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With the usual definitions of homotopy-theory, we have the fol­
lowing theorem. 

THEOREM 1. (a) 5n~1 is not an H-space unless w = 2, 4, or 8. 
(b) There is no element of Hopf invariant one in 7T2»-i(5n) unless 

w = 2, 4, or 8. 

For the context of this question, see [5] (especially pp. 436-438), 
[4, Chapter VI] and [6, §§20, 21]. 

This theorem results from reasonings with secondary cohomology 
operations. I t is generally understood that a secondary operation 
corresponds to a relation between primary operations. One may 
formalize the notion of a "relation" by introducing pairs (d, z), alge­
braic in nature, as follows. 

Let p be a prime; let A be the Steenrod algebra [2, p. 43] over 
Zp. One defines the notion of a graded left module M over the graded 
algebra A so that M= ^2q Mq and AqMr(ZMq+r. For example, let us 
write H«(X) for H*(X; Zp), H*(X) for £ , H*(X; Z9) and H+(X) for 
]£«>o H*(X; Zp); then H*(X) and H+(X) are graded left modules 
over A. Let M, N be such modules; one defines the notion of an 
A -map ƒ : M->N of degree r so that f(Mq) CNq+r. 

A pair (d, 2), then, is to have the following nature. The first entry 
d is to be an A -map d: G—>C0 of degree zero. Here Co, G are to be 
modules in the above sense; we require, moreover, that they are 
locally finitely-generated and free, and that (Ci)q — 0 if q<i (i = 0, 1). 
The second entry z is to be a homogeneous element of Ker d. 

Let (d, z), then, be a pair of this sort. We call $ a stable secondary 
cohomology operation associated with (J, 2), if it satisfies the fol­
lowing axioms. 

AXIOM (1). $(e) is defined for each A-map e: C0-^H+(X) of degree 
w ^ l and such that ed = 0. 

Such a map € is determined by its values on the elements of an 
^4-base of C0. I t therefore corresponds to a set of elements of H+(X). 
In particular, if Co is free on one given generator c, we write u~ec; 
we may thus consider $ as a function of one variable u, where u runs 
over a subset of H+(X). In this case we Write $(u) for $(€). 

For the next axiom, set deg(z)=n + l, l e t / : Ci-*H+(X) run over 

279 



280 J. F. ADAMS [September 

the A -maps of degree (w — 1), and let Qm"¥n(d1 z; X) be the set of 
elements of the form fz. 

AXIOM (2). $(e)eH™+"(X)/Qm+n(d, z; X). 
For the next axiom, let g: Y—»X be a map. 
AXIOM (3). g*$(e) = $>(g*e). 
For the next axiom, let (X, Y) be a pair, and let e: Co—>H+(X) be a 

map of degree m ^ l such that ed — 0 and i*€ = 0. We can now form 
the following diagram. 

H+( F) t - #+(X) £- #+(X, F) 4 - H+( F) £- ff+(X) 

AXIOM (4). ***(«) = {f«} mod i*Qm+n(d, 0; X). 
For the next axiom, let SX be the suspension of X, and let 

a: H+(X)—>H+(SX) be the suspension isomorphism. Let e be as above. 
AXIOM (5). cr$(€)=$(<r€). 

THEOREM 2. G%£w cmy £a^> (d, z) (as above), there is at least one 
stable secondary cohomology operation <& associated with it (in the sense 
of the axioms above). 

This theorem is proved by the method of the universal example. 
The next theorem allows us to study the operations $ by applying 
homological algebra (see [3]) to the pairs (d, z). 

THEOREM 3. (a) If <ï>, <ï>' are two operations associated with the same 
pair (d, z) then there is an element c in (Co/dCi)n such that 

*(«)-*'(*) = {ec}. 

(b) Suppose given d (as above), elements zt in Ker d, and operations 
$t associated with the pairs (d, zt). Suppose z — ^ t atzt (atÇîA). Then 
there is an operation <I> associated with (d, z) such that 

£ at$t(e) = {$(€)} mod £ otQ»+*W, zt; X). 
t t 

(c) Suppose given a diagram 

nil 
Cx >C{ 

dt id' 
nio 

Co > Co 
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in which d, d! are as above, and w0, nt\ are A-maps of degree zero. Let $ 
be an operation associated with a pair (d, z). Then there is an operation 
4>' associated with {d\ nt\z) such that 

*(€ 'mo) « {$'(€')} 

for each e': C0' —>H+(X) of the sort considered above. 

One may show that for operations in one variable, there is a Cartan 
formula for expanding $(uv), where uv is a cup-product. 

We now take p~2. We also omit to summarize some work with 
homological algebra. This work leads us to consider certain pairs 
(d, z). By applying Theorem 2, we obtain secondary operations $ij(u) 
for 0<i^j, j^i+l. The operation $j,i{u) is of degree 2f+2> — 1, and 
it is defined on classes u such that Sq2\u) = 0 for O^r^j. 

Let P be complex projective space of infinitely-many dimensions, 
and let y be a generator of H2(P) (by which we mean H2(P; Z2)). We 
may ask for the values of the operations $t>y in H*(P). Now, $ij(yr) 
is defined only if rs=0 and mod 2K Moreover, the degree of $»,/ is odd 
unless i = 0 and j>0; so that $ij(yr) lies in a zero group unless i = 0 
and j>0. It remains only to consider $o,j(yn2i) ; this is defined modulo 
zero. 

THEOREM 4. 

$o,/(;yn2') = ny(n+l/m' (mod zero). 

In the proof of this theorem we make essential use of a formula for 
the composite operation QojSq2'. This formula is proved by apply­
ing Theorem 3. 

THEOREM 5. For each k^3 we have a formula 

E aij,k*ijW » Sq2"+l(u) (modQ). 

The formula is valid on classes u such that Sqr(u) = 0 for O^ri&k, 
and holds modulo a certain subgroup Q. It is proved as follows. By 
applying Theorem 3, we obtain a formula 

E <nj,k®ij(u) = \Sq2k*\u) (mod Q) 

in which a;,/,*G-4, and the coefficient X remains to be determined. 
Applying the formula to a suitable class u in H*(P)f we determine 
X = l. 

To prove Theorem 1, it is sufficient to prove it for the case » = 2m. 
This case follows immediately from Theorem 5, using the same 
argument as that used by Adem [l, §4] in the case n?£2m. 
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