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1. Introduction. Apart from the really spectacular development of 
the field of topology during the last 50 years, one of the most inter­
esting and satisfying related phenomena has been the widespread 
interaction between topology and other branches of mathematics. 
This has occurred in nearly all fields of mathematics. It has been nota­
ble in algebra, algebraic geometry, differential geometry and in vari­
ous types of analysis. However it is the connection with the theory 
of functions, and particularly functions of a complex variable, which 
has developed and is being actively developed at present that I should 
like to discuss in some detail today. As I have used the term, topologi­
cal analysis refers to those results of the analysis type, theorems about 
functions or mappings from one space onto another or about real or 
complex valued functions in particular, which are topological or 
pseudo-topological in character and which are obtainable largely by 
topological methods. Thus in a word we have analysis theorems and 
topological proofs. As just indicated however, what I shall say today 
will be confined largely to results closely related to analytic functions 
of a complex variable. Since one of the main roots—if indeed not 
the taproot— of topology rests firmly in the recognition by Riemann 
and Poincaré of the fundamental and inescapable topological nature 
of such functions, much of the work to be described represents a 
return of topology to some of the original situations and problems 
which motivated its beginnings and to which it owes much for its early 
development. 

Contributions of fundamental concepts and results in this type of 
work have been made during the past 25 years by a large number of 
mathematicians. Among these should be mentioned (1) Stoïlow [l], 
the originator of the interior or open mapping, who early recognized 
lightness and openness as the two fundamental topological properties 
of the class of all nonconstant analytic functions; (2) Eilenberg [2] 
and Kuratowski [3 ] who introduced and used an exponential repre­
sentation for a mapping and related it to properties of sets in a plane, 
(3) Morse and Heins [4], whose studies on invariance of topological 
indices of a function under admissible deformations of curves in the 
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complex plane greatly clarified the action of the mapping in the region 
and near the boundary and opened the way toward admissible 
simplifying assumptions, (4) the Nevanlinna [5] brothers and L. Ahl-
fors [6] whose oustanding work on exceptional values of analytic 
functions lead to conclusions partly topological in character which 
contain the suggestion of new connections with topology still await­
ing development, and (5) Ursell and Eggleston [7] as well as Titus 
and Young [8] who have contributed elementary proofs for the light­
ness and openness of analytic mappings using novel methods which 
have stimulated considerable further effort using these methods in 
the same area as well as for mappings in a more general topological 
setting. My own work on this subject began around 1936 as a result 
of reading some of Stoïlow's early papers, and has been published in 
an extended sequence of papers spanning the interval of nearly 20 
years to the present. On two occasions, however, summaries of some 
of my results have been given and these are to be found in Memoirs 
No. 1 of the American Mathematical Society series, entitled Open 
mappings on locally compact spaces and as Lecture No. 1 in the Univer­
sity of Michigan's recently published Lectures on functions of a com-
plex variable. In what will be said today an attempt will be made to 
minimize the overlapping with these earlier lectures—although some 
will be unavoidable—and concentrate mostly on recent results not 
previously announced and on some promising areas for new develop­
ment. 

2. Openness and closedness of mappings. We begin with a brief 
discussion of openness and closedness of mappings in a general set­
ting, together with some closely related mapping types. Spaces men­
tioned will always be assumed to have an open set topology in which 
the weak separation axiom is satisfied that for any two distinct points 
x and y there is an open set containing x but not y. Thus we have 
TVspaces. Actually the points to be considered are of primary inter­
est in much more restricted spaces, such as separable metric ones or 
even Euclidean spaces so that little will be lost in following the dis­
cussion if one thinks in terms of these spaces. A mapping ƒ (X) = F, 
that is, a single valued continuous transformation, of a space X onto 
a space F is open or closed provided the image of every open or closed 
set in X is open or closed respectively in the space F. 

For example, the mapping of the complex z-plane Z onto the 
«/-plane W generated by the function w = z2 is open since the image of 
any open set in the s-plane such as a sector is an open set, a larger 
sector in the «/-plane. On the other hand, if the function is modified 
making it w=z2 on the left-hand half-plane and keeping itw^z2 on 
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the right half-plane, the mapping is no longer open. For the effect 
now is to fold the left half-plane onto the right half-plane across the 
y-axis and then stretch the right half-plane so as to cover the whole 
w-plane by drawing the positive and negative 3>-axis together along 
the negative w-axis. Thus, a circular region with center on the posi­
tive y-axis would have as its image a semicircular region containing 
points of the negative w-axis but no points below this axis so that the 
image is not open. 

Similarly, for closedness, any mapping on an ordinary compact 
metric space is necessarily closed, since all closed sets in such a space 
are compact and compactness is an invariant property for all map­
pings. On the other hand the mapping w = ez of Z into W is not closed 
because, for example, the set of points on the right arm of the hyper­
bola y = l/x is closed in Z whereas its image under the exponential 
mapping approaches the circle \w\ =1 asymptotically but contains 
no point of this circle. For an even simpler example it is of interest 
to note that the mapping x = cos t, y— sin t of the half-open interval 
0^t<2T onto the unit circle C, although a 1-1 mapping, is neither 
open nor closed. A sequence of values of t converging to 2TT is closed 
in our original space whereas its image converges to the point (1, 0) 
of C and thus is not closed. For 1-1 mappings such as this openness 
and closedness are equivalent properties and each implies that the 
mapping is topological. In a general way it may be said that a map­
ping is open provided the vicinity of a point is not violated or in­
truded on under the mapping—nothing comes from outside in and 
approaches the image of the point without actually doing it through 
the image of the given vicinity. Similarly a mapping is closed pro­
vided that a set which wanders off to infinity (i.e., has no limit point) 
in the original space, has as image a set which behaves similarly—it 
cannot come in and approach a limit in the image space. 

Openness and closedness of a mapping are relative properties in 
case the image Y of X under ƒ is embedded in a larger space F0. In 
such a situation we say that the mapping is strongly open (or closed) 
provided the image of each open (closed) set in X is open (closed) in 
the whole containing space F0. This is particularly significant for 
analytic functions when we usually are considering mappings of re­
gions in the «-plane into but not onto the w-plane. However, we note 
that the distinction disappears whenever the image set Y of X is 
itself open (or closed) in the larger space F0. 

3. The Brouwer theorem. A problem. Perhaps the earliest theorem 
of note concerned with openness of a mapping was the celebrated one 
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due to Brouwer to the effect that Every homeomorphism of a Euclidean 
space into itself is necessarily strongly open. This basic proposition 
seems to have been a powerful influence in the studies of Stoïlow and 
probably suggested to him the concept of openness for a mapping in 
general when he had noted that many other mappings, among them 
the ones generated by analytic functions, have this property. Other­
wise stated, the Brouwer theorem asserts that In a given Euclidean 
space any set homeomorphic with an open set is itself necessarily an open 
set. In this connection it seems worthwhile to suggest consideration 
of the converse question, namely, To what extent are the Euclidean 
manifolds characterized by this property! In other words, if a suitably 
restricted space X has the property that each subset of X which is 
homeomorphic with some open set in X is necessarily open, what, if 
any, additional conditions are needed to insure that X is a manifold 
of some dimension? Phrased still another way: How does one char­
acterize those spaces having the property that any subset homeomorphic 
with an open set is open? The answer here is entirely unknown to me, 
but it probably could be had by some concentrated effort using al­
ready available tools in topology and it might well be worth the effort 
required. 

4. Quasi-compactness. If instead of requiring that all open (or 
closed) sets in X have open (closed) images, this restriction is limited 
to open (closed) inverse sets, we obtain the notion of a quasi-compact 
mapping. An inverse set in X is a set X0 satisfying Xo=f"1f(Xo)f i.e., 
a set which is the inverse of its transform under / . Thus a mapping is 
quasi-compact provided the image of every open inverse set is open— 
or provided the image of every closed inverse set is closed. Clearly 
the same concept is obtained whichever way we state the condition 
because for inverse sets the image of the complement is the comple­
ment of the image. Thus quasi-compactness is a weaker condition 
than either openness or closedness for a mapping and in many re­
spects represents the common ground shared by these two properties. 
Quasi-compactness is of particular interest in connection with map­
pings generated by decompositions of a topological space and it was 
in this connection that the concept was initially formulated by 
Alexandroff and Hopf [9], who referred to it under the name of 
strong continuity. The natural mapping for any such decomposition 
of a space X onto the hyperspace X' in which a set is open provided 
the union of its elements is open in X is always quasi-compact. 
Further, a given mapping ƒ (X) = F will be quasi-compact if and only 
if the decomposition of X into point inverses f~~l(y), y(EY, has a 
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natural mapping </>(X)=X' which is topologically equivalent to X. 
Indeed any mapping f (X) = Y has a topologically unique representation 
in the form 

ƒ 0 ) = h(j)(x) 

where <}> is a quasi-compact mapping and his a 1-1 mapping. In case ƒ 
is quasi-compact, h is then a homeomorphism, and ƒ and <t> are topo­
logically equivalent. 

Quasi-compactness is of interest also in connection with the invari­
ance of local connectedness [lO]. I t has long been known that local 
connectedness is invariant under all mappings provided the original 
space X is compact but not in general otherwise. Also it was observed 
that local connectedness is invariant under open mappings for all 
types of spaces X. However, it turns out much more generally that 
this property is invariant under all quasi-compact mappings for all 
spaces X. Stated in this way this result includes the ones previously 
mentioned and in addition the invariance of the same property under 
all closed mappings and under all retractions, because all such map­
pings are quasi-compact. 

5. Relation to semi-continuity of decompositions. The exact rela­
tionship between quasi-compactness, closedness and openness of a 
mapping is best exhibited in terms of semi-continuity properties of 
the decomposition into point inverses generated in the original space 
by the mapping. In general a decomposition of a space X into a col­
lection G of disjoint closed sets is upper semi-continuous (u.s.c.) pro­
vided the union of all elements of G intersecting any closed set in X 
is closed (or, equivalently, the union of all elements containined in 
any open set is open). Dually, the decomposition is lower semi-con­
tinuous (l.s.c.) provided the union of all elements of G intersecting an 
open set in X is open (or, the union of all elements contained in any 
closed set is closed). We can now state [ l l ] the 

THEOREM. In order that a mapping f(X) — Y be open {closed} it 
is necessary and sufficient that it be quasi-compact and generate an Ls.c. 
{a u.s.c.} decomposition of X into point inverses. 

This readily follows. For if ƒ is open or closed it is quasi-compact 
as already noted. Also if U is any open set in X, f(U) is open if ƒ is 
open and f~lf ( U) is open by continuity and this is exactly the union 
of all elements of the decomposition intersecting U. Similarly, if ƒ is 
closed and K is a closed set in X,f(K) and f~lf(K) are closed, giving 
u.s.c. of the decomposition. The converse follows by an equally 
simple argument. Thus we see that semi-continuity of the point-
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inverse decomposition represents precisely the difference between 
quasi-compactness and openness or closedness of a mapping. 

6. Quasi-openness. A word should be added in this connection 
about another closely related property, namely, quasi-openness. A 
mapping ƒ(X) = Y is quasi-open provided that for any yÇzB and any 
open set U in X which contains a compact component oif"l{y), y is 
interior to ƒ(£/). Similarly ƒ is strongly quasi-open if y is interior to 
ƒ ( U) relative to the whole space F0 in which Y may be embedded. In 
case the mapping is light, that is f~l(y) is totally disconnected for 
each 3/ £ F, quasi-openness is the same as openness but in general not, 
of course, since openness clearly implies quasi-openness but not con­
versely. In particular, every monotone mapping on a compact set is 
quasi-open. This property of quasi-openness is of interest and im­
portance in connection with the topological properties of analytic 
functions to which we now turn our attention. 

7. Plane region mapping theorem. Before restricting our attention 
to the mapping generated by an analytic function we mention an 
especially useful characterization of quasi-openness for mappings 
from a plane region into another or the same plane. I t reads as 
follows : 

THEOREM. In order that the mapping f(X) = F be strongly quasi-
open, where X is a plane region and Y lies in a plane 7r, it is necessary 
and sufficient that for every elementary region R in X with boundary C 
in X we have 

f(R + C) = f(C) + the union of a set of bounded components of 
n * - /(O. 

An elementary region is a bounded connected open set whose 
boundary consists of a finite number of disjoint simple closed curves. 
To see that quasi-openness implies (*), we suppose some comple­
mentary region Q of f(C) in 7r intersects but does not lie wholly in 
f(R). Compactness of f(R) and connectedness of Q then assures the 
existence of a point yÇiQ-f(R) which is a limit point of Q — Qf(R). 
Now R contains a component K olf^iy) and K is compact because 
f~x(y) cannot intersect C. Then y must be interior tof(R) relative to 
T by quasi-openness of ƒ, contrary to the fact that y is a limit point 
of Q — Qf(R). The converse implication is established by showing 
first that if U is any open set in the plane P containing X such that 
U contains a compact component K of f~l(y) for 3>£F, then there 
exists an elementary region R with boundary C such that 

KCRCR + CCU and C-tl(y) = 0. 
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Once this is done, our conclusion readily follows. For y lies in a com­
ponent Q of 7T—f(C) since it is not in /(C). By (*) we have yGzQ 
Cf(R)Cf(U) so that y is interior to ƒ(£/). 

8. Differentiable functions : lightness and openness. We now con­
sider in some detail the type of mapping from the complex s-plane 
Z to the «/-plane W generated by a function w =f(z) which is non-
constant and differentiable in a region S of Z. It was first noted by 
Stoïlow that all such mappings are light and strongly open. In other 
words they are not constant on any continuum, since the set on 
which the function takes a given value must be totally disconnected 
(this is lightness) and open sets in S go into open sets in W. Further­
more, these two properties of lightness and openness of all such map­
pings are the fundamental topological properties of analytic functions 
in the sense that any topological property of all nonconstant analytic 
functions necessarily is a consequence of these two. For not only 
does every nonconstant analytic function have these properties but, 
conversely, any light open mapping from an orientable triangulable 2-
dimensional manifold to the complex plane or sphere is topologically 
equivalent to an analytic function. This is the primary conclusion 
on topological properties of analytic functions as originally formu­
lated by Stoïlow. 

From the viewpoint of topological analysis the best known method 
at present for exhibiting lightness and openness for differentiable 
functions is by means of the circulation index of a mapping about a 
point, or the winding number about a point. By this method it is 
possible to prove the properties directly from the assumption of 
differentiability, making no use of further developments in analysis 
such as integrals, continuity or zeros of the derivative and the like. 
This is of importance because many of the results of classical analytic 
function theory are to be deduced from lightness and openness rather 
than conversely. The circulation index Mc(/> P) of our mapping ƒ 
about a point p€:W—f(C) taken over a simple closed curve C in the 
region S of definition of ƒ is defined by taking a mapping f (x) of an 
interval (a, b) onto C with f (a) =f(J) but which otherwise is 1-1—i.e., 
a traversal of C, and representing the mapping ƒ$"(#) — p in the ex­
ponential form eu(x) where u(x) is continuous on (0, 1). Then MC(/> P) 
is defined to be u(b) —u(a). Usually £ is chosen as a positive traversal 
of C relative to orientation in the plane Z. For convenience we may 
define the winding number o?a(/, p) of ƒ about p as the number ob­
tained by dividing /*<?(ƒ, p) by 2iri. Then co is an integer and measures 
the net number of times ƒ (z) goes around p when z traverses C once 
in the positive sense. 
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Aside from the usual clarifying results on the nature of the circula­
tion index, it can be proven, significantly, that as a function of p, 
this index is continuous and thus is constant on each complementary 
domain of f(C) in W and that it vanishes on the unbounded one of 
these domains. Further, if R is an elementary region lying with its 
boundary C wholly in 5, this index computed over the whole bound­
ary C of R vanishes at a point p of W if and only if p does not belong 
to f(R+C). In proving this latter statement use is made of the 
differentiability of ƒ in order to find a point q in the same component 
of W-f(C) with p such that ƒ' (z) 5*0 for all zEf"1^) and to show 
that for any such z with f{z) 5^0, fij(ƒ, q) has the value 27ri for any 
sufficiently small circle J about z. Once this is established, however, 
in view of the characterization discussed earlier we then have proven 
quasi-openness of our mapping ƒ. For if R is any elementary region 
in 5 with boundary C in S we must have (*) satisfied because the 
circulation index vanishes throughout the unbounded component U 
of W—f(C) so that ƒ takes no value in U; and when ƒ takes on R one 
valued in a bounded component Q of W—f(C)t Vc(f,p) 9^0 and hence 
ƒ takes all other values in Q on R as the index is constant on Q. 

Thus we have strong quasi-openness of ƒ ; and this means that we 
will have established strong openness and lightness as soon as we 
prove lightness. This latter is accomplished by means of the property 
(*) just noted. Assuming, contrary to lightness, that our function is 
constant on some continuum in S we are able to construct, with the 
aid of properties of the circulation index, a function g{z) which will 
be differentiate inside and on a simple polygon P in S and such that 
| g (z) | < 8 = | g(z0) | /2 for all z on P where z0 is inside P. Clearly this 
contradicts (*). The function g{z) here has the form 

(t) g« - ft {ƒ[(* - *o)**»"* + *o] - a}. 
r*»0 

For details of this argument as well as other proofs mentioned in this 
connection reference is made to the previously mentioned summaries 
of mine together with articles referred to therein—in particular here 
to a paper of Ursell and Eggleston [7] which contains some of the 
basic ideas which make the proofs successful. 

9. Local and global analysis of light open mappings. The impor­
tant converse conclusion: that every light (strongly) open mapping 
from a 2-manifold to the complex plane or sphere is topologically 
equivalent to an analytic function is best treated in the more general 
setting of light open mappings acting on 2-manifolds. We only out-
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line the treatment in brief since it has been discussed in detail in the 
sources quoted earlier. In the first place it can be shown that the 
property of being a 2-manifold is invariant under light open map­
pings. Thus it is not necessary to assume such a highly simplified 
structure of the image space. In the next place, although we assume 
only that the inverse of each point is totally disconnected, it follows 
from results of plane topology closely related to the Jordan Curve 
Theorem that each point inverse is a completely scattered set, that 
is, if our mapping ƒ is constant on a set Xy then no point of X is a 
limit point of X. Thus the situation is greatly simplified and we are 
in position to complete a local analysis of the action of the mapping. 
This consists in showing that if f(A)=B is our mapping where for 
simplicity we suppose A and B are 2-manifolds without edges, then 
for any yÇzB and any xÇ.f-l(y) there exists 2-cell neighborhoods V 
of y and U of x such that f(U) = V and the mapping of U onto V is 
topologically equivalent to a power mapping w = zk on \z\ ^ 1 for 
some integer k. 

Since it also follows in this situation that orientability of B implies 
that of Ay it is now possible, in case B is a region on the complex 
plane or sphere, to construct a Riemann surface 2 onto which A can 
be mapped by a homeomorphism h(A)=2; and, using standard 
procedures of analysis, an analytic function <j>(z) can be constructed 
on 2 in such a way that the relation 

ƒ(*) = 4>h{%) 

is satisfied for all x&A. Thus ƒ is topologically equivalent to the 
analytic function <j>. 

10. Maximum modulus results. Rouché's Theorem. Degree and 
zeros. Among the numerous well known fundamental results of 
analytic function theory which are direct consequences of lightness 
and openness of the associated mapping brief mention will be made of 
only a few. These include the Maximum Modulus Theorem in its full 
strength together with a group of related results on existence of zeros 
such as the Fundamental Theorem of Algebra. Also, Rouché's Theo­
rem in its full generality is readily obtainable using easily developed 
properties of the circulation index, as are also other classical results 
concerning the number of zeros and poles of a meromorphic function 
inside a simple closed curve on which it is analytic and 9^0. Homo-
topy classification of analytic and meromorphic functions can be 
clarified by similar methods and greatly illuminates the topological 
character and action of the mappings generated by such functions. 
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Studies along these latter lines have been carried out in recent years 
by Kuratowski with striking success. 

11. Sequence results. In connection with sequences of functions 
and of mappings, two theorems fit together in a peculiarly interesting 
way. They read as follows: 

1. If A and B are locally compact connected and locally connected 
separable metric spaces, and iffn:A—*B, n = 1, 2, • • • ,is any sequence 
of strongly quasi-open mappings of A into B which converges uniformly 
to the mapping f':A—*B9 then f is strongly quasi-open. 

2. If the sequence of functions wn=fn(z), each differentiable in a 
region S of Z, converges uniformly in S to a nonconstant function 
w = ƒ(2), then ƒ is light. 

Thus by No. 1 quasi-openness carries over to the limit function 
from members of the sequence. In general lightness does not carry 
over for sequences of mappings—indeed not even for sequences of 
homeomorphisms. Remarkably, however, by No. 2 it does carry over 
for uniformly convergent sequences of differentiable functions. Now 
applying No. 1 to the case covered by No. 2 we see at once that, in 
No. 2, ƒ is also strongly quasi-open because this holds for each ƒ». 
Thus, in No. 2, ƒ is both light and strongly open and hence has the 
characteristic topological character of an analytic function. We have 
then a theorem giving the topological content of the Weierstrass 
Double Series Theorem. 

Now using the lightness of ƒ as given in No. 2, which enables us to 
apply the circulation index to ƒ, the theorem of Hurwitz is readily 
obtained. This theorem asserts that, under conditions in No. 2, if 
f is an m-îold zero of ƒ (2), then every sufficiently small neighborhood 
D of f contains exactly m zeros of fn(z) for n>N{D). This important 
conclusion is thus obtained purely from the topology of the situation 
with no need for knowledge of the differentiability of the limit func­
tion ƒ. 

12. Dimension and nondensity preservation of mappings. General 
setting. The remainder of this lecture will be devoted to a considera­
tion of results and questions concerned with dimension and nonden­
sity preservation of mappings and their applications to differentiable 
functions. The results to be mentioned are largely new ones, an­
nounced here for the first time. We begin by recalling a simple exam­
ple of a monotone mapping of a square S onto a square 2) which alters 
dimension of a compact nondense subset. This example is not new, 
though perhaps it is put to a new use. This mapping can be effected 
by dividing S into 9 equal squares and mapping the middle one onto 
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the center of S; then divide each of the 8 remaining squares into 9 
equal squares and map the 8 middle ones onto 8 points symmetrically 
distributed in 2 and so on. This procedure can be continued so as to 
obtain a uniformly continuous mapping of a set of squares in 5 with 
union dense in 5 onto a set of points dense in 2 ; and the continuous 
extension of this mapping is our required mapping <j> of S onto 2 . 
When carefully described, <f> will be monotone and if K denotes the 
complement in S of the union of the interiors of the center squares 
selected in the definition, then K is nondense and thus 1-dimensional 
whereas <t>{K) = 2 and thus is 2-dimensional. Also, it should be noted 
that on the set D$ = S— U} where U is the union of all center squares, 
<t> is 1-1 and D^ is dense in K and <t>(D<t) is dense in 2 . However, D+ is 
not dense in any open set in 5. 

Thus it is possible to alter dimension of a compact subset under a 
mapping of a quite restricted type even when the dimension of the 
whole set is not changed. This fact is not new by any means as I 
believe it was mentioned by Menger [12] in his early papers on 
dimension theory in connection with this same example. In this con­
nection we recall next a theorem of Alexandroff's [13] to the effect 
that under open mappings having totally imperfect point inverses, 
dimensionality of the whole space is not altered provided the original 
space X is separable, metric and locally compact and the image space 
is metric. This result does not apply to show that the dimension of 
subsets of X are not altered under these conditions, because the 
openness assumed on X does not necessarily hold on the subset of X 
in question. However, using the method of Alexandroff, it is readily 
shown that if X and Y are locally compact, separable and metric and 
f(X) = Y is an open mapping having scattered point inverses, then X is 
the union of a countable sequence of compact sets Xn such that ƒ | Xn is 
topological. I t follows from this, of course, that for any closed set 
KQX, dim ƒ(K) = dim K. This result in this form is of importance 
and will be used later in connection with our discussion of differenti-
able functions. 

Now for a mapping in general, f(X) = F, we let Lf denote the set 
of all xÇzX such that f^fix) is totally disconnected and Df the set of 
all xÇiX such that x is a component oîf^fÇx). Obviously L/QDf for 
any ƒ. We shall say that ƒ preserves nondensity for compact sets pro­
vided that if K is a compact nondense set in X, i.e., K contains no 
open set in X, then f(K) is nondense in F. If X and F are locally 
compact separable and metric and the mapping ƒ(X) = F preserves 
nondensity of compact sets, it turns out that Lf 5^0. Indeed it can be 
proven that f(Lf) is dense in B and Lf itself is semi-dense Xf i.e., 
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dense in some open subset of every open set U in X with an open 
image. The proof here presents little difficulty and follows readily 
using countable coverings by small open sets and taking unions of 
boundaries. I t may be remarked also that the same conclusion about 
Lf can be obtained under the assumption that ƒ preserves nondensity 
for compact sets K with dim K<k=dim X< oo. It is of interest to 
note again that in the example of the mapping <£ just given,/(Z^) is 
dense in Y but L^ is not dense in any open set whatever of S. Here 
1,0 and D<t> are the same, of course, since 0 is monotone. 

13. Quasi-open mappings on 2-manifolds. We now limit ourselves 
to the specific setting in which the original space X is a 2-manifold 
and where the mapping is quasi-open. We continue using the notion 
of semi-density in the sense defined in §12. First we have the 

THEOREM. If X is a region on a sphere, f{X) = Y is compact and 
quasi-open and no component of a point inverse separates X, then 
dim f(K) ^ d i m K for all compact 1-dimensional sets K in X if and 
only if Df is semi-dense in X. 

Compactness of the mapping ƒ here means that the inverse of every 
compact set is compact or, equivalently, that ƒ is closed and point 
inverses are compact. The "only i P part of this theorem is an im­
mediate consequence of the result just quoted for mappings in gen­
eral, because Df"Z)Lf. The proof of the reverse implication, that 
density of Df is an open subset of every open set in X with an open 
image implies the asserted dimension invariance is effected by an 
interesting combination of factorization of the mapping along with 
the invariance of dimension under open mappings with scattered 
point inverses quoted earlier. For compactness of ƒ enables us to 
factor ƒ into monotone and light factors: 

ƒ = hn, m(X) = X', 1{X') = F. 

Then the monotone mapping m can be "extended" to the whole 
sphere 5 on which X lies by decomposing S into the sets m~~x(xf), 
x'&X', together with components of 5 —X. The natural mapping 
4>{S) = 5 7 of this decomposition maps S monotonically onto another 
sphere S' by a classic result of R. L. Moore [14]. Then 1{X') = Y is a 
light, open, compact mapping of X', a region on S', onto a set Y 
which is necessarily a 2-manifold. Thus I necessarily has finite point 
inverses. Our density assumption for Df insures that dim m(K)^l 
when KC.X is compact and of dimension S1 because m is 1-1 on Df, 
of course, and dim lm(K) g l since / is open and has finite point in­
verses. 
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The general case of a quasi-open mapping ƒ (X) = Y of an arbitrary 
2-manifold X without edge points onto a locally connected general­
ized continuum Y can be reduced essentially to the case just dis­
cussed where X is a region on a sphere by means of the following: 

LEMMA. Suppose f(L/) is dense in Y and that for some compact non-
dense set K in X, f{K) contains an open set in Y. Then there exists a 
region R in X contained in a 2-cell of X such that Q =f(R) is open in Y, 
the mapping f (R) =Q is compact and quasi-open and for some compact 
subset Ki of K' R, f(K\) contains an open set. 

This reduction is effected by taking a point yGf(L/) • V where V 
is an open set in f(K) and covering each xÇzKf"~l{y) by a 2-cell in X 
whose edge does not intersect f~l{y). After reducing this to a finite 
covering, it can then be shown that one of these 2-cells includes a 
region R meeting our conditions. Using this reduction we can then 
apply the previous theorem and thus handle the general case em­
bodied in the 

THEOREM. Given a quasi-open mapping f {X) = Y of a 2-manifold X 
without edge points onto a locally connected generalized continuum Y 
such that no component of a point inverse lying inside a closed 2-cell on 
X separates X. In order that ƒ preserve nondensity for compact sets it 
is necessary and sufficient that the set Lf be semi-dense in X. 

In case the space F is a 2-manifold, or if it has the property that 
every subset of dimension à 2 contains an open set, the conclusion 
of preserving nondensity clearly is the same as preserving the property 
of being of dimension ^ 1 for compact subsets. If f~x(y) has a degener­
ate component (or a component lying in a 2-cell of X which it does 
not separate) for every yÇzY, then Y will be a 2-manifold and the 
theorem could then be stated in terms of dimension preserving. 

14. Differentiability and dimension raising. Returning now to the 
case of a function w =f(z) continuous on a region X of Z we note at 
once that if f{z) is differentiable everywhere in X, then the mapping 
is light and open so that L/^X. Accordingly by the theorems just 
discussed, any compact nondense set K in X has a nondense image 
set or, in other words, dim f(K) ^dim K. This fact also is a conse­
quence of the theorem stated earlier about open mappings with 
scattered point inverses, because in this situation ƒ not only is light 
but has scattered point inverses. However, it is of interest and of 
some importance to know to what extent the differentiability assump­
tion can be weakened. Making no use of the lightness and openness 
of differentiable functions it is still possible to prove the following 
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THEOREM. Let w =/(s) be continuous in a region X of Z and differ en-
tiable at all points of f~l{Y^) for some open subset YQ of Y dense in Y. 
Then ƒ is strongly quasi-open, no component of a point inverse lying 
inside a closed 2-cell in X separates X and the set f(L/) is dense in Y. 
Further t if f is not constant on any open set in X, Lf is semi-dense in X. 

Under the condition last stated, all conditions of the theorem for 
2-manifolds are satisfied so that ƒ preserves nondensity for compact 
sets, or does not raise dimensionality for any compact set of dimen­
sion :g 1. In this connection it is of interest to note that in the example 
given earlier of a monotone mapping from a square S to a square 2 , 
the mapping function <j> there is differentiate and # ' = 0 in the open 
everywhere dense subset U of S consisting of the union of all interiors 
of center squares selected. However, U is not an inverse set nor is its 
image open in 2 . As already noted here, although ƒ(Z^) is dense in 2 , 
Z/0 itself is not dense in any open set whatever of S. 

15. Applications. Concept of a pole. We now apply these results to a 
situation in which dimension or nondensity preservation is impor­
tant, as are also reduced differentiability assumptions. Suppose our 
function w—f{z) is nonconstant and continuous in a region R of Z 
and differentiable on R — H where H is a closed nondense subset of R 
on which ƒ is constant. Can it still be asserted that ƒ is light so that 
in particular H is totally disconnected? The answer here is: Yes, it 
can. However, the proof is far from easy and it involves these same 
issues we have been discussing. For in the proof of lightness of a 
differentiable function referred to earlier, the new function g which 
was mentioned is defined as a product of a finite number of factors 
each of which is a value of ƒ at a point obtained by rotating the given 
z about a fixed center Zo [see (f) above]. Thus we can be sure of 
differentiability of g only on the complement of the union of the 
images of H under the finite number of rotations involved. However, 
it can be shown that g will be differentiable on everywhere dense 
open inverse sets and hence our previous theorem applies to give us 
strong quasi-openness of g and this is exactly what is needed to show 
that H is totally disconnected. This yields the following results, 
listed A - D . 

A. If w=f(z) is nonconstant and continuous in a region R and 
differentiable on R--f~~l{a) where a is some value of f in R, then f is 
light and strongly open in R. 

It could be asserted, further, that ƒ has completely scattered point 
inverses, so that f~l{a)% in particular, is completely scattered. Also ƒ 
is locally topologically equivalent to a power mapping even at points 
of/-H«). 
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B. Let w=f(z) be differentiable in R—K where K is a closed non-
dense subset of R such that for each Zç>Ç:K we have lim*.»«0 f(z)~ °O. 
Then K is a completely scattered set and the mapping of R into the com­
plex sphere is light and strongly open. 

Thus all points of K are topologically precisely like poles of ƒ. 
Hence the concept of a pole is approachable topologically. No refer­
ence to expansions in series need be made. A pole is simply a point 
where f(x)—»<» and such that in some neighborhood of this point 
there are only points of this same type and points where ƒ is finite and 
differentiable. 

C. Let w =ƒ(z) be nonconstant and differentiable in a region R. Then 
iff is continuous at all points of a continuum K of Fr(R) and constant 
on K, K is a continuum of condensation of Fr(i?). 

D. In particular, in C, if R is an elementary region, there can exist 
no arc in Fr(i?) on which ƒ is continuous and constant. Thus if ƒ is 
continuous on Fr(i?), it must be light on Fr(i?). 
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