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1. Let {\n}> {/*n} ( ^ è 1) be two given sequences of positive num­
bers increasing to infinity, and let ô > 0. We call the triplet {5, \n, fxn} 
a label. If s is a complex variable, s = (r+ir, we speak of a solution of 
Riemann's functional equation 

(i. i) ir-^r (± ^ <Ks) - *-<«-»>/'r | - i (5 - *) j *(« - s), 

pertaining to the label {5, Xw, /zn}, if there exist two Dirichlet series 
4>(s) = X)anX^s, &(s) = ^bnVn8 (an and bn complex) which do not van­
ish identically, and which admit finite abscissae of absolute conver­
gence, and a function x(s) which is holomorphic and uniform in a 
domain \s\ >R, such that l i m i r ^ x(tf"+ir) = 0 uniformly in every 
segment c i ^ ^ ^ ^ , and such that, for some pair of real numbers a, /?, 
we have 

for <r > a, 

xW = 
7r-(5-a)/2r j _ (3 _ s)\$(p - s), for <r<0. 

In three papers published recently, Bochner and Chandrasekharan 
[2], Chandrasekharan and Mandelbrojt [3], and Kahane and Man-
delbrojt [4], have studied the problem of finding an upper bound for 
the number of linearly independent solutions of equation (1.1). Their 
results enable one to establish in certain cases a unique solution, and 
in certain others to deduce that the sequences {\n}, {fxn} are periodic. 
In this note, which is a sequel to [3], we shall consider certain simple 
conditions which would ensure that 5 = 1. Let 

Z> = lim sup (n/fin), h» = lim inf (jun+i — jun). 

We prove the following results. 

THEOREM 1. If h\- &M= 1, 8 is an odd integer, and equation (1.1) has 
a solution, then Xn+i—An = Âx, and iin+i—fin^Kt for every n^l. In 
particular, if h\ = hfi=l, S is an odd integer, and equation (1.1) has a 
solution, then Xw+i — Xn = 1, and jnn+i — /*n = 1 for every n^\. 
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THEOREM 2. If / ^ > 0 , S is an odd integer, bn = 0(l), and equation 
(1.1) has a solution, then 8 = 1. 

THEOREM 3. Let &M>0, and let S be an odd integer. If simultaneously, 
(]Ca»^n"*> ] C ^ A C S ) is a solution of equation (1.1) with the label 
(8,X„, tin) > and (2^,c s) is a solution with the label (8, X» , Mn) 
/or some (X» ), and (XXX',i~~s, ^2bndnfXnS) is also a solution with the 
label (8, Xn", /*») /or some (Xn')> where (bn/dn) ~o(ixn) ; then 8 = 1. 

2. For the proof of these theorems we require a number of lemmas. 

LEMMA 1. Equation (1.1) implies, for a sufficiently large integer r, tóe 
following relation: 

T{— (8 + 1)1 i-c*+i>/i £ a J — 1 - JCr(j) 
I 2 ' ƒ tx Ids*' (*2 + \2)<m)/2J 

(2.1) 
= (2îr) 23 *nMn exp (— 2TTfxns), 

/or Re s > 0 , «J&ere 2£r(s) w holomorphic on the surface on which log 5 
is defined, and Kr(s) —0(\ s\~*), e > 0 , as s—» °o i^ a ^ a ^ / e | arg s| 

This has been proved by Bochner and Chandrasekharan [Theorem 
2.1, p. 344]. By the definition of functional equation (1.1) it follows 
that the Dirichlet series on the right of (2.1) converges absolutely 
for (r>0, and from (2.1) it follows that the singularities of its sum-
function are situated symmetrically on the imaginary axis <r = 0, at 
the points (±iX»)> and also possibly at the origin, which we may, for 
convenience, designate as Xo. 

LEMMA 2. If D»< <*>, and equation (1.1) has a solution, then D x - i > 
^ 1 , and hx-hp-^1. (With the understanding that if Z> = 0, then Dx 

= + «>.) 
This is an immediate consequence of a theorem of Chandrasekharan 

and Mandelbrojt [3, Theorem 1, p. 289] which implies [loc. cit., 
p. 290, 11. 6-9] that if i > < oo, and equation (1.1) is satisfied, then 
X w + i -XnSI> for every w = l , that is, Xw = wZ>, or n/\n^l/D", or 
Dx• 2> = 1. Since we have D»• h» = 1, it follows that fa-hp^l. 

LEMMA 3. If / ^ > 0 , S is an odd integer, and equation (1.1) has a solu­
tion, then 8 = 1 or 3. 

This is a result of Kahane and Mandelbrojt [4, Theorem 3, pp. 
71-72]. 
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LEMMA 4. If / ^ > 0 , and § = 1 or 3, and equation (1.1) tes a solution, 
then jun+i —lAn^hp. And for cr<0, tóe analytic continuation of the series 

*(s) 
_ f £ * n e x p ( — 2?TM^) if ô = 1, 

l ] C ^M* exp ( — 2TfjLns)y if ô = 3, 

which is a uniform function, is given by the series — ]T)" 6n exp( + 2iriins), 
and the only singularities of ^t(s) are simple poles at the points ±ikn, 
n = 0, 1, 2, • • • . 

A result proved earlier by Chandrasekharan and Mandelbrojt [3, 
Theorem 3, p. 292] gives the Dirichlet series representation of *&(s) 
in the negative half-plane as ]T)cn exp(27r/zn' s) but it is easy to see 
that cn = — bn, and ixn =jtfn' , if one observes that by Agmon's theorem, 
used in that proof, the origin is a simple pole for the residual function 
Kr(s) in (2.1). This fact is also obvious from the paper by Kahane 
and Mandelbrojt [4]. 

LEMMA 5. If feM> 0, and f(s) = Ylo Bn exp ( — 2wfxns) has a = 0 as its 
abscissa of absolute convergence, and the only singularities of f(s) on 
a segment of the imaginary axis of length greater than h~x are poles of 
greatest order q, then ^ n = 0(/x^~1). 

This is a tauberian theorem of S. Agmon [l, Theorem 4.3(C)]. 

LEMMA 6. If Z>< GO , and &n = 0(Mn~1)> then for <r>0, we have 

OO 

f(S) - JL hn e x p (-2wHnS) = 0 ( ( 7 ~ 9 ) . 
1 

If in the hypothesis we have bn = o{ix^"1), then the conclusion is f(s) 
= o(<r-«). 

(i) Since Z > < oo, we have fxn>Ln for every n, where L is some 
constant. Now, for (r>0, we have 

oo 

I f(s) I S* C- X Mn exp ( — 2wixna) 

^ C- (27rcr)1-« 2 (27TMnO-)«-1 exp ( - 2irç*»er). 
l 

The term {2irixncr)q~~l exp (~2wiJincr) decreases (as fxn increases), when 
2wfXnOr>q—l> Let na be the smallest w for which we have 2irLna 
> q — 1 ; in other words, for n = 1, • • • , n9 — 1, we have 2-wLna ^ g — 1. 
Then 
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2D (27r/xno-)«-1 exp ( — 2ir\xno) ^ 2D {L-limcr)9"1 exp (—lirLno) 

= 0 (<Tq~l 2D n**1 exp (-2TrLn<r) J 

while 

W ( T — 1 

2D (27TAtwo-)9""1 exp {—2irixno) ^ max [o;3"1^*]• (n9 — 1) 
1 x^O 

g K-(n*- 1) = OOT-1). 

Hence/(s)=0(<r-«). 
(ii) In case bn = o(iA%~1), let w<r be the smallest n such that (2irncr) 

>(g —l)o*1/2. Then, as before, 

2D &« exp ( — 2wnns) 
1 

= OCcr1-"^ - 1)) « OOr1'2"'), 

and, since na—>oo, as <r—>0, we have 

2D #n exp (— 2wfxns) 

Hence f(s)=o(o-q). 

2D (27TMnO-)0"1 e x p ( — 2TfJLn<r) 

3. We shall now indicate the proofs of Theorem 1 to 3. 
PROOF OF THEOREM 1. We remark that by Lemma 2, we have 

h\ • hft ^ 1. If &x • &M = 1, then we have h\ > 0, and h» > 0, so that Dx < <*>, 
and Z > < co. Hence, as in the proof of Lemma 2, we have jjLn+i-~ixn 

SD^Sh^1 — h», and Xn+i — ̂ n^D^Sh"1 = h\. Since 5 is odd, we have, 
by Lemma 3, S = 1 or 3. Now, by the first part of Lemma 4, we have 
/Zn+i— fJLn^hn, and Xn+i— Xwè^x, which lead to the desired result. 

PROOF OF THEOREM 2. By Lemma 3, we have 5 = 1 or 3. We shall 
show that the case 5 = 3 is incompatible with the hypotheses. Con­
sider the series f(s) = 2D^n/4r exp( — 2irnns) in Lemma 1. Since 
bn = 0(l)> we have, by Lemma 6, ƒ($) =0(cr~2r~1), for c > 0 . On the 
other hand, in a neighborhood of a pole, say s = ikn, w ^ l , we have 
|/(5) | >c« (cr| ^, where p is the order of the pole, hence an integer, 
with p = (l/2)(ô + l)+2r. For these two estimates to be compatible, 
we should have S = 1. 

PROOF OF THEOREM 3. I t is sufficient to show that 3 = 3 is impos-
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sible. If ô == 3, then by Lemmas 5 and 1, we have bn = 0(JUW), dn = 0(/xn) 
and bndn = O (fin).But by hypothesis, \bn\ Sen-\dn\ -/zw, where ew>0, 
and €n—»0 as n—» oo. That is, | bndn | ^ | bn |

2 • (jUnO""1. We now observe 
that bn — ofan) is impossible, because otherwise, by Lemma 6(ii), we 
should have ƒ(s) = o(o"~2), which contradicts the fact that l/^Xn+tf)! 
>c-(T~2 for <r>0. Hence there exists a sequence (n/) such that 
l&wjl >€^3-/xni, which, together with the inequality for bndn obtained 
above, yields |&ny-dnJ èe^3-JJ%.- ( M V ^ ) - 1 ^ ^ - ^ . 1 7 3 . But this con­
tradicts the fact that bndn = 0(iJLn). 
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