ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP
HARISH-CHANDRA

Let G be a connected semisimple Lie group and let Z denote its
center. If 7 is a representation [2c] of G on a Hilbert space $ we con-
sider the space V consisting of all finite linear combinations of ele-
ments of the form

f fay(eypdz (fECTG), ¥ E D),

where dx is the Haar measure of G and C;’(G) is the set of all (complex-
valued) functions on G which are everywhere indefinitely differenti-
able and which vanish outside a compact set. V is called the Gérding
subspace of §. Let R and C be the fields of real and complex numbers
respectively and g, the Lie algebra of G. We complexify go to g and
denote by B the universal enveloping algebra of g [2a]. Then there
exists a (uniquely determined) representation wy of B on V such that
(X)W =lim.o (1/£) {w(exp tX)¥—¢} (X Ego, ¥EV, tER). Let 3
denote the center of B. We say that 7 is quasi-simple if there exist
homomorphisms 5 and x of Z and 3 respectively into C such that
T(O)d=1(), Tv(2)¥ =x(2)¥ for all {€Z, zE€8, o€ H and Y& V. 9 is
then called the central character and x the infinitesimal character of
m. An irreducible unitary representation is automatically quasi-simple
5].

Let A be a bounded linear operator on . We say that 4 is of the
trace class or 4 has a trace if for every complete orthonormal set
Wiier in © the series! EJ’EJ (¥, A¢;) converges absolutely and
its sum is independent of the choice of the complete orthonormal set.?
We call this sum the trace of 4 and denote it by Sp 4. Now suppose 7
is quasi-simple and irreducible. Then it can be shown (see [2e]) that
for any fE C;°(G) the operator [f(x)w(x)dx is of the trace class. If we
denote its trace by T.(f) we get a linear function T'» on C;(G) which
is actually a distribution (see [4; and 2e]). We call this distribution
the character of . Our object is to try to determine T.
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1 As usual (¢, ¢¥) denotes the scalar product of the two elements ¢ and ¢ in §.

2 Actually it can be shown that this independence of the sum follows automatically
from the absolute convergence of the series for every orthonormal base.

389



390 HARISH-CHANDRA [September

Let x—Ad (x) (x&G) denote the adjoint representation of G. If
N\ is an indeterminate and I is the identity mapping of g, we consider
the characteristic polynomial P,(\) =det A\ — Ad (x)) of Ad (x). Let
! be the highest integer such that (A—1)! divides P,(\) for every
xEG. We expand P,(\) in powers of (A—1) and denote by D(x) the
coefficient of (A\—1)! in this expansion. Then it is clear that D is an
analytic function on G which, in view of our definition of /, cannot be
identically zero. The integer [ is called the rank of G. Let S denote
the set of all x&G for which D(x) =0. Then S is a closed, nowhere
dense subset of G and its complement G’ is open and everywhere dense
in G. An element x &G is called singular or regular according as x&.S
or x&G’. Since Ad (2x) =Ad (x) (2€2) it is obvious that ZS=.S and
ZG'=G'. Also since Py,,~(\)=P,\) (x, y&EG), it follows that
D(yxy~') =D(x) and therefore ySy—1=S, yG'y1=G" (yEG).

When speaking of a real differentiable (or analytic) manifold M let
us agree to include the case when M is not connected but the various
connected components of M, which are all manifolds in the usual
sense, have the same dimension. Under this definition every open sub-
set U of M is again a manifold. Let C;’(U) denote the set of all com-
plex-valued functions on M which are indefinitely differentiable and
which vanish outside some compact subset of U. In particular sup-
pose U is an open subset of G and F is a (complex-valued) function
on U. We say that F is locally summable if it is summable on every
compact subset of U with respect to the Haar measure of G. T being
a distribution on G we say that T=F on U if F is locally summable
and

T(f) = f f(@F(2)dz

for all fEC;(U). Our main result may now be stated as follows.

THEOREM 1. Let 7 be an irreducible quasi-simple representation of G
on O and let T denote its character. Then there exists an analytic func-
tion Fr on G’ such that T»=Fr on G'.

Although in general G’ is not connected, there always exist a finite
number of connected components Gy, - - -, G, of G’ such that ZG;
NZG;j= if i#j and G'=Uj.,; ZG;. Moreover if 7, is the central
character of 7 it is easy to show that F(2x) =1.(2) Fx(x) (3EZ, xEG’).
Hence the knowledge of F, on Gi\UG,\J - - - \UG, is sufficient to de-
termine it completely. On the other hand it is possible to give ex-
amples in which F, vanishes everywhere on one of the components G;
without being zero identically on G’. However in case G is either a
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compact or a complex group, G’ is connected and then F, is com-
pletely determined by its restriction on any nonempty open subset of
G

For any x&EG and fEC;(G) we define the function f* by f*(y)
=f(x"yx) (yEG). Then fFEC’(G) and T.(f*) =T.(f) (see [2e]).
From this it follows that F,(xyx™!) = F.(y) (xEG, yEG’). Now let 4
be a maximal abelian subgroup of G which is not contained in S. (We
call such a group a Cartan subgroup of G.) Obviously 4 is closed in G.
Let A’=ANG’" and V=U,cq x4’x7%. Then V is an open subset of
G’ and it is clear from the above remarks that F is determined com-
pletely on V as soon as we know it on 4’. Let §), denote the subalgebra
of go corresponding to A. Then the complexification §) of § is a Cartan
subalgebra of g. Let W be the Weyl group (see [2b]) of g with respect
to §) so that W is a finite group of nonsingular linear transformations
of §). If A is a linear function on §) and s & W we define the linear func-
tion sA by the rule sA(H)=A(s"'H) (HEY). Let (Hy, - - -, H)) be a
base for § over C. A function P on ) is called a polynomial function if
there exists a polynomial p(xy, - - -, x;) in I variables (x1, « - -, %x1)
with coefficients in C such that P(H)=p(a1, * - -, a1) if H=a:Hy
+ - -+ +a:Hi(a;€C). The degree of p is also called the degree of P.
Clearly these definitions are independent of the choice of the base
(Hb cee, Hl)-

THEOREM 2. Let m and F. be as in Theorem 1. Then there exists a linear
function A on Yy with the following property. For any aE A’ we can
choose polynomial functions ps (sEW) on Y such that

Fo(a exp H) = | D(a exp H) |71 35 p,(H)e*2®
sEwW

for all H lying sufficiently near zero in Yo. A is unique up to an operation
of W and if N is the number of elements o in W such that A=cA, the
degree of every p, is necessarily smaller than N.

In particular if sA#A except when s is the unit element of W, p,
must all be constants. (It is hardly necessary to point out the resem-
blance of the above formula to the one given by Weyl [6] for the
irreducible characters of a compact semisimple Lie group. It should
also be compared with the results of Gelfand and Naimark [7] on
the unitary characters of the complex classical groups (see also [2f,
p. 511])). Although A’ is not necessarily connected, it is possible to
select a finite set By, - - -, B, of its connected components such that
A’ =VUj., ZB;. Therefore in order to determine F, on 4’, it is sufficient
to know 7, and the restrictions of Fr on some nonempty open subsets
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of By, + - -, B,. Hence if A is known, Theorem 2 gives us a formula
for Fr on A’ in terms of a finite number of undetermined constants.
On the other hand we shall see presently that A is completely deter-
mined (up to an operation of W) by the infinitesimal character x, of .

Two Cartan subgroups 4; and A, are said to be conjugate if
Ay=xA.x"1 for some x&EG. It is always possible to choose a finite
number of distinct Cartan subgroups 4i, * - -, A such that every
Cartan subgroup is conjugate to exactly one of these. Then if
Ai=ANG and Vi=U,gce¢ xAix~!, G' is the disjoint union of
V1, + - -, Vi This shows that if 9, and x are known, F, is completely
determined in terms of a finite number of constants.?

Now we come to a brief outline of the proof. Let M be a differenti-
able manifold, Q a linear mapping of C,; (M) into itself and x, a point
in M. We say that Q is a differential operator at x, if there exists a
coordinate system (¢, + -+, Im) valid on an open neighborhood U of
xo and indefinitely differentiable functions gi,...., on U (1 =4y, - -
ip=m, 0= p =q) such that if fEC;(U), Qf is zero outside U and

EY
of = Z E 8iyiy * °

i T
0SpSq  1Siq, -, ipSm Oty -+ - Ok,

)

f

on U. If Qis a differential operator at every point in M we say simply
that it is a differential operator (on M). T being a distribution on
M and Q a differential operator we define a distribution Q'T as fol-
lows:

@D = TQN (f € Ca(M)).

In particular if g is an indefinitely differentiable function on M it
defines a differential operator Q:f—gf (fEC;(M)). In this case we
write g7 to denote Q'T so that (gT)(f) =T(gf). It is clear that the
product of two differential operators is again a differential operator
and therefore the differential operators form an algebra.

Coming back to G, we note that every X &g, may be regarded as
a differential operator on G as follows:

d
@ = {5 e} (f €C2G), = €G,1 ER).
=0
Thus it is easy to see that 8 may be identified in a natural way with

a subalgebra of the algebra of differential operators on G. Then for
any b& B we have a linear transformation b’ of the space of distribu-

3 Actually it is possible to improve Theorems 1 and 2 and show that T coincides
with an analytic function on an open subset of G which, in general, is larger than G’
and therefore has fewer connected components.
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tions on G. Since (b1b2)’ =bsb1 (b1, b EB) the mapping b—b’ isan anti-
representation of B. Let ¢ denote the anti-automorphism of B over
C which is uniquely determined by the condition that ¢(X)=—-X
(X&€g). Then b—(¢(b))’ (bEDY) is a representation of B. T being
any distribution on G we now define dT =(¢(b))'T (b&®B). Then
OT)(f)=T(P(b)f) FECS(G)). If xr is the infinitesimal character of
7 and zE 3, fEC;(G), it is easy to see that

no( [ He(a)paz)

xx(2) f f@m(@)pdz

f (@) (@)r(x)da

Il

for all y € 9. (Here my is the representation of B on the Garding sub-
space of §.) From this it follows that 27, =x.(2)T, for all zE 3.
Hence T, is an eigen-distribution for each differential operator in 3.

On the other hand let 4 be a Cartan subgroup of G. Put 4’=A4ANG’
and V=U.,c¢ x4A'x~" as before. We regard A’ and V as open sub-
manifolds of 4 and G respectively. Let G* be the factor space G/4
consisting of cosets of the form x4 (xEG). If hEA4 and x*EG* we
define h* =xhx—! where x is any element in the coset x*. Let dh
and dx* respectively denote the Haar measure on 4 and the invariant
measure on G*. Then we have the following lemma.

LemMA 1. There exists a distribution . on A' with the following
property. If fEC(V), Tx(f) =7.(g) where g is the function in C;(A4")
given by

e = 10w [ frase (h € 47).

Let o be the Lie algebra of 4. Any element HEh, may be re-
garded as a differential operator on 4 so that if g€ C;(4),

@9 = {5 sthexp i)} (€4, ER.
$=0
Let § be the subspace of g spanned by §, over C and U1 the subalgebra
of B generated by (1, §). Then 1l may be identified in a natural way
with a subalgebra of the algebra of differential operators on 4. For
any distribution 7 on 4’ and # &1l we define a distribution 1 on A4’
as follows:

(ur)(g) = 7(¢(u)g) (g€C2(4")).
Here ¢ is the automorphism of U given by ¢(H) = —H (HEH).
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For every root « of g (with respect to §), choose an element X,50
in g such that [H, X.]=a(H)X, for all HEY. We introduce some
lexicographic order (see [2b]) in the set of all roots and denote by
P the set of positive roots under this order. Put n= ZaEP CX..
Then for every z& 8 there exists a unique element ¥/(z) Ul such
that z—v'(2) EBn (see [2b, p. 72]). If 2p= Eaep o there exists a
unique automorphism N of U such that N(1) =1 and N(H) =H—p(H)
(HED). We put v(2) =N("v'(2)) (2€3). Let W be the Weyl group of
g with respect to . It is clear that every s&W defines an auto-
morphism #—u* of U such that 1°=1and H*=sH (HEH). An element
# &1 is called an invariant if ¥ =u® for all s&W. Let J be the sub-
algebra of U consisting of all invariants. Then (see [2b, Lemma 38])
the mapping z—y(2) (2€3) defines an isomorphism of 3 onto J.
Now let A be a linear function on §. We can extend it uniquely to a
homomorphism of 1l into C which takes the value 1 at 1. We agree
to denote this extension also by A. Then as shown in [2b, Theorem 5]
we can choose A in such a way that x.(z) =A(y(z)) for all zE€ 3.
A is determined up to an operation of W by this condition.

Let A(h) =|D(h)|'2 (h€4’). Then A is an analytic function on
A’ and therefore ¢, =A7, is a well-defined distribution on 4’. Now
if we transform the differential equation 2T, =x.(2)T» (2E3) for T
into a differential equation for o, we get the following result which
is one of the main steps of our argument.

LEMMA 2. 7, being as in Lemma 1 put o =Arr. Then

'Y(z)o'r = X«(2)ox
for every 2E 3.

Now choose a linear function A on § such that x.(z) =A(y(z)) for
2& 8. Let { be an indeterminate and # an element in 1. Since U is
abelian we can consider the polynomial

11 ¢ — w).

EwW

It is clear that every coefficient of this polynomial lies in J and there-
fore if w is the order of W, there exist uniquely determined elements
z1(u), + - -, 20(%) in B such that

IL.ew@ — w) = ¢ 4+ v(@@w)eo™ + v(@(W)e> 2 + - - - 4 v(z0(w)).
On replacing ¢ by # we immediately get the identity

w? + uty(z1(n) + w2y (z2(w)) + - - - + v(zu(w)) = 0
in U if we recall that U is abelian. Now apply the left side to ¢, and
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use Lemma 2. Then
uYor + x,(zl(u))uw—la, + -4 Xw(zw(u))ar = 0.

But x-(z;(u)) =A(v(2;(%))), 1 =j=w, and since A is a homomorphism
of U into C it is obvious that
Q (¢ — A@?) = 4+ Aly(E@)it + - - - + Aly(zu(%)).
s&w
Therefore the above differential equation for o, may be written in
the form
11 (v — A(?))e, = O.
sEw

However if Hy, - - -, H; is a base for §, over R and (J=H?+ - - -
-+ H} it is obvious that the differential equation

II @ - A@)e-=0
sEwW

is of the elliptic type (see Garding [1]). Hence it follows from the work
of Schwartz [4, p. 137] and John [3a, 3b] that o, must be an analytic
function on 4’. Now if we take into account Theorem 5 of [2b] and
the fact that [[.ew (#—A(%°))o.=0 for every u €11, we get Theorem
2 without difficulty.

« being any quasi-simple irreducible representation we denote by
T», nx, and x. respectively the character, the central character, and
the infinitesimal character of 7. Also we denote by F, the analytic
function on G’ such that T, =F, on G'. Let T be a distribution on G.
Since D is an analytic function on G the product D”T (m=0) is a
well-defined distribution. It is then possible to prove the following
result.

LeMMA 3. There exists an integer m =0 with the following property.
Suppose i, - - -, T 15 a finite set of quasi-simple irreducible represen-
tations and cFr~+ - - - +cFry=0 (¢;EC). Then of T=c1Tr+ - - -
+CkT,,-k, DT =0.

From this lemma one can deduce the following theorem.

THEOREM 3. Let mo be a quasi-simple irreducible representation of G
such that Fr,is not identically zero. Then, apart from infinitesimal equi-
valence [2d, p. 230], there exist only a finite number of quasi-simple
irreducible representations w such that Fr=F,.

Let 7540 and x 0 respectively be given homomorphisms of Z and
8 into C. Let w denote the set of all quasi-simple irreducible repre-
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sentations w of G such that n.=7% and x»=x. As we have seen, it
follows from Theorems 1 and 2 that the functions F, (rEw) span a
finite-dimensional vector space over C. Hence if w is not empty, we
can choose a finite set of elements 7y, + + + , 7 in w such that Fr, - - -,
F,, form a base for this vector space. Then if 7 is any representation
in w, Fr=cFn,+ + + - +cxFx, (¢c;€C). If one could conclude from
this equation that Tw=cTr+ - - - +cr T, it would follow (see [2e,
Theorem 6]) that 7 is infinitesimally equivalent to some 7; (1 <j<k)
and therefore, apart from infinitesimal equivalence, w has only a
finite number of representations. Therefore it is important to con-
sider the following question.

Let my, -+ -, 7 be a finite set of quasi-simple trreducible representa-
tions of G such that cFr,~ « + + +cxFr,=0 (c;EC). Then is it always
true that o\Tr,+ + + + +cxT#,=0?

I believe the answer is yes but do not know how to prove it.
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