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Introduction. Recursive equivalence types and isols. The theory of 
recursive equivalence types (R.E.T.s; see [ l ; 2; 3; 4]) is a construc­
tive counterpart of Cantor's theory of transfinite numbers. Two sets 
a and /3 of nonnegative integers are called recursively equivalent if one 
can be mapped onto the other by a one-one partial recursive func­
tion; we write a~ /3 . The equivalence classes into which the class of 
all sets of nonnegative integers is decomposed by this equivalence 
relation are called recursive equivalence types \ the R.E.T. to which a 
set a belongs will be denoted by Req a. The elementary arithmetic 
operations on R.E.T.s are defined by 

R e q a + Req p = Req ({2n\ n G a) + {in + 11 n&p}), 

Req a • Req fi = Req {2w-3n | m G a & n G #} . 

I t is easy to establish the existence and uniqueness of sums and prod­
ucts so defined, and to prove the formulas (A +B) + C= A + (B + C), 
A+B=B+A, (AB)C=A(BC), AB=BA, A(B + C)=AB+AC, 
A+0=A, AB=0<~*(A=0 or 5 = 0 ) , where 0 is the R.E.T. of the 
empty set. Two finite sets are recursively equivalent if and only if 
they have the same number of elements; thus it is permissible to 
identify the R.E.T.s of finite sets with the nonnegative integers. The 
R.E.T.s are partially ordered by the relation A^B which holds when 
A + C = B for some R.E.T. C. 

Amongst R.E.T.s a special role is played by those types A for 
which - 4 ^ ^ 4 + 1 ; these types are called isols and the sets they char­
acterize, isolated sets. Isolated sets are the constructive analogues of 
sets which are finite in the sense of Dedekind ; they are precisely those 
sets which contain no infinite recursively enumerable subset. The isols 
are a proper subcollection of the R.E.T.s, and the nonnegative inte­
gers are a proper subcollection of the isols. 

Arithmetical formulas of certain forms hold automatically for isols 
(and sometimes for R.E.T.s generally) provided they hold for non-
negative integers. So far ([2; 4]) this has only been observed for 
formulas involving addition, an exponentiation multiplication. The 

1 The research reported in this note was done while the writer received support 
from the Institute for Advanced Study, and from NSF grant G-3466. 
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purpose of this note is to announce similar results for formulas in­
volving a wider class of functions. 

1. Combinatorial mappings and combinatorial functions of non-
negative integers. Let V be the class of all sets of nonnegative inte­
gers. A mapping 

<t>:V->V 

is called a combinatorial mapping if the following conditions are satis­
fied: (I) if a is finite, so is <j)(a): (II) the cardinality of <j>(a) is deter­
mined by that of a: (III) <j> possesses a quasi-inverse </>~~l such that 
for any tfEUaeF<jK°0 w e have 

In virtue of (I)—(II), <j> induces a number-theoretic function/^ such 
that if a has n elements, (j>(a) has f^n) elements. Such a function fa 
is called a combinatorial function. The functions xh, kx, Cx,k, xl, xx are 
combinatorial; and if f{x) and g(x) dace combinatorial, so are fg(x), 
JX%) +£(*) and f(x) • g(x). 

Every number-theoretic function can be expressed uniquely in the 
form 

(1) ƒ(*) = £ CiCXti 
i 

where the Ci are integers, ƒ is combinatorial if and only if (1) holds 
with all c t ^ 0 . 

2. Combinatorial functions of R.E.T.s. The combinatorial function 
(1) is induced by the combinatorial mapping 

(2) 0(a) = {2m-3n\PmCa&cn < cHm)) 

where the Ci are the same as in (1), {pi} is the canonical enumeration 
of finite sets (see [5]) and r{i) is the number of elements of pi. A 
combinatorial mapping <j> satisfying (2) for certain constants Ci is 
called a normal combinatorial mapping. For normal <f> (even when Ci 
is not a recursive function of i) , a~/3 implies 0(ce)̂ ^</>(j8). Hence 
every combinatorial function ƒ of nonnegative integers can be canoni-
cally extended to a function F of R.E.T.s by setting 

F(Req a) = Req 0(a) 

where <j> is the unique normal combinatorial mapping which induces/. 
If ƒ is recursive, the canonical extension of ƒ to R.E.T.s is called a 
recursive combinatorial (r.c.) function of R.E.T.s. The functions Ak, 
kA, CA,IC, A\y AA are r.c. functions; their definitions as canonical ex-



I958J RECURSIVE EQUIVALENCE TYPES 375 

tensions of the corresponding number-theoretic functions are equiva­
lent to the definitions used in [ l ; 3; 4] . The composition, sum and 
product of two r.c. functions are r.c. 

3. Theorems. 
T l . Let F be r.c. Then A SB implies F(A)£F(B). Moreover, if 

F is not a constant and A and B are isols exceeding a certain finite 
number depending on F, AT^B implies F(A)^F(B). In particular 
if A, B are isols we have Ak=Bk->A =B for A, B, Jfe^l; kA = kB-*A 
=B for k^2; CA,k = CBtk->A=B for A, B^k^l; A\=B\-*A=B 
ana AA=BB->A=B lor A, B^l. 

T2. Let F be r.c. Then if A is an isol so is F(A); the converse is 
true provided that F is not a constant. 

T3 . Let F and G be r.c. Then 
(a) If F(n)=G(n) for infinitely many finite n, then F(A)=G(A) 

for at least one infinite isol A. 
(b) If F(n)=G(n) for all but finitely many finite n, then F (A) 

= G(A) for all infinite R.E.T.s A. 
(c) If F(n)y^G{n) for infinitely many finite n, then F(A)^G(A) 

for a t least one infinite isol A. 
(d) If F{n)9^G(n) for all but finitely many finite n, then F (A) 

9^G{A) for all infinite isols A (but in general not for all infinite 
R.E.T.s 4 ; take F(n)=n, G ( » ) = » + l ) . 

4. Generalizations. A combinatorial function of k nonnegative inte­
ger arguments xi, • • • , xk is a function 

'\%U ' ' ' 9 Xk) == 2~i Cai'"ak 1 1 ^*».o» 

with all the cai...ak nonnegative. xy, x + y and xy (but not C»,y) are 
combinatorial. The family of all combinatorial functions is closed 
under composition. The canonical extension to R.E.T.s of com­
binatorial functions of several arguments, and the notion of an r.c. 
function of several arguments, are defined in a manner exactly parallel 
to the one-argument case. Analogues of T2 and of all parts of T3 can 
then be proved. In particular if F and G are r.c. functions of k argu­
ments, we have 

T3*(b). If F(xi, • • • , # * ) =G(xiy • • • , Xk) for all finite xi, • • • , #*, 
then F(AU • • • , Ak)=G(Ah • • , Ak) for all infinite R.E.T.s 
Au • • • , Ak. 

T3*(d). If F(xi, • • • , ff*)p*G(#i, • • • i #*) for all but finitely 
many ^-tuples (xi, • • • , xk) of nonnegative integers, then 
F(Ai, • • • , Ak) 9*G{Au • • • , -4/t) for all infinite isols Au • • • , -4*. 
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Notice that T3*(d) contains the principal result of [2] as a special 
case. 

A. Nerode has obtained generalizations of T3 in a different direc­
tion. For example, he has shown that if F, G, H, L are r.c. functions 
such that for all finite #1, • • • , #* 

F(xh • • • , Xk) = G(xh •••,&*)—» H(xh • • • , # * ) = L(xh • • • , xk) 

then for all infinite isols Au • • • , Ak we have 

F(Ah • • .,Ak) = G(Al9 • • -tAk)^>H(Au • • ' , ^ ) = L ( i i , • • • , ii*). 

This does not hold reading "R.E.T.s" for "isols" (despite the fact 
that T3*(b) holds for arbitrary R.E.T.s); take F(AU A2, A*) 
= (A1 + l)A2t G^(At + l)AZf H=A2, L=AZ. 
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