
BOOK REVIEWS 

Homological algebra. By Henri Cartan and Samuel Eilenberg. Prince­
ton, The Princeton University Press, 1956. 15+390 pp. $7.50. 

At last this vigorous and influential book is at hand. I t took nearly 
three years from completed manuscript to bound book; Princeton is 
penalized 15 yards for holding. 

Homological algebra deals both with the homology of algebraic 
systems and with the algebraic aspects of homology theory. The first 
topic includes the homology and cohomology theories of groups, of 
associative algebras, and of Lie algebras. The second topic includes 
the care and feeding of exact sequences and spectral sequences, as 
well as the manipulation of functors of chain complexes. For exam­
ple, the Künneth problem reads: Given the homology of complexes 
K and L, what is the homology of K<g>L? Again, the universal coeffi­
cient problem reads: Given a group G and the homology of a complex 
Ky what is the homology of the complexes K®G and Horn (K, G)? 
These problems and these two functors, tensor product and Horn, 
are treated not just for groups, but in proper generality for left mod­
ules over an arbitrary ring A. Explicitly, if A and G are such modules, 
HoniA (^4, G) denotes the group of A-module homomorphisms of A 
into B. When G is a right A-module and A a left module—a situation 
denoted neatly as (GA, KA)—the tensor product taken over A is 
written as G®\A. A A-complex K is a graded differential left A-
module; its homology H(K) is the usual graded module H(K) 
= ^Hn(K)> it has the usual definition and an unusual definition 
(Chap. IV), dual to the usual one. 

The various aspects of homological algebra all meet in the notion 
of a projective resolution (Chap. V). A left module P is projective 
(Chap. I) if any homomorphism of P into a quotient module B/C can 
be "lifted" into a homomorphism of P into B. (Thus a free module 
is projective, but not necessarily vice versa.) A projective resolution 
of A is an exact sequence • • • —>Xn—»Xn-i—> • • • —>Xo—>A—»0 com­
posed of A and a complex X which consists of projective modules Xn, 
n = 0, 1, • • • . Given two such resolutions X and X' for the same Ay 

the familiar method of climbing up one dimension at a time provides 
a chain transformation of X into X1 and proves X and X1 chain 
equivalent. Given any module GA the homology groups H(G®AX) 
are therefore independent of the choice of the resolution of A and 
depend only on G and A ; they are called the torsion products and 
are denoted (Chap. VI) 
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Torn (G, A) = Hn{G 0 A X), n = 0, 1, • • • ; 

in particular, Tor0 (G, A)=G®KA. Similarly, given any AG the co-
homology groups ü(HoniA (X, G)) depend only on A and G and are 
written 

Extl (A,G) = #w(HomA (X, G)), n = 0, 1, • • • ; 

in particular Ext0 (A, G) is Horn A {A, G). Any module homomorphism 
7:A—>B extends to a map of a resolution of A to a resolution of B\ 
hence each Torw is a covariant functor of its arguments G and A, 
while Extn is contravariant in A and covariant in G. 

These two functors now apply to the typical problems of homologi-
cal algebra. Let À be a hereditary ring (i.e., every left or right ideal 
is projective as a module). In the Künneth problem, if K and L are 
complexes of projective modules, there is an exact sequence 

(1) 0 -> H(K) ® A H(L) ^ H(K ® A L) L Torf (H(K), H{L)) -> 0, 

the sequence splits, and the natural homomorphisms a and /? have 
degrees 0 and 1, respectively. The same sequence, with L a module 
(differentiation zero), solves the universal coefficient problem for 
homology, under somewhat weaker conditions, while for the coeffi­
cient problem in cohomology one has the exact sequence 

1 a' P' 
0 -» Ext A (H(K), G) -> #(HomA (K, G)) -> HomA (H(K), G) -> 0, 

valid under similar conditions, with maps a! and /3' of degrees 1 and 
0, respectively. This sequence is a case of a "Cokunneth" Theorem 
(Theorem 3.1.a of Chap. VI) for HomA (K, L); this theorem, insuffi­
ciently emphasized by the authors, contains in particular a homotopy 
classification of maps of K onto L. 

Exact sequences can be grown. If 0—>A—>B—>C—»0 is a given exact 
sequence of left modules, then for each right module G the derived 
sequence 

0 - > G _ ® A ^ ~>G ®AB->G ® A C - > 0 

in general fails to be exact at G®A^4 . Exactness returns when the 
left-hand zero is replaced by Ton (G, C), and the sequence is con­
tinued to the left as 

(2) > Tor^x (G, C) -> Tor« (G, A) -> Tor£ (G, B) -> Tor£ (G, C)-> 

where 6 is a suitable "connecting homomorphism." Similarly, given 
AG, the derived sequence 
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0 -* HomA (C, G) -» HoniA (JB, G) -> HomA (-4, G) -> 0 

becomes exact when the right-hand zero is replaced by ExtA (C, G), 
and the sequence is continued to the right with the higher Extn 

functors. 
The homology of various algebraic systems can be written with tor­

sion products. To get the homology of a group II (Chap. X), take A 
to be the integral group ring Z(II) and regard the ring Z of integers 
as the left Z(II)-module for which xm = m for each integer m and each 
# £ I I . For modules Gztm a n d zai)A the homology and cohomology 
groups of II are then defined by 

(3) #W(II, G) = Torn (II) (G, Z), H\IL, A) = Ex t^n /Z , A)t 

The latter are the cohomology groups of II originally defined by 
Eilenberg-Mac Lane in terms of a standard complex. This complex 
can be viewed as a particular projective resolution of the Z(II)-
module Z; for special II the use of other resolutions expedites the 
calculation of Hn (e.g., for II cyclic see Chap. XI I , §7). 

To get the homology of an associative algebra Y over a commuta­
tive ring K (Chap. IX), the authors first turn bimodules into left 
modules. More exactly, let T* be the algebra anti-isomorphic to Y 
and set T6 = T <2> # r * ; any two-sided T-module A can then be inter­
preted as a left re-module. The homology and cohomology of Y is 
now defined as 

(4) Hn(Y, A) = Tori (A, T), H\T, A) = Ext?(I \ A). 

These are the groups defined originally by Hochschild, who used a 
standard complex which may be regarded as a projective resolution 
of the P-module Y. 

To get the homology of a Lie algebra L over a commutative ring 
K (Chap. XI I I ) , first take the enveloping associative algebra Le, 
defined as the tensor algebra T of the 2£-module L modulo the ideal 
spanned by all a<8)b — b®a— [a, b] for a, &(~L and [a, b] the bracket 
product in L. The augmentation e: T—*K of the tensor algebra (iden­
tity on scalars, zero on elements of L) induces an algebra homo-
morphism e:Le-^Kt and K becomes a left Le-module with operators 
xk = e(x)k for x £ Z / and k£:K. The rôle of Le is that each left repre­
sentation module of the Lie algebra L is a left Le-module, and vice 
versa. For modules in the situation (AL

e, LeC) one then defines the 
homology and cohomology groups of L as 

(5) Hn(Lt A) = Tor» (A, K), H\L, C) = Extl<(K9 C). 
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In case L is free as a i£-module, the Birkhoff-Witt theorem shows that 
these groups agree with those originally defined by Chevalley-Eilen-
berg, using a more complicated complex constructed directly from L. 

There is a striking parallel between the formulas (3), (4), and (5); 
this the authors exploit by a new notion of an augmented ring (of 
which more later). In the first and third cases the ring A = Z(II) or 
A = Le is an algebra over Z or K respectively. These two cases are 
unified in terms of supplemented algebras. A supplemented algebra 
(Chap. X) is an algebra A over a commutative ring K together with 
a UT-algebra homomorphism €:A—>K. This € induces on K a left 
A-module structure ; the homology groups of the supplemented algebra 
A are defined in terms of this structure for each AA as Tor£ (A, K). 
In case A is i£-free, these groups are isomorphic (Theorem 2.1) to 
the Hochschild homology groups of A, with A regarded, through e, 
as a bimodule. By this token the homology either of groups or of 
(i£-free) Lie algebras can be regarded as special cases of the Hoch­
schild homology. 

This brief outline of homological algebra does not adequately repre­
sent the generality of the treatment in Homological algebra. For exam­
ple, much of the discussion is carried out for arbitrary covariant func­
tors T(A) which are additive (Chap. II) in the sense that TÇai+otï) 
= T(ai) + T(a2) for any sum of module homomorphisms a\ and a% 
(a condition which implies that T(A +B) = T(A) + T(B) for a direct 
sum of modules A and B). Any such functor has a left and a right 
satellite functor (Chap. I I I ) . For example, the left satellite S\T{A) 
is found from any exact sequence 0—>M—>P—>A—>0, P projective, as 
the kernel of T(M)—*T(P), and is independent of the choice of that 
sequence, while the right satellite is defined dually (reverse all ar­
rows). For any exact sequence 0—>A—>B—>C—»0 there is a connecting 
homomorphism SiT(C)—>T(A). The functor T is called half exact if 
the related sequence T(A)—>T(B) —>T(C) is always exact at T(B); in 
this case the connecting homomorphisms yield an infinite exact se­
quence of iterated satellites in the form 

>S2T(C) ->SiT(A) -^SxTiB) -^S^C) -» T(A) - > • • • . 

The functors Tor„ are the iterated left satellites of ®A, while Extw 

are the right satellites of HomA. There is an axiomatic description of 
satellites (Theorem 5.1; see also the elegant characterization of Tor 
given in the introduction). 

Homological methods applied to arbitrary functors are more power­
ful. For a contra variant additive functor T{A) the nth right derived 
functor is defined as the nth homology group of the complex T(X), 
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where X is a projective resolution of A, and similarly for covariant 
functors and functors of several arguments. Chapter V discusses these 
notions, relates the derived functors to satellites and describes the 
"balanced" covariant functors T(A, G) for which resolution of either 
factor yields the same derived functor—the one relevant example be­
ing the functor G®AA. One also employs injective resolutions (dual 
to projective resolutions). For example (p. 107) the nth right derived 
functor of Horn! (A, C) is ExtjJ (A, C); it may be obtained as the 
nth homology group of any one of HomA (X, C), HomA (A, Y) or 
HomA (X, F), where X is a projective resolution of A and Y an in­
jective one of C 

Chapter VI introduces dimension concepts. The projective dimen­
sion of a A-module A is the least non-negative inreger n such that 
there is a projective resolution X of A with Xfc = 0 for all k>n. The 
left global dimension of a ring A is the least non-negative integer m 
such that all left A-modules A have projective dimension Sm> or, 
equivalently, such that ExtA+1 = 0. In the exercises (of which most 
chapters have many, giving additional results) one finds also a weak 
dimension. Another interesting result is Rose's theorem (Chapter IX, 
Proposition 7.4) on the dimension of the tensor product of algebras. 
Hubert 's Theorem on chains of syzygies is comprised in the beautiful 
Theorem 6.5 of Chapter VI I I : if A is the polynomial ring in n inde-
terminates over a field K, then the projective dimension of any 
A-module is at most n and that of any ideal of A is at most n —• 1. The 
demonstration uses a projective resolution due to Koszul; there is a 
similar theorem (Theorem 6.5') for formal or convergent power series 
rings. 

Chapter XI proliferates products. Given left modules A and C 
over the i£-algebra T and similar modules over T' there is an obvious 
natural homomorphism 

Hom r (A, C) ® Hom r (A\ C) -» H o m r 0 r , (A ® A',C ®C), 

where all tensor products are taken over K. Upon replacing the argu­
ments A and A' by resolutions one obtains an "external" product 

V:Extr (il, C) ® Ext?, (A\ C') -> E x t r ^ r , (A ®A',C ®C); 

it is a homomorphism which reduces to the previous one when p~q 
= 0. Given a "diagonal map" D:T-^T®T and r ' = r one induces a 
corresponding internal product 

U:Extr (A, C) ® Extp (A', C) -+ E x t ^ {A ®A',C® C). 

This yields the usual cup products in the cohomology of algebras or of 
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groups, and can there be expressed by the usual Cech-Alexander for­
mulas in the standard complexes. There are three more external prod­
ucts, each with an internal version, which spring as above from the 
three natural homomorphisms 

(C ® A) ® (C ® A') -> (C <g> C') ®{A® A'), 

Horn {A ® A', Horn (C, C')) -> Horn (C ® A, Horn (A't C')), 

Hem (C, C') (g> (.4 <g> il') -> Hom (Hom (A, C), C' ® A'). 

The third one gives "cap" products. After handling these products 
expeditiously, with effective use of the unifying concept of a supple­
mented algebra, the chapter closes with a generalization of the Eilen-
berg-Mac Lane cup-product reduction theorem. 

Chapter XI I , one of the most interesting of the book, presents 
hitherto unpublished results of Tate and Artin-Tate on the homology 
and cohomology of finite groups. For a left module A over the group 
ring of a finite group II one has the norm homomorphism a—>23#a, 
the sum being taken over all #GII . This induces a norm homomor­
phism J7o(II, A)—»iî0(II, A) and hence makes it possible to combine 
the homology and cohomology groups of II with coefficients in A into 
a single (doubly infinite) sequence. To calculate these groups one can 
use a suitably designed "complete" resolution; there is a (cup) prod­
uct which works for the whole sequence. For certain finite groups II 
there is known to be a period q; that is, an integer such that there is 
an isomorphism Hn(IL, A)z^Hn+q(TL, A) given for all n by a cup prod­
uct. The chapter ends with the beautiful theorem that II has such a 
period if and only if every abelian subgroup of II is cyclic. 

Homological algebra arose from extension problems : Extf (A, C) is 
the group of abelian group extensions of C by A ; H2(II, G) is the 
group of extensions of the Il-group G by the group II, and similarly 
for algebras and Lie algebras. These matters are treated systemati­
cally, elegantly, and belatedly in Chapter XIV. The most interesting 
known results in these directions (three-dimensional cohomology 
classes as obstructions to extension problems) are omitted. 

The next chapter sets up the formalism of spectral sequences. The 
exposition is clear; there is a good explanation (§7) of how spectral 
sequences arise from relative homology; there is (finally!) a decent 
notation for a filtration. Unhappily the authors continue the con­
spiracy of silence according to which the rectangular diagrams, used 
by all the experts, never appear in print. As the authors note, spectral 
sequences were discovered by Leray (1945) ; as they do not note, they 
were independently discovered by Lyndon (Harvard thesis, May, 
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1946; cf. also Duke Math. J. vol. IS (1948) pp. 271-292), who was 
the first to consider the subject matter of these chapters—spectral 
sequences applied to algebraic problems. The authors improperly 
credit Lyndon's spectral sequences to a much later paper by Hoch-
schild-Serre. 

Chapter XVI applies spectral sequences to various problems ; asso­
ciativity formulas for torsion products, the relation between homol­
ogy groups of an algebra and those of an invariant subalgebra, and 
topological spaces with operators. The next and last chapter discusses 
the projective resolution of a complex K by a double complex X 
(i.e., a bigraded module with two differentiations). Given also a 
functor 7\ the double complex T(X) has homology independent of 
the choice of the resolution X, has two filtrations and hence two spec­
tral sequences. The resulting maze of objects constitute the hyper-
homological invariants of K and T. The chapter ends triumphantly 
with a return to first problems; the Künneth sequence (1) for com­
plexes K and L over a hereditary ring, previously known to be exact 
for K and L projective, is shown by spectral sequences to be exact 
provided only that iJ(Tor^ (K> L)) = 0. This resounding success leads 
the authors to assert that the hyperhomological invariants of K(&L 
may be regarded as a general solution of the Künneth problem. This 
assertion appears to be a case of trimming the problem to fit the tech­
nique, since a regard uncorrupted by spectres would formulate the 
Künneth problem as that of finding a formula for the homology of 
K®L in terms of a sufficient set of invariants (hyperhomologies, 
Bocksteins, or what have you) of K and L. 

In spite of the delay in its publication, widespread acquaintance 
with the manuscript and with the ideas of this book has already 
played an important role in the development of this lively subject. 
For example, Eckmann and Hilton (unpublished) have investigated 
the interesting functors derived from Horn (A, B) by replacing the 
contravariant argument A by an injective resolution or the covariant 
B by a projective. Serre and Auslander-Buchsbaum (Proc. Nat. 
Acad. Sci. U.S.A. vol. 42 (1956) pp. 36-38) have achieved decisive 
results on the dimensions of local rings. More significant for the gen­
eral presentation of the subject is the fact that the whole mechanism 
of projective resolutions works not just in the category of left modules 
over a ring, but equally well for right modules, for bimodules, or in 
many other categories. In an appendix to the book Buchsbaum sets 
forth these ideas, together with the necessary axioms on the additive 
categories (he calls them "exact" categories) in which this theory 
works. Subsequent unpublished work by Grothendieck indicates that 
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this point of view will be convenient also for the homology of a space 
with coefficients in a sheaf. Hence it seems likely that a future presen­
tation of homological algebra will operate in a suitable category, pro­
vided at least that someone concocts a convenient method of chasing 
diagrams without chasing elements. 

The authors' approach in this book can best be described in phil­
osophical terms and as monistic: everything is unified. Consider for 
instance the homology of groups; in view of its application to class 
field theory and to topology this topic is central in homological alge­
bra. In this book the homology of groups appears as a special case of 
the homology of monoids (monoid = associative multiplicative sys­
tem with identity), which in turn is a special case of the homology 
of supplemented algebras, again a case of the homology of augmented 
algebras, which is an instance of a torsion product, which at your 
choice is an instance of a derived functor or an iterated satellite func­
tor. 

Historically, each monistic doctrine is resolved by a subsequent 
pluralism. So it was here. When the authors started to write, it was 
true that all known cases of homology of algebraic systems (groups, 
algebras, and Lie algebras) could be neatly subsumed under the 
resolution, Tor, and Ext pattern. When they finished writing this 
was no longer so—and this because of the authors' own separate 
efforts elsewhere! The Eilenberg-MacLane homology of abelian 
groups (Trans. Amer. Math. Soc. vol. 71 (1951) pp. 294-330) has 
not yet been expressed by torsion products. The Eilenberg-Mac Lane 
bar construction (Annals of Math. vol. 58 (1953) pp. 55-106) is a 
standard construction more general than those produced by standard 
resolutions. Cartan's beautiful and powerful theory of constructions 
(Séminaire École Normale Supérieure, 1954/1955) is an extension of 
the idea of a projective resolution beyond the terms of this book. 
Still more recently, the as yet unpublished homology theories of 
Dixmier for Lie rings and of MacLane for rings are other examples of 
homology of algebraic systems not (at least as yet) obtainable by 
resolutions. 

Perhaps Mathematics now moves so fast—and in part because of 
vigorous unifying contributions such as that of this book—that no 
unification of Mathematics can be up to date. The reviewer might 
also add his strictly personal opinion that the authors have not kept 
sufficiently in mind the distinction between a research paper and a 
book : a good research paper presents a promising new idea when it is 
hot—and when nobody knows for sure that it will turn out to be 
really useful; a good research book presents ideas (still warm) after 
their utility has been established in the hands of several workers. 
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This book contains too large a proportion of shiny new ideas which 
have nothing to recommend them but their heat and promise : satel­
lites (these appear in Chapter III and then gradually disappear in 
later chapters), derived functors of anything but Horn and ® (the 
reviewer watched in vain for other examples), semi-hereditary rings, 
functors derived simultaneously in several variables, supplemented 
algebras, and the homology of monoids. The same remark applies to 
spectral sequences. These sequences have proved their worth in topol­
ogy but have not yet reached decisive results in the homology of alge­
braic systems: the result is that the uninitiated reader can hardly 
hope to understand what spectral sequences are all about by reading 
the three chapters devoted to them in this book. The reviewer is not 
claiming that spectral sequences and these other notions will not 
later have significant algebraic uses: some of them will, but until 
that time comes their presence clutters up the book. 

Another danger of shiny new notions is that sometimes the shine 
proves illusory. For example, the authors define an augmented ring as 
the triple consisting of a ring A, a left A-module Q and a left A-module 
epimorphism e:A—>(X Now Q and e are determined up to isomorphism 
by the kernel of €, which is a left ideal in A. Hence "augmented ring" 
is a new name for "left ideal in a ring." The authors have introduced 
these augmented rings because the homology of an augmented ring 
includes the homology of algebras, groups, and Lie algebras. The 
homology groups of an augmented ring e:A—>Q are defined to be the 
groups Tor£ (A, Q). This definition does include the three desired 
cases as already displayed above, but a moment's reflection reveals 
that the definition has nothing to do with the epimorphism e, and 
would work for any left A-module Q. The e really occurs only in some 
wholly routine calculations of low dimensional homology groups. The 
only consequential theorem about the homology of augmented rings 
is a mapping theorem (VIII, 3.1) which gives the machinery for 
changing from one ring A to another. This theorem has nothing to 
do with a map e; in fact the theorem is clarified by the recognition 
that it deals with a homomorphism of the system consisting of a ring 
A and a left A-module Q into a ring A' and a left A'-module Q'. The rest 
of the authors' discussion of "augmented rings" consists of theorems 
about left ideals. 

The authors' treatment of the literature is off-hand. Künneth 
formulas appear, but no references to Künneth. Torsion products 
abound, with no credit to early discoverers (example: Cech, in Funda-
menta Mathematica vol. 25 (1935) pp. 33-44) had the torsion prod­
uct for abelian groups, defined essentially as a satellite). The authors 
have discovered that the Birkhoff-Witt theorem was known to Poin-
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caré before either Birkhoff or Witt was born; they proceed to call it 
the Poincaré-Witt theorem. The facts of the matter are these. The 
theorem asserts that if the Lie algebra L over K is free as a i£-module, 
then the natural map of L into its enveloping associative algebra Le 

has kernel zero. Birkhoff and Witt both found proofs of this theorem 
in 1936; Birkhoff's was received by the editors 29 days earlier than 
Witt 's , but there is every reason to suppose that the two were inde­
pendent and that the theorem was then "in the air." Birkhoff makes 
a (partial) reference to Poincaré; Witt does not. Birkhoff defines the 
enveloping algebra, not as a quotient of the tensor algebra, but by 
"straightening" elements of that tensor algebra. His proof is carelessly 
done, but with some little trouble (which the reviewer has taken) his 
proof can be made complete and correct. The world would be happy 
to honor Poincaré, who was well ahead of his time on this, but not at 
the expense of a manifest injustice to Birkhoff. Since a three-handled 
theorem is clumsy, it will doubtless remain Birkhoff-Witt. 

This book is very carefully prepared and well proof-read; the re­
viewer noted only one troublesome misprint: on page 185 the rj in 
the top row of the square diagram and in the next line of the text 
should be p (notation from p. 168). The letter A is overworked; it 
appears variously as a ring, as an augmented ring, or as an algebra. 
More application of the usual (unexpressed) conventions about differ­
ent letters for different notions would have helped the reader. The 
index might have the following additions: complete resolution 240, 
derivation 168, direct family of homomorphisms 4, direct product 4, 
direct sum 4, exterior ring 146, free ring 146, homology of differential 
module 54, image 3, kernel 3, Lie algebra 266, negative graded module 
58, normal map 349, normalized standard complex 176, polynomial 
ring 146, positive graded module 58, 60, 0-projective module 30, 
standard complex 175, syzygies 157. 

SAUNDERS MACLANE 

Methods in numerical analysis. By K. L. Nielsen. Macmillan, New 
York, 1956. 13+382 pp. $6.90. 

Introduction to numerical analysis. By F. B. Hildebrand. New York, 
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Numerical analysis, with emphasis on the application of numerical 
techniques to problems of infinitesimal calculus in single variables. 
By Z. Kopal. New York, Wiley, 1955. 14+556 pp. $12.00. 

The demand for computer personnel has been made abundantly 
clear—in the advertisement pages of our newspapers, and at formal 


