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Let K(x) with x = (xi, x2) be a Lip (a, 2) conjugate Calderon-
Zygmund kernel with l / 2 < a < l , i.e. K(x) =Q(0)r"2 where (r, 6) are 
the usual polar coordinates of x with îî(0) a continuous periodic func­
tion of period 27T with vanishing integral over the interval [0, 2x] 
satisfying the condition Jo* [0(0+ft) - Q ( 0 ) ] W = O(A*") as ft-»0 (See 
[2] and [7, p. 106].) Let F be a countably additive set function 
denned on the Borel sets of the plane having finite total variation. 
Furthermore let f(y) = (2Tr)-%fater^y*»HF(x) be the Fourier-Stieltjes 
transform of F with £ 2 the plane and (y, x) the usual scalar product. 
Also let k(y) be the principal-valued Fourier transform of K, i.e. 
k(y) = (27r)-2 lim^o;x-.oo fD(o,\)-D(o,t)e-Hy>x)K(x)dx where D(x, t) repre­
sents the open disc with center x and radius t. (It follows from the 
above assumptions that k(y) exists for every y.) Then formally the con­
jugate Fourier-Stieltjes integral of F is given by47r2 fE2e

Hy>x)f(y)k(y)dy. 
In [2, p. 118], it is shown that lim^o fE2-D2(x,t)K(x—y)dF(y) exists 
and is finite almost everywhere. We call this limit the conjugate of F 
with respect to K and designate it by P(x). With | y| = (yl+yt)112 and 
IR{X) =47T2 fE2e~^l'Rei(y'ce)f(y)k(y)dy1 we propose to prove in this note 
the following theorem : 

THEOREM 1. lim^^oo IR(X) =P(X) almost everywhere. 

In a certain sense this result is the planar analogue of [7, p. 54]. 
In a forthcoming paper we shall extend this result to ^-dimensional 
Euclidean space and the w-dimensional torus. We shall also study 
those kernels which are Bochner-Riesz summable almost everywhere. 
In particular we shall show that if K(x) is in C00 then the conjugate 
Fourier-Stieltjes integral of F is summable (R, a) for a > l / 2 to F(x) 
almost everywhere, thus paralleling Bochner's result [ l ] for the 
Fourier-Stieltjes integral of F. 

Letting D8ymF designate the symmetric derivative of F [5, p. 149] 
and JsldFl the total variation of F over B, we observe from [5, 
p. 119 and p. 152] and the standard argument of Lebesgue that 

1 This research was supported by the United States Air Force through the Air 
Force Office of Scientific Research of the Air Research and Development Command 
under contract No. AF 18(600)-1595. 
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lim (ir/2)-1 j | dF(y) - DsymF(x)dy | = 0 a.e. 
*->0 J D(x,t) 

So to prove the above theorem it is sufficient to prove the following 
theorem : 

THEOREM 2. At every point xfor which (1) holds 

(2) lim \lR(x) - f K(x- y)dF(y)\ = 0. 

To prove Theorem 2, we set Hn(R)~n~1f£e~tlBJn(t)tdt where 
Jn(t) is a Bessel function of the first kind of order n and establish the 
following lemmas: 

LEMMA 1. For » = 1, 2, • • • , *md a// R>0, 

(i) \Hn{R)\£R*, 
(ii) 0 < f l » ( £ ) £ l , 
(iii) there is a constant A independent of n and R such that 

\Hn(R) - 11 £ il[(filt-1) ,/ï + (nit-1)171]. 

(i) follows immediately from the fact that | / n ( 0 | ^ 1 - F ° r ^£=2, 
(ii) follows on using Euler's integral representation for hypergeomet-
ric functions [6, p. 384] and [4, p. 59], for then 

BM-T(i)'-'"[F(î-\)T 
/

/n/2+l/2(l _ /)n/2-3/2[ / + £ ~ 2 ] - ( n / 2 + l ) ^ 

0 

(iii) follows from the fact that for n^2 and i ? > 2 , there is a con­
stant ^4i independent of n and JR such that 

U B " 1 • . 1/2 - i 

t-^dt + nR~2 I t-*i*dt + nRr2 . 
For n = 1, (ii) and (iii) follow from the fact that Hi(R) = (1 +R~2)^2. 

LEMMA 2. Let ti(d) = J2Z-ianeind+âne-in9 and a > j 3 > l / 2 . Then 
there is a constant A independent of R and such that for R ^ 1, 

00 

(3) X I *«*M + ft.*"*1' I I ff»(-R) - 11 < ^^R172-'3. 
n~l 

To prove the lemma, we observe that by [7, p. 143], X ^ - i np~~112 

'\an\ <Ai<oo (consequently 0,(0) is in Lip /? —1/2), and therefore 
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by Lemma 1 that the sum in the left part of (3) is majorized by a 
constant multiple of 

( [R] « \ 

£ 2 | an | ne-"2 + £ 41 an \ n^1'2) â 4 4 1 * 1 ' 2 ^ . 
To prove Theorem 2, we can assume with no loss of generality that 

x is the origin. Next we see [3, Lemma 2] that for 3/5^0, k(y) 
= ]C*=i (^)~1(^neind+dne~in9)(s — ï)nrrx and consequently that 

J*(0) = f [ E (<w'n' + *.*-*')(- l)"ff»(* I « I )11 « | - W W . 

Therefore using (1), (i) of Lemma 1, and the absolute convergence 
of the Fourier series of ft, we obtain that 

f T Z (*neM + âne~™°)(-l)"Hn(R \u\)\\u \~HF(u) 

(4) 
= 0(1) as .ft—> 00. 

Using (ii) of Lemma 1, the absolute convergence of the Fourier 
series of ft, and the fact that F is of finite total variation on the plane, 
we conclude from (4) that to prove the theorem it is sufficient to show 
that for fixed X>0, 

/ c f f" Z (~ l)n(ane
ine + ane-™i) (Hn(R \u | ) - 1)1 

(5) J DWM-DiO.R-1) L rc=l J 

• \u\-2[dF(u) - D9VJF(0)du] = o(l) as £ - > 00. 

Letting G(t) =fD(o,t)\dF(u) —DsymF(0)du\, we see from Lemma 2 
that the left side of (5) is majorized by a constant multiple of 

(6) RW-P f tV2-u+VdG(t). 
J R-1 

Since by assumption G(t)—o{t2) as £—»0, we obtain that (6) is 
0(RW~f>) +o(l) +R1i2-efU 0 (t2)tV2-«+VdL Consequently (5) is es­
tablished and the proof of the theorem is complete. 
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