
ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP 

HARISH-CHANDRA 

Let G be a connected semisimple Lie group and let Z denote its 
center. If ir is a representation [2c] of G on a Hubert space § we con­
sider the space V consisting of all finite linear combinations of ele­
ments of the form 

ff(xMx)Wx (ƒ G CftG), * G ©), 

where dx is the Haar measure of G and C?(G) is the set of all (complex-
valued) functions on G which are everywhere indefinitely differenti­
a t e and which vanish outside a compact set. V is called the Gârding 
subspace of § . Let R and C be the fields of real and complex numbers 
respectively and g0 the Lie algebra of G. We complexify g0 to Q and 
denote by $8 the universal enveloping algebra of Q [2a]. Then there 
exists a (uniquely determined) representation TTV of S3 on V such that 
7rF(X)^ = lim^o(lA){7r(exp tX)f-f} (XGöo, ^ G F , tGR). Let S 
denote the center of S3. We say that TT is quasi-simple if there exist 
homomorphisms rj and % of Z and 3 respectively into C such that 
7r(r)0 = î?(r)0, x r ( s ) * = x ( * # for all f £ Z , * G 3 , 4>G£ and ^ £ F . 77 is 
then called the central character and x the infinitesimal character of 
7T. An irreducible unitary representation is automatically quasi-simple 
[5]. 

Let A be a bounded linear operator on § . We say that A is of the 
trace class or A has a trace if for every complete orthonormal set 
(\{/j)j£j in § the series1 ^CiG^ W'i» - ^ i ) converges absolutely and 
its sum is independent of the choice of the complete orthonormal set.2 

We call this sum the trace of A and denote it by Sp A. Now suppose w 
is quasi-simple and irreducible. Then it can be shown (see [2e]) that 
for any /GGC°°(G) the operator ff(x)ir{x)dx is of the trace class. If we 
denote its trace by TT(J) we get a linear function Tr on CC°°(G) which 
is actually a distribution (see [4; and 2e]). We call this distribution 
the character of 7r. Our object is to try to determine TV. 

An address delivered before the New York meeting of the Society on February 
25, 1955 by invitation of the Committee to Select Hour Speakers for Eastern Sec­
tional Meetings; received by the editors March 28, 1955. 

1 As usual (</>, \p) denotes the scalar product of the two elements <f> and \p in ^p. 
2 Actually it can be shown that this independence of the sum follows automatically 

from the absolute convergence of the series for every orthonormal base. 
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Let x—>Ad (x) (x£G) denote the adjoint representation of G. If 
X is an indeterminate and I is the identity mapping of g0 we consider 
the characteristic polynomial P*(X) =de t (XI—Ad (x)) of Ad (x). Let 
I be the highest integer such that (X— l)1 divides Ps(X) for every 
xGG. We expand P«(X) in powers of (X—1) and denote by D{x) the 
coefficient of (X—l)* in this expansion. Then it is clear that D is an 
analytic function on G which, in view of our definition of /, cannot be 
identically zero. The integer / is called the rank of G. Let S denote 
the set of all xGG for which D(x) = 0. Then 5 is a closed, nowhere 
dense subset of G and its complement G' is open and everywhere dense 
in G. An element x £ G is called singular or regular according as x£»S 
or xGG' . Since Ad (zx) = Ad (x) izÇ^Z) it is obvious that ZS — S and 
ZG' = G'. Also since Pyxy-i(\) =P*(X) (x, yÇzG), it follows that 
Diyxy-1) =D(x) and therefore ySy-^S, yG,y~1 = G/ (y<EG). 

When speaking of a real differentiate (or analytic) manifold M let 
us agree to include the case when M is not connected but the various 
connected components of M, which are all manifolds in the usual 
sense, have the same dimension. Under this definition every open sub­
set U of M is again a manifold. Let C"( C7) denote the set of all com­
plex-valued functions on M which are indefinitely differentiable and 
which vanish outside some compact subset of U. In particular sup­
pose U is an open subset of G and F is a (complex-valued) function 
on U. We say that F is locally summable if it is summable on every 
compact subset of U with respect to the Haar measure of G. T being 
a distribution on G we say that T = F on U if F is locally summable 
and 

T(f) = ƒ f(x)F(x)dx 

for all fÇîC?(U). Our main result may now be stated as follows. 

THEOREM 1. Let TT be an irreducible quasi-simple representation of G 
on Q and let T* denote its character. Then there exists an analytic f unc­
tion PT on G' such that Tr = FT on Gf. 

Although in general G' is not connected, there always exist a finite 
number of connected components Gi, • • • , G> of G' such that ZGi 
r\ZGj = 0 if iy^j and G/ = UjS3i ZGi. Moreover if ^ is the central 
character of w it is easy to show that F*(zx) ==rj7r(z)F7r(x) (zÇzZ, x £ G ' ) . 
Hence the knowledge of FT on GiOG^J • • • \JGr is sufficient to de­
termine it completely. On the other hand it is possible to give ex­
amples in which FT vanishes everywhere on one of the components Gi 
without being zero identically on G\ However in case G is either a 
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compact or a complex group, Gf is connected and then Fr is com­
pletely determined by its restriction on any nonempty open subset of 
G'. 

For any x £ G and /£CC°°(G) we define the function fx by fx(y) 
=f(x~iyx) (yEG). Then /*GC°(G) and T„(fx) = Tv(f) (see [2e]). 
From this it follows that F^xyx'1) = Fv(y) (x6G, y EG'). Now let ,4 
be a maximal abelian subgroup of G which is not contained in 5. (We 
call such a group a Cartan subgroup of G.) Obviously A is closed in G. 
Let A' =AC\G' and V=\JZÇ.G xArx~l. Then V is an open subset of 
G' and it is clear from the above remarks that Fr is determined com­
pletely on F a s soon as we know it on A'. Let ï)o denote the subalgebra 
of Qo corresponding to A. Then the complexification ï) of f)o is a Cartan 
subalgebra of g. Let Wbe the Weyl group (see [2b]) of Q with respect 
to Ï) so that W is a finite group of nonsingular linear transformations 
of Ï). If A is a linear function on t) and s E W we define the linear func­
tion sk by the rule sA(IT) =A(r- 1 i I ) (HE®. Let (fli, • • • , jffi) be a 
base for Ï) over C. A function P on Ï) is called a polynomial function if 
there exists a polynomial £(xi, • • • , Xi) in / variables (xi, • • - , xi) 
with coefficients in C such that P{H)—p{ai1 • • • , ai) if H=a\H\ 
+ • • • +a?J!7z(aiGC). The degree of £ is also called the degree of P . 
Clearly these definitions are independent of the choice of the base 
(Hlt • • • , Hi). 

THEOREM 2. Let w and Fr be as in Theorem 1. Then there exists a linear 
function A on ï) m/fe tóe following property. For any aEA' we can 
choose polynomial functions p8 (sEW) on Ï) such that 

Fv(a exp E) = | D(a exp H) I"1'2 J ) ps(H)es*w 
sEzw 

for all H lying sufficiently near zero in £)o- A is unique up to an operation 
of W and if N is the number of elements a in W such that A = O A , the 
degree of every ps is necessarily smaller than N. 

In particular if sA=^A except when 5 is the unit element of W, ps 

must all be constants. (It is hardly necessary to point out the resem­
blance of the above formula to the one given by Weyl [ó] for the 
irreducible characters of a compact semisimple Lie group. I t should 
also be compared with the results of Gelfand and Naimark [7] on 
the unitary characters of the complex classical groups (see also [2f, 
p. 511])). Although A1 is not necessarily connected, it is possible to 
select a finite set Si, • • • , Br of its connected components such that 
A' = UJ»! ZBi. Therefore in order to determine Fv on A', it is sufficient 
to know 7]r and the restrictions of Fr on some nonempty open subsets 
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of J3i, • • • , Br. Hence if A is known, Theorem 2 gives us a formula 
for F* on A' in terms of a finite number of undetermined constants. 
On the other hand we shall see presently that A is completely deter­
mined (up to an operation of W) by the infinitesimal character %r of w. 

Two Cartan subgroups Ai and A2 are said to be conjugate if 
A2=xAiX~1 for some xGG. I t is always possible to choose a finite 
number of distinct Cartan subgroups Ai, • • • , Ah such that every 
Cartan subgroup is conjugate to exactly one of these. Then if 
A[ = AiC\Gf and Vi=Ux^o xA[x~"1, Gr is the disjoint union of 
Vi, • • • , F*. This shows that if TJT and %*• are known, Fv is completely 
determined in terms of a finite number of constants.8 

Now we come to a brief outline of the proof. Let M be a differenti­
a t e manifold, Q a linear mapping of C?(M) into itself and x0 a point 
in M. We say that Q is a differential operator at x0 if there exists a 
coordinate system (/1, • • • , tm) valid on an open neighborhood U of 
Xo and indefinitely differentiate functions gi^.. .»•„ on £7 (1 g i i , • • • , 
ip^tn, QSpSq) such that if/GCc°°(f/), 0 / i s zero outside [ /and 

on [7. If Ö is a differential operator at every point in M we say simply 
that it is a differential operator (on M). T being a distribution on 
M and Ç a differential operator we define a distribution Q'T as fol­
lows: 

(Q'T)(f) = T(Qf) ( / G C f ( J i ) ) . 

In particular if g is an indefinitely differentiate function on M it 
defines a differential operator Q'f—^gf (fÇîC?(M)). In this case we 
write gT to denote Q'T so that (gT)(f) =T(gf). It is clear that the 
product of two differential operators is again a differential operator 
and therefore the differential operators form an algebra. 

Coming back to G, we note that every -X"Gg0 may be regarded as 
a differential operator on G as follows: 

(Xf)(x) - i— f(x exp tX)\ (ƒ G C?(G), * € < ? , * € * ) . 
lew ; t=o 

Thus it is easy to see that 33 may be identified in a natural way with 
a subalgebra of the algebra of differential operators on G. Then for 
any b (E 33 we have a linear transformation ft7 of the space of distribu-

3 Actually it is possible to improve Theorems 1 and 2 and show that T* coincides 
with an analytic function on an open subset of G which, in general, is larger than G' 
and therefore has fewer connected components. 
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tions on G. Since (&i62)' = &2&i (61, &2E93) the mapping b-*b' is an anti-
representation of 93. Let 4> denote the anti-automorphism of 93 over 
C which is uniquely determined by the condition that <j>(X) = —X 
(XEô) . Then b—>(<t>(b))' (&E93) is a representation of 93. T being 
any distribution on G we now define bT*= {<j>(b))rT (&£93). Then 
(!>T)(f) = T(<t>(b)f) (/GCC°°(G)). If Xir is the infinitesimal character of 
7T and zÇz£,fÇzC?(G)t it is easy to see that 

I (<t>(z)f)(x)ir(x)\l/dx = T0(z)l I f(x)w(x)fdx) 

= X»W I f(x)w(x)\pdx 

for all ^ G § . (Here 7r0 is the representation of 93 on the Gârding sub-
space of §.) From this it follows that zT-Jr=x^(z)Tir for all 2 £ 3 -
Hence Tr is an eigen-distribution for each differential operator in 3 . 

On the other hand let A be a Cartan subgroup of G. Put A' —AC\G' 
and V—UXÇ:G xA'x*1 as before. We regard A' and F as open sub-
manifolds of A and G respectively. Let G* be the factor space G/A 
consisting of cosets of the form xA ( x£G) . If hÇiA and x*Ç:G* we 
define hx* = xhx~~l where x is any element in the coset x*. Let dh 
and dx* respectively denote the Haar measure on A and the invariant 
measure on G*. Then we have the following lemma. 

LEMMA 1. There exists a distribution rr on A' with the following 
property. IffÇîC?(V), Tv(f) = rT(g) where g is the f unction in C?(A') 
given by 

g{h) = | D(h) | f ƒ(*-)<*** (* G 4 ' ) . 
J G* 

Let î)o be the Lie algebra of A. Any element iï£f)o may be re­
garded as a differential operator on A so that if g£Cc°°C4), 

(Hg)(*) = i— g(* exp tH)\ (heA,tGR). 
\dt ) t~o 

Let Ï) be the subspace of g spanned by §0 over C and U the subalgebra 
of 93 generated by (1, Ï)). Then U may be identified in a natural way 
with a subalgebra of the algebra of differential operators on A. For 
any distribution r on A1 and wGUwe define a distribution WT on i ' 
as follows: 

(ur)(g) = T(*(«)g) (gecr^o) . 
Here 0 is the automorphism of U given by <f>(H) = —H (HE$). 
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For every root a of $ (with respect to Ï)), choose an element Xtt7^0 
in Q such that [H, Xa]=a(H)Xa for all Ü£I ) . We introduce some 
lexicographic order (see [2b]) in the set of all roots and denote by 
P the set of positive roots under this order. Put n = X)«e p CXa. 
Then for every z £ 3 there exists a unique element 7'(:s)GU such 
that s—7 ,(s)£93n (see [2b, p. 72]). If 2p = ]C« e p a there exists a 
unique automorphism X of U such that X(l) ==1 and X(fl) =H—p(H) 
(H&Ù- We put 7(2) =X(7'(*)) ( s £ 3 ) . Let W be the Weyl group of 
g with respect to Ï). I t is clear that every s^W defines an auto­
morphism U-+U8 of U such that Is = 1 and H9~sH (jff£f)). An element 
w £ U is called an invariant if w=ws for all s£PF . Let J be the sub-
algebra of U consisting of all invariants. Then (see [2b, Lemma 38]) 
the mapping z—>y(z) (z £ 3 ) defines an isomorphism of 3 onto J. 
Now let A be a linear function on Ï). We can extend it uniquely to a 
homomorphism of U into C which takes the value 1 at 1. We agree 
to denote this extension also by A. Then as shown in [2b, Theorem 5 ] 
we can choose A in such a way that xAz) = ^ ( T ( S ) ) fc>r all s £ 3 -
A is determined up to an operation of W by this condition. 

Let A (ft) = \D(h)\1/2 (A G i l ' ) . Then A is an analytic function on 
A' and therefore <rT=ArT is a well-defined distribution on A'. Now 
if we transform the differential equation zTw=x*(z)TT ( 2 £ 3 ) f° r Tr 

into a differential equation for ov we get the following result which 
is one of the main steps of our argument. 

LEMMA 2. rr being as in Lemma 1 put <rv =Ar*. Then 

7(*)ov = X*(*)<r* 
for every z £ 3 -

Now choose a linear function A on § such that x*(z) —A(7(2)) for 
s £ 3 - Let f be an indeterminate and u an element in U. Since U is 
abelian we can consider the polynomial 

n (r - •••)-
It is clear that every coefficient of this polynomial lies in J and there­
fore if w is the order of W, there exist uniquely determined elements 
Zi(u), • • • , zw{u) in 3 such that 

UsGwtt - «0 = r + y(*i(u))!T-1 + 7(*2(«0)r-* + • • • + y(*w(u)). 

On replacing f by w we immediately get the identity 

uw + uw-iy(Zl(u)) + u"-2y(z2(u)) + • • - + 7(*«(«0) = 0 

in U if we recall that U is abelian. Now apply the left side to ov and 
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use Lemma 2. Then 

But x*(zAu)) —^(Tfe'W))» 1 'éïjSw, and since A is a homomorphism 
of U into C it is obvious that 

n ( r - A(«')) = r + A(y(z1(u)))r~1 + • • • + A(7(s„(«))). 

Therefore the above differential equation for cv may be written in 
the form 

I I (« ~ A(«*)>r = 0. 

However if Hi, • • • , Hi is a base for ï)0 over R and • = . H ~ i + • • • 
+J3f it is obvious that the differential equation 

I I (D - A(C?)K = o 
SGTF 

is of the elliptic type (see Gârding [l ]). Hence it follows from the work 
of Schwartz [4, p. 137] and John [3a, 3b] that ov must be an analytic 
function on A''. Now if we take into account Theorem 5 of [2b] and 
the fact that H S ^ T F (U— A(u9))<rT = 0 for every wGU, we get Theorem 
2 without difficulty. 

IT being any quasi-simple irreducible representation we denote by 
TT, TJTTJ and x*- respectively the character, the central character, and 
the infinitesimal character of ir. Also we denote by FT the analytic 
function on G' such that TT = Fr on G'. Let T be a distribution on G. 
Since D is an analytic function on G the product DmT (w^O) is a 
well-defined distribution. I t is then possible to prove the following 
result. 

LEMMA 3. There exists an integer m^O with the following property. 
Suppose 7Ti, • • • , irk is a finite set of quasi-simple irreducible represen­
tations and CiF^-^r • • • +CkFr]t = 0 (CiÇzC). Then if T = c\Tiri+ • • • 
+chT,h, D™T = 0. 

From this lemma one can deduce the following theorem. 

THEOREM 3. Let 7r0 be a quasi-simple irreducible representation of G 
such that FTQ is not identically zero. Thent apart from infinitesimal equi­
valence [2d, p. 230 ], there exist only a finite number of quasi-simple 
irreducible representations w such that Fr = F*Q. 

Let 775̂ 0 and x ^ O respectively be given homomorphisms of Z and 
3 into C. Let co denote the set of all quasi-simple irreducible repre-
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sentations TT of G such that rj^ — rj and Xir=X- As we have seen, it 
follows from Theorems 1 and 2 that the functions FT (7r£<o) span a 
finite-dimensional vector space over C. Hence if o) is not empty, we 
can choose a finite set of elements 7ri, • • • , 7r& in co such that Frv • • • , 
JFT|, form a base for this vector space. Then if w is any representation 
in co, F% = ciFiri+ • • • +CkFrk (c,-£C). If one could conclude from 
this equation that Tv=ciTiri+ • • • +CkTVJc it would follow (see [2e, 
Theorem 6]) that ir is infinitesimally equivalent to some TTJ (1 ^jSk) 
and therefore, apart from infinitesimal equivalence, co has only a 
finite number of representations. Therefore it is important to con­
sider the following question. 

Let 7Ti, • • • , irk be a finite set of quasi-simple irreducible représenta-
tions of G such that C\FVI+ • • • + ^ ^ = 0 (ciÇzC). Then is it always 
true that ciTn+ • • • +c*Z1

Tfc = 0? 
I believe the answer is yes but do not know how to prove it. 
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