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If G is a transformation group on a space X, then x&X is a station-
ary point if gx=x for every g&G. It has been an open problem, pro-
posed by Smith [5] and by Montgomery [1, Problem 39], to deter-
mine whether every compact Lie group acting on a cell or on Euclid-
ean space has a stationary point. Smith [4; 5] has shown the answer
to be in the affirmative in case G is a toral group or a finite group of
prime power order. In this note we give a simplicial action of 45, the
group of even permutations on five letters, on an n-cell without sta-
tionary points. Greever [3] has recently shown that the only finite
groups of order less than 60 which could possibly act simplicially
on a cell without stationary points are a certain class of groups of
order 36.
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1. The coset space SO(3)/I. Let SO(3) denote the group of all
proper rotations of Euclidean 3-space E? and let ICSO(3) be the
group of rotational symmetries of the icosahedron. As a group, I is
isomorphic to 4s (see [9, pp. 16-18]) and hence is simple.

LeMMA 1. The coset space SO(3)/I has the integral homology groups
of the 3-sphere S3.

Proor. Let Q denote the algebra of quaternions and Q:CQ the
group of quaternions of norm one. Identify Q with E*and Q with S3.
Let 7: 01—S0O(3) be the standard homomorphism, which is a two-to-
one covering map. Set I’ =7-1(I). Then 7 induces a homeomorphism
Qi/I' = SO(3)/1I.

The natural map 7: Q1—Q:/I’ is a covering map and the group of
covering translations is given by the action of I" on Q, by right
multiplication. Since every covering translation preserves orientation
it follows that Q,/I’ is an orientable 3-manifold and hence H3(Q:/I")
=~ H3(SO(3)/I) ~Z (here Z denotes the integers).

From covering space theory the fundamental group m(Q:/I') is
isomorphic to I'. Thus H,(Q./I’) is isomorphic to I’/[I’, I'] where
[I’, I'] denotes the commutator subgroup of I’. Since I is simple,
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[I, I1=1I. Also 7 maps [I’, I'] onto [I, I]; it follows that either
[I, I']=1"or [I', I'] = I. But Q: contains only one element of order
two. Since I contains fifteen elements of order two, [I’, I’] is not iso-
morphic to I. Thus I’ = [I’, I'] and H,(Q:/I’) =0. By Poincare duality
it follows that H»(Q:/I') =0. The lemma follows.

2. Action of I on SO(3)/I. Let I act on SO(3)/I by g1-(gI) =gigl.
A point g=gI of SO(3)/I is fixed under this action if and only if g
belongs to the normalizer of I in SO(3). But I is a maximal finite sub-
group of SO(3) (see [9, pp. 16-18]); furthermore, I is not included in
any nonfinite proper closed subgroup of SO(3), since this is not the
case for the only two classes of such subgroups. Since I is not normal,
it follows that I is its own normalizer. Hence there is exactly one sta-
tionary point of this action, and this is é.

We say that the transformation group G acts simplicially on the
space X if there exists a triangulation of X with respect to which the
homeomorphism g: X—X is simplicial for every gEG.

LeMMA 2. The action of I on SO(3)/I is simplicial.

ProoF. Let I’ X I’ act on Q(=E*) by the rule (g1, ¢2) -¢=q1ggz"
This represents I’ X I’ as a finite group of orthogonal transformations
of E* Hence we may find a triangulation of S3(=(;) such that the
action of I’ XI’ is simplicial. The method is similar to one used by
Whitney [8, p. 358, Lemma 3b]; we omit the details.

Now eX I’ acts simplicially on Qi, and the orbit space is Q:/I’.
By taking a barycentric subdivision, the triangulation of Q; induces
a triangulation of the orbit space Qi/I’. The action of I’ Xe on Q:
induces an action of I’ Xe on Qi/I’ and since I’ Xe acts simplicially
on Q; the induced action is simplicial with respect to the induced tri-
angulation of Q:/I'.

In theaction of I’ Xe(=1I") on Q. /I’ the effective group is I’ /kernel r.
Furthermore the homeomorphism 7, of Qi/I’ on SO(3)/I is equi-
variant with respect to the action of I’/kernel 7 on Qi/I' and the
action of I on SO(3)/I. It follows that the action of I on SO(3) is
simplicial.

3. Action of I on a cell. We may assume that the triangulation of
Q1 is C'in the sense of [6] and that ¢ is a vertex. Since
Tiom: Q1 —SO03)/I

is a C-map the induced triangulation of SO(3)/I is a C! triangula-
tion. It follows that the closed star of the point I of SO(3)/I is a 3-cell
(see [6, p. 818, Theorem 5]). Let K denote the complex resulting if
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we remove the open star of the point I from SO(3)/I, and let |K|
denote the corresponding space. Then | K I is acyclic (i.e. H i(l K | )=0
for ©>0, and Ho([KI )Y=~Z), and I acts simplicially on |Kl without
stationary points.

Consider now the join L =K o I of the complex K and the complex
I, where I is the complex consisting of 60 vertices (the points of I)
and no simplices of higher dimension. Since I acts on K, and I acts
on I (by left multiplication), then I acts simplicially on L. In fact,
g& I maps a line segment from x& K to A& linearly into the line
segment from g(x) to gh. Furthermore, there are no stationary points
on L. The polyhedron | L] is a union of 60 cones over | K|, each pair
intersecting in IK | It follows that IL] is acyclic, and also simply
connected.

Let (21, « -+, va) denote the set of vertices of L. Each g& I induces
a permutation 7, of the vertices of L; n, may be considered as an ele-
ment of the full symmetric group .S, on # letters.

Let e1, - - -, e, be basis vectors for E*. Each element # of S, de-
termines a permutation of (e, + - -, e,). If we extend linearly, n
defines a linear transformation of E». This defines an action of S, asa
group of linear transformations of E».

Triangulate E” so that the action of S, is simplicial, and so that the
simplex spanned by e, + - -, e, is a simplex of the triangulation. De-
fine an embedding f of L in E* by setting f(v;) =e; and extending f
linearly to each simplex. Then f is equivariant. Hence I acts on f(L),
and without stationary points.

Let Fr be the set of points of E* which are stationary under the
action of I. Then FiNf(L) = . If we take sufficiently fine barycentric
subdivisions we may assume that Fr does not intersect the first closed
regular neighborhood of f(L) (see [2, pp. 70-72 for definitions]),
denoted by N(f(L)). Since I acts simplicially on E* and f(L) is
invariant, it follows that N(f(L)) is also invariant. Since f(L) is
simply connected and acyclic, it follows from a theorem of J. H. C.
Whitehead [7, Corollary 3, p. 298] that the regular neighborhood is a
combinatorial n-cell. Thus I acts simplicially on the combinatorial
n-cell N(f(L)) without stationary points.
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