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Let K(x) with x= (%, x2) be a Lip (&, 2) conjugate Calderon-
Zygmund kernel with 1/2<a <1, i.e. K(x) =Q(8)r—2 where (7, 6) are
the usual polar coordinates of x with Q(f) a continuous periodic func-
tion of period 27 with vanishing integral over the interval [0, 2]
satisfying the condition [3[Q(0+h)—Q(6) |2d8=0(h?*) as h—0 (See
[2] and [7, p. 106].) Let F be a countably additive set function
defined on the Borel sets of the plane having finite total variation.
Furthermore let f(y) = (2m)~2[g,e~*@:»dF(x) be the Fourier-Stieltjes
transform of F with E; the plane and (y, x) the usual scalar product.
Also let E(y) be the principal-valued Fourier transform of K, i.e.
E(y) = (2m) 2 lim;.opaw S D0 N-D (0,06~ ¥ K (x)dx where D(x, t) repre-
sents the open disc with center x and radius ¢. (It follows from the
above assumptions that k(y) exists for every ¥.) Then formally the con-
jugate Fourier-Stieltjes integral of F is given by 4n? [g,e! =) f(y)k(y)dy.
In [2, p. 118], it is shown that lim;.o [#,-p,@,nK(x —y)dF(y) exists
and is finite almost everywhere. We call this limit the conjugate of F
with respect to K and designate it by F(x). With |y| = (y3+53) V2 and
Ig(x) =472 [g,e~W//Reiw.2)f(y)k(y)dy, we propose to prove in this note
the following theorem:

THEOREM 1. limg..,, Ir(x) = F(x) almost everywhere.

In a certain sense this result is the planar analogue of [7, p. 54].
In a forthcoming paper we shall extend this result to #-dimensional
Euclidean space and the n-dimensional torus. We shall also study
those kernels which are Bochner-Riesz summable almost everywhere.
In particular we shall show that if K(x) is in C* then the conjugate
Fourier-Stieltjes integral of F is summable (R, &) for a>1/2 to F(x)
almost everywhere, thus paralleling Bochner’s result [1] for the
Fourier-Stieltjes integral of F.

Letting D,,nF designate the symmetric derivative of F [5, p.149]
and [p|dF| the total variation of F over B, we observe from [5,
p. 119 and p. 152] and the standard argument of Lebesgue that
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a) lim (ri2)-1 f | dF(3) — DumF@®)dy| = 0 ace.
t—0 D(z,t)

So to prove the above theorem it is sufficient to prove the following
theorem:

THEOREM 2. At every point x for which (1) holds

@) lim [Ia(x) - f K — y)dF(y)] ~0.
Row E'g—D(z,R’l)
To prove Theorem 2, we set H,(R)=n"1[ye "BJ,(t)tdt where
Ju(t) is a Bessel function of the first kind of order # and establish the
following lemmas:

LemMmaA 1. For n=1, 2, - - -, and all R>0,

@) |Ha(R)| SR,

(ii) 0<H,(R) =1,

(iii) there is a constant A independent of n and R such that

|Ha(R) — 1| < A[(nR-Y)%2 + (nR-1)12],

(i) follows immediately from the fact that IJn(t)l =1. For n=2,
(ii) follows on using Euler’s integral representation for hypergeomet-
ric functions [6, p. 384] and [4, p. 59], for then

n n 1\
wim=r(§)ex( -]
2 2 2
1
f 1] — t)n/2—3l2[t + R—2]—(n/2+1)dt_
0

(iii) follows from the fact that for #=2 and R>2, there is a con-
stant 4, independent of # and R such that

R 1/2

| H.(R) — 1| = Am“z[ 1%t 4+ nR-2 f

R-1

1—32dt + nR‘z] .

0
For n=1, (ii) and (iii) follow from the fact that H;(R) = (1 +R~?)-%2,

LEmMMA 2. Let Q0B)= D o, ane™+doe= and a>B>1/2. Then
there is a constant A independent of R and such that for R=1,

(3) Z |¢lnei"0 -+ d,,e"“'”"l l Hn(R) -1 | < ARV*8,
n=1

To prove the lemma, we observe that by [7, p. 143], D 2., né-1/2
-la,.l <A< » (consequently (@) is in Lip 8—1/2), and therefore
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by Lemma 1 that the sum in the left part of (3) is majorized by a
constant multiple of

[R] o
R1/2—ﬂ( S 2|a w2+ Y 4 aal nﬂ—1/2> < 44,RV*6,
n=1 n=[R]+1
To prove Theorem 2, we can assume with no loss of generality that
x is the origin. Next we see [3, Lemma 2] that for y>0, k(y)
=D 0 1 (2m) Y (@ne?™® +d.e~ ) (—3)"n=! and consequently that

Ix(0) = fE [ i (ane™® + Gue=in?)(—1)"H (R | u| )] | w|=2dF (u).

n=1

Therefore using (1), (i) of Lemma 1, and the absolute convergence
of the Fourier series of 2, we obtain that

f D@,E [ il (00! + ne=) (= )" Ha(R | u] )]‘ w |~2dF (u)
? = o(1) as R— o,

Using (ii) of Lemma 1, the absolute convergence of the Fourier
series of ©, and the fact that F is of finite total variation on the plane,

we conclude from (4) that to prove the theorem it is sufficient to show
that for fixed N>0,

0 —1 (g ind _n —in 6 n _
(5) J pn—-b o,z [ Z,:l( )"(anei®? + Gue=in?) (Ha(R| u|) 1)]

- |u|~2[dF(4) — DoymF(0)du] = o(1) as R— .

Letting G(¢) =fp(o,,)|dF(u)—D,ymF(O)dul , we see from Lemma 2
that the left side of (5) is majorized by a constant multiple of

A
(6) R/2-8 f 112D JG(f).

R—l
Since by assumption G(¢) =o0(¢?) as $—0, we obtain that (6) is
O(RY2=8) 40(1) + RY2—6 [} 0 (¢2)¢/2~@+A)dt. Consequently (5) is es-
tablished and the proof of the theorem is complete.
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