function x(s) which is holomorphic and uniform in a
domain [s] >R, such that lim, ., x(0+27) =0 uniformly in every
segment o1 <0 =03, and such that, for some pair of real numbers «, £,
we have

1
2T (7 s) #(s), for o > o,
x(s) = 1
a—(@=a) 2] {_2_ 6 - s)}¢(a - 5), for e < B.

In three papers published recently, Bochner and Chandrasekharan
[2], Chandrasekharan and Mandelbrojt [3], and Kahane and Man-
delbrojt [4], have studied the problem of finding an upper bound for
the number of linearly independent solutions of equation (1.1). Their
results enable one to establish in certain cases a unique solution, and
in certain others to deduce that the sequences {\.}, {1} are periodic.
In this note, which is a sequel to [3], we shall consider certain simple
conditions which would ensure that 6=1. Let

D¢ = lim sup (n/p»), hy = lim inf (pny1 — ua).
We prove the following results.

THEOREM 1. If hy-h,=1, 8 is an odd integer, and equation (1.1) has
a solution, then Npp1—MNo=hr, and pni1—pn=~"h,, for every n=1. In
particular, if lhh=h,=1, § is an odd integer, and equation (1.1) has a
solution, then Npy1—Na=1, and ppy1—ps =1 for every n=1.
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THEOREM 2. If h,>0, 6 is an odd integer, b,=0(1), and equation
(1.1) has a solution, then d=1.

THEOREM 3. Let h, >0, and let 6 be an odd integer. If simultaneously,
(DoaNs, 2obuuy®) is a solution of equation (1.1) with the label
(8, May ), @nd (D Caln s D it ®) 15 @ solution with the label (8, N.! , i)
for some (\.), and (2 ey D budan®) is also a solution with the
label (8, N, un) for some (NJ'), where (b./d,) =0(u,); then 6=1.

2. For the proof of these theorems we require a number of lemmas.

LemMA 1. Equation (1.1) implies, for a sufficiently large integer r, the
following relation.

1‘{_;_ 6+ 1)} =D 12 i a, [ﬁ _____f___.___] — K.(s)

“ ds?r (s - \2)GHD/2
@.1) 1 (s* +2)

= (20" X butn exp (—2mpas),
n=1
for Re s>0, where K,(s) is holomorphic on the surface on which log s
is defined, and K,(s) =O(| s|“), €>0, as s— « in any angle larg sl
=<60,.

This has been proved by Bochner and Chandrasekharan [Theorem
2.1, p. 344]. By the definition of functional equation (1.1) it follows
that the Dirichlet series on the right of (2.1) converges absolutely
for >0, and from (2.1) it follows that the singularities of its sum-
function are situated symmetrically on the imaginary axis ¢=0, at
the points (£%\,), and also possibly at the origin, which we may, for
convenience, designate as \,.

LEMMA 2. If D < o, and equation (1.1) has a solution, then D*-D*
21, and h\-h,=1. (With the understanding that if D¢=0, then D>
= —I— o0 .)

This is an immediate consequence of a theorem of Chandrasekharan
and Mandelbrojt [3, Theorem 1, p. 289] which implies [loc. cit.,
p. 290, 1. 6-9] that if D¥< w, and equation (1.1) is satisfied, then
Aeyi—A, =D# for every n=1, that is, N\,=#n-D#, or n/\,=1/D*, or
D).Dr>1. Since we have D#-k, <1, it follows that h\ -k, =1.

LEMMA 3. If B, >0, 6 <s an odd integer, and equation (1.1) has a solu-
tion, then 6=1 or 3.

This is a result of Kahane and Mandelbrojt [4, Theorem 3, pp.
71-72].
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LEMMA 4. If h,>0, and 6=1 or 3, and equation (1.1) has a solution,
then pny1 —pn = hy. And for o <0, the analytic continuation of the series

> by exp (—2mp,s) ifé =1,
¥(s) = -1 .
D bottn €xp (— 2mitns), if§ =3,

which is a uniform function, is given by the series — D v by eXp(+27lns),
and the only singularities of Y (s) are simple poles at the points + i\,
n=0,1,2,.--.

A result proved earlier by Chandrasekharan and Mandelbrojt [3,
Theorem 3, p. 292] gives the Dirichlet series representation of ¥(s)
in the negative half-plane as Y ¢, exp(2mu./s) but it is easy to see
that ¢, = —b,, and u, =u, , if one observes that by Agmon’s theorem,
used in that proof, the origin is a simple pole for the residual function
K,(s) in (2.1). This fact is also obvious from the paper by Kahane
and Mandelbrojt [4].

LEMMA 5. If b,>0, and f(s) = ¢ By exp (—2mu,s) has ¢ =0 as its
abscissa of absolute convergence, and the only singularities of f(s) on
a segment of the imaginary axis of length greater than h;' are poles of
greatest order q, then B,=O0(us™").

This is a tauberian theorem of S. Agmon [1, Theorem 4.3(C)].
LEMMA 6. If Dt < o, and b,=O0(ul™?), then for ¢>0, we have

f(s) = 5: bn exp (—2wu,s) = O(c™9).

If in the hypothesis we have b,=o0(ui™"), then the conclusion is f(s)
=o0(c™9).

(i) Since D*< o, we have u,>Ln for every n, where L is some
constant. Now, for ¢ >0, we have

If(s) I =C- i u:—l exp ( — 27un0)

< C-(2m0)11 3 (2mpn0) L exp (— 2mun0).
1

The term (2mu,0o)? ! exp (— 2wu,0) decreases (as u, increases), when
2wunoc>q—1. Let n, be the smallest » for which we have 2wLneo
>g—1;in other words, for n=1, - - -, n,—1, we have 2rLnoc <q—1.
Then
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> (2mpao) et exp ( — 2mpn0) = 2, (L-27n0) e exp (— 27 Lno)

=0 (a“‘l > nelexp (—21rL1w))

fg

= 0
while
ng—1
Z (27un0)*! exp (—2mpno) < max [xele=]-(n, — 1)
1 z20

IIA

K-(n, — 1) = 0(c™Y).

Hence f(s) =0(c™9).
(ii) In case b,=o0(us™"), let n, be the smallest # such that (2rno)
> (¢—1)oV2. Then, as before,

ng—1

> bnexp (— 2muns)
1

= 0(*(n, = 1)) = 0(s**9),

and, since n,— ©, as ¢—0, we have

E (27pa0) ™t exp (— 2mpaq0)

T

> bnexp (— 2mpns)

g

3 o(gl—Q) .

= 0(079).
Hence f(s) =0(c79).

3. We shall now indicate the proofs of Theorem 1 to 3.

Proor or THEOREM 1. We remark that by Lemma 2, we have
b, <1.1f hy-h,=1, then we have £ >0, and %,>0, so that D*< «,
and D*< «. Hence, as in the proof of Lemma 2, we have pni1—pn
SDM<hy'=h,, and M1 —N, SD#<h; ' =hy. Since 8 is odd, we have,
by Lemma 3, §=1 or 3. Now, by the first part of Lemma 4, we have
Mag1 —Ma = By, and Nugp1 — N, = by, which lead to the desired result.

Proor oF THEOREM 2. By Lemma 3, we have =1 or 3. We shall
show that the case §=3 is incompatible with the hypotheses. Con-
sider the series f(s)= D b.u¥ exp(—2mu,s) in Lemma 1. Since
b,=0(1), we have, by Lemma 6, f(s) =0(c—%"1), for ¢>0. On the
other hand, in a neighborhood of a pole, say s=14\,, n=1, we have
|f(s)| >¢-|o| >, where p is the order of the pole, hence an integer,
with p=(1/2)(6+1)+2r. For these two estimates to be compatible,
we should have §=1.

Proor or TuEOREM 3. It is sufficient to show that § =3 is impos-
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sible. If =3, then by Lemmas 5 and 1, we have b,=0(u.), d»=0(ux)
and b,d,=0(u,).But by hypothesis, ]bn| <eé- ld,.| Mn, Where €,>0,
and €,—0 as n— 0. That is, | buds| = | ba| 2+ (un€.) 1. We now observe
that b,=o0(u,) is impossible, because otherwise, by Lemma 6(ii), we
should have f(s) =0(c?), which contradicts the fact that l f('i)\n+a)|
>c¢-0~% for 0>0. Hence there exists a sequence (n;) such that
|b2;| > €®- paj, which, together with the inequality for d.d, obtained
above, yields Ib,,,-dn,.l geﬁ?wﬁ,ﬁ (Mn,-én,)‘lgun,.-e;il/ 8, But this con-
tradicts the fact that b,d, =0(u,).
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