ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP

HARISH-CHANDRA

Let G be a connected semisimple Lie group and let Z denote its center. If π is a representation [2c] of G on a Hilbert space $\mathfrak F$ we consider the space V consisting of all finite linear combinations of elements of the form

$$\int f(x)\pi(x)\psi dx \qquad (f \in C_c^{\infty}(G), \psi \in \mathfrak{H}),$$

where dx is the Haar measure of G and $C_c^\infty(G)$ is the set of all (complex-valued) functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. V is called the Gårding subspace of \mathfrak{F} . Let R and C be the fields of real and complex numbers respectively and \mathfrak{g}_0 the Lie algebra of G. We complexify \mathfrak{g}_0 to \mathfrak{g} and denote by \mathfrak{B} the universal enveloping algebra of \mathfrak{g} [2a]. Then there exists a (uniquely determined) representation π_V of \mathfrak{B} on V such that $\pi_V(X)\psi=\lim_{t\to 0} (1/t)\left\{\pi(\exp tX)\psi-\psi\right\}$ ($X\in\mathfrak{g}_0$, $\psi\in V$, $t\in R$). Let \mathfrak{B} denote the center of \mathfrak{B} . We say that π is quasi-simple if there exist homomorphisms η and χ of Z and Z respectively into Z such that $\pi(\zeta)\phi=\eta(\zeta)\phi$, $\pi_V(z)\psi=\chi(z)\psi$ for all $\zeta\in Z$, $z\in Z$, $\phi\in Z$ and $\psi\in V$. η is then called the central character and χ the infinitesimal character of π . An irreducible unitary representation is automatically quasi-simple [5].

Let A be a bounded linear operator on \mathfrak{F} . We say that A is of the trace class or A has a trace if for every complete orthonormal set $(\psi_i)_{i\in J}$ in \mathfrak{F} the series $\sum_{j\in J} (\psi_j, A\psi_j)$ converges absolutely and its sum is independent of the choice of the complete orthonormal set. We call this sum the trace of A and denote it by $\operatorname{Sp} A$. Now suppose π is quasi-simple and irreducible. Then it can be shown (see [2e]) that for any $f \in C_c^{\infty}(G)$ the operator $\int f(x)\pi(x)dx$ is of the trace class. If we denote its trace by $T_{\pi}(f)$ we get a linear function T_{π} on $C_c^{\infty}(G)$ which is actually a distribution (see [4: and 2e]). We call this distribution the character of π . Our object is to try to determine T_{π} .

An address delivered before the New York meeting of the Society on February 25, 1955 by invitation of the Committee to Select Hour Speakers for Eastern Sectional Meetings; received by the editors March 28, 1955.

As usual (ϕ, ψ) denotes the scalar product of the two elements ϕ and ψ in \mathfrak{S} .

² Actually it can be shown that this independence of the sum follows automatically from the absolute convergence of the series for every orthonormal base.

Let $x \rightarrow Ad$ (x) $(x \in G)$ denote the adjoint representation of G. If λ is an indeterminate and I is the identity mapping of \mathfrak{g}_0 we consider the characteristic polynomial $P_x(\lambda) = \det (\lambda I - Ad(x))$ of Ad(x). Let l be the highest integer such that $(\lambda - 1)^l$ divides $P_x(\lambda)$ for every $x \in G$. We expand $P_x(\lambda)$ in powers of $(\lambda - 1)$ and denote by D(x) the coefficient of $(\lambda - 1)^l$ in this expansion. Then it is clear that D is an analytic function on G which, in view of our definition of l, cannot be identically zero. The integer l is called the rank of G. Let G denote the set of all G for which G is called the rank of G and its complement G is open and everywhere dense in G. An element G is called singular or regular according as G or G is called G in G is obvious that G is called G in G in

When speaking of a real differentiable (or analytic) manifold M let us agree to include the case when M is not connected but the various connected components of M, which are all manifolds in the usual sense, have the same dimension. Under this definition every open subset U of M is again a manifold. Let $C_c^{\infty}(U)$ denote the set of all complex-valued functions on M which are indefinitely differentiable and which vanish outside some compact subset of U. In particular suppose U is an open subset of G and G is a (complex-valued) function on G. We say that G is locally summable if it is summable on every compact subset of G with respect to the Haar measure of G. G being a distribution on G we say that G is locally summable and

$$T(f) = \int f(x)F(x)dx$$

for all $f \in C_c^{\infty}(U)$. Our main result may now be stated as follows.

THEOREM 1. Let π be an irreducible quasi-simple representation of G on \mathfrak{F} and let T_{π} denote its character. Then there exists an analytic function F_{π} on G' such that $T_{\pi} = F_{\pi}$ on G'.

Although in general G' is not connected, there always exist a finite number of connected components G_1, \dots, G_r of G' such that $ZG_i \cap ZG_j = \emptyset$ if $i \neq j$ and $G' = \bigcup_{i=1}^r ZG_i$. Moreover if η_{π} is the central character of π it is easy to show that $F_{\pi}(zx) = \eta_{\pi}(z) F_{\pi}(x)$ ($z \in Z, x \in G'$). Hence the knowledge of F_{π} on $G_1 \cup G_2 \cup \cdots \cup G_r$ is sufficient to determine it completely. On the other hand it is possible to give examples in which F_{π} vanishes everywhere on one of the components G_i without being zero identically on G'. However in case G is either a

compact or a complex group, G' is connected and then F_{π} is completely determined by its restriction on any nonempty open subset of G'.

For any $x \in G$ and $f \in C_c^{\infty}(G)$ we define the function f^x by $f^x(y)$ $=f(x^{-1}yx)$ $(y \in G)$. Then $f^x \in C_c^{\infty}(G)$ and $T_{\pi}(f^x) = T_{\pi}(f)$ (see [2e]). From this it follows that $F_{\pi}(xyx^{-1}) = F_{\pi}(y)$ $(x \in G, y \in G')$. Now let A be a maximal abelian subgroup of G which is not contained in S. (We call such a group a Cartan subgroup of G.) Obviously A is closed in G. Let $A' = A \cap G'$ and $V = \bigcup_{x \in G} xA'x^{-1}$. Then V is an open subset of G' and it is clear from the above remarks that F_{π} is determined completely on V as soon as we know it on A'. Let \mathfrak{h}_0 denote the subalgebra of \mathfrak{g}_0 corresponding to A. Then the complexification \mathfrak{h} of \mathfrak{h}_0 is a Cartan subalgebra of \mathfrak{g} . Let W be the Weyl group (see [2b]) of \mathfrak{g} with respect to \mathfrak{h} so that W is a finite group of nonsingular linear transformations of \mathfrak{h} . If Λ is a linear function on \mathfrak{h} and $s \in W$ we define the linear function $s\Lambda$ by the rule $s\Lambda(H) = \Lambda(s^{-1}H)$ $(H \in \mathfrak{h})$. Let (H_1, \dots, H_l) be a base for \mathfrak{h} over C. A function P on \mathfrak{h} is called a polynomial function if there exists a polynomial $p(x_1, \dots, x_l)$ in l variables (x_1, \dots, x_l) with coefficients in C such that $P(H) = p(a_1, \dots, a_l)$ if $H = a_1H_1$ $+ \cdots + a_l H_l(a_i \in C)$. The degree of p is also called the degree of P. Clearly these definitions are independent of the choice of the base $(H_1, \cdots, H_l).$

THEOREM 2. Let π and F_{π} be as in Theorem 1. Then there exists a linear function Λ on \mathfrak{h} with the following property. For any $a \in A'$ we can choose polynomial functions p_s ($s \in W$) on \mathfrak{h} such that

$$F_{\pi}(a \exp H) = \left| D(a \exp H) \right|^{-1/2} \sum_{s \in W} p_{s}(H) e^{s\Lambda(H)}$$

for all H lying sufficiently near zero in \mathfrak{h}_0 . Λ is unique up to an operation of W and if N is the number of elements σ in W such that $\Lambda = \sigma \Lambda$, the degree of every p_s is necessarily smaller than N.

In particular if $sA \neq A$ except when s is the unit element of W, p_s must all be constants. (It is hardly necessary to point out the resemblance of the above formula to the one given by Weyl [6] for the irreducible characters of a compact semisimple Lie group. It should also be compared with the results of Gelfand and Naimark [7] on the unitary characters of the complex classical groups (see also [2f, p. 511])). Although A' is not necessarily connected, it is possible to select a finite set B_1, \dots, B_r of its connected components such that $A' = \bigcup_{i=1}^r ZB_i$. Therefore in order to determine F_{π} on A', it is sufficient to know η_{π} and the restrictions of F_{π} on some nonempty open subsets

of B_1, \dots, B_r . Hence if Λ is known, Theorem 2 gives us a formula for F_{π} on A' in terms of a finite number of undetermined constants. On the other hand we shall see presently that Λ is completely determined (up to an operation of W) by the infinitesimal character χ_{π} of π .

Two Cartan subgroups A_1 and A_2 are said to be conjugate if $A_2 = xA_1x^{-1}$ for some $x \in G$. It is always possible to choose a finite number of distinct Cartan subgroups A_1, \dots, A_k such that every Cartan subgroup is conjugate to exactly one of these. Then if $A'_i = A_i \cap G'$ and $V_i = \bigcup_{x \in G} xA'_ix^{-1}$, G' is the disjoint union of V_1, \dots, V_k . This shows that if η_{π} and χ_{π} are known, F_{π} is completely determined in terms of a finite number of constants.³

Now we come to a brief outline of the proof. Let M be a differentiable manifold, Q a linear mapping of $C^{\infty}_{\epsilon}(M)$ into itself and x_0 a point in M. We say that Q is a differential operator at x_0 if there exists a coordinate system (t_1, \dots, t_m) valid on an open neighborhood U of x_0 and indefinitely differentiable functions $g_{i_1 i_2 \dots i_p}$ on U $(1 \leq i_1, \dots, i_p \leq m, 0 \leq p \leq q)$ such that if $f \in C^{\infty}_{\epsilon}(U)$, Qf is zero outside U and

$$Qf = \sum_{0 \leq p \leq q} \sum_{1 \leq i_1, \dots, i_p \leq m} g_{i_1 i_2} \cdots i_p \frac{\partial^p}{\partial t_{i_1} \cdots \partial t_{i_p}} f$$

on U. If Q is a differential operator at every point in M we say simply that it is a differential operator (on M). T being a distribution on M and Q a differential operator we define a distribution Q'T as follows:

$$(Q'T)(f) = T(Qf) (f \in C_c^{\infty}(M)).$$

In particular if g is an indefinitely differentiable function on M it defines a differential operator $Q:f \rightarrow gf$ $(f \in C_c^{\infty}(M))$. In this case we write gT to denote Q'T so that (gT)(f) = T(gf). It is clear that the product of two differential operators is again a differential operator and therefore the differential operators form an algebra.

Coming back to G, we note that every $X \in \mathfrak{g}_0$ may be regarded as a differential operator on G as follows:

$$(Xf)(x) = \left\{ \frac{d}{dt} f(x \exp tX) \right\}_{t=0} \qquad (f \in C_c^{\infty}(G), x \in G, t \in R).$$

Thus it is easy to see that \mathfrak{B} may be identified in a natural way with a subalgebra of the algebra of differential operators on G. Then for any $b \in \mathfrak{B}$ we have a linear transformation b' of the space of distribu-

⁸ Actually it is possible to improve Theorems 1 and 2 and show that T_{π} coincides with an analytic function on an open subset of G which, in general, is larger than G' and therefore has fewer connected components.

tions on G. Since $(b_1b_2)'=b_2b_1$ $(b_1,b_2\in\mathfrak{B})$ the mapping $b\to b'$ is an antirepresentation of \mathfrak{B} . Let ϕ denote the anti-automorphism of \mathfrak{B} over C which is uniquely determined by the condition that $\phi(X)=-X$ $(X\in\mathfrak{g})$. Then $b\to(\phi(b))'$ $(b\in\mathfrak{B})$ is a representation of \mathfrak{B} . T being any distribution on G we now define $bT=(\phi(b))'T$ $(b\in\mathfrak{B})$. Then $(bT)(f)=T(\phi(b)f)$ $(f\in C_c^{\circ}(G))$. If χ_{π} is the infinitesimal character of π and $z\in\mathfrak{F}$, $f\in C_c^{\circ}(G)$, it is easy to see that

$$\int (\phi(z)f)(x)\pi(x)\psi dx = \pi_0(z) \left(\int f(x)\pi(x)\psi dx \right)$$
$$= \chi_{\pi}(z) \int f(x)\pi(x)\psi dx$$

for all $\psi \in \mathfrak{G}$. (Here π_0 is the representation of \mathfrak{B} on the Gårding subspace of \mathfrak{G} .) From this it follows that $zT_{\pi} = \chi_{\pi}(z)T_{\pi}$ for all $z \in \mathfrak{Z}$. Hence T_{π} is an eigen-distribution for each differential operator in \mathfrak{Z} .

On the other hand let A be a Cartan subgroup of G. Put $A' = A \cap G'$ and $V = \bigcup_{x \in G} xA'x^{-1}$ as before. We regard A' and V as open submanifolds of A and G respectively. Let G^* be the factor space G/A consisting of cosets of the form xA ($x \in G$). If $h \in A$ and $x^* \in G^*$ we define $h^{x^*} = xhx^{-1}$ where x is any element in the coset x^* . Let dh and dx^* respectively denote the Haar measure on A and the invariant measure on G^* . Then we have the following lemma.

LEMMA 1. There exists a distribution τ_{π} on A' with the following property. If $f \in C_c^{\infty}(V)$, $T_{\pi}(f) = \tau_{\pi}(g)$ where g is the function in $C_c^{\infty}(A')$ given by

$$g(h) = |D(h)| \int_{G^*} f(h^{x*}) dx^*$$
 $(h \in A').$

Let \mathfrak{h}_0 be the Lie algebra of A. Any element $H \in \mathfrak{h}_0$ may be regarded as a differential operator on A so that if $g \in C_o^{\infty}(A)$,

$$(Hg)(h) = \left\{ \frac{d}{dt} g(h \exp tH) \right\}_{t=0} \qquad (h \in A, t \in R).$$

Let \mathfrak{h} be the subspace of \mathfrak{g} spanned by \mathfrak{h}_0 over C and \mathfrak{U} the subalgebra of \mathfrak{B} generated by $(1, \mathfrak{h})$. Then \mathfrak{U} may be identified in a natural way with a subalgebra of the algebra of differential operators on A. For any distribution τ on A' and $u \in \mathfrak{U}$ we define a distribution $u\tau$ on A' as follows:

$$(u\tau)(g) = \tau(\phi(u)g)$$
 $(g \in C_c^{\infty}(A')).$

Here ϕ is the automorphism of $\mathbb{1}$ given by $\phi(H) = -H$ $(H \in \mathfrak{h})$.

For every root α of \mathfrak{g} (with respect to \mathfrak{h}), choose an element $X_{\alpha} \neq 0$ in g such that $[H, X_{\alpha}] = \alpha(H)X_{\alpha}$ for all $H \in \mathfrak{h}$. We introduce some lexicographic order (see [2b]) in the set of all roots and denote by P the set of positive roots under this order. Put $\mathfrak{n} = \sum_{\alpha \in P} CX_{\alpha}$. Then for every $z \in \mathcal{Z}$ there exists a unique element $\gamma'(z) \in \mathcal{U}$ such that $z-\gamma'(z)\in\mathfrak{Bn}$ (see [2b, p. 72]). If $2\rho=\sum_{\alpha\in P}\alpha$ there exists a unique automorphism λ of $\mathbb{1}$ such that $\lambda(1) = 1$ and $\lambda(H) = H - \rho(H)$ $(H \in \mathfrak{h})$. We put $\gamma(z) = \lambda(\gamma'(z))$ $(z \in \mathfrak{Z})$. Let W be the Weyl group of g with respect to \mathfrak{h} . It is clear that every $s \in W$ defines an automorphism $u \rightarrow u^s$ of \mathfrak{U} such that $1^s = 1$ and $H^s = sH$ ($H \in \mathfrak{h}$). An element $u \in \mathbb{U}$ is called an invariant if $u = u^s$ for all $s \in W$. Let J be the subalgebra of U consisting of all invariants. Then (see [2b, Lemma 38]) the mapping $z \rightarrow \gamma(z)$ ($z \in \beta$) defines an isomorphism of β onto J. Now let Λ be a linear function on \mathfrak{h} . We can extend it uniquely to a homomorphism of $\mathfrak U$ into $\mathcal C$ which takes the value 1 at 1. We agree to denote this extension also by Λ . Then as shown in [2b, Theorem 5] we can choose Λ in such a way that $\chi_{\pi}(z) = \Lambda(\gamma(z))$ for all $z \in \mathcal{J}$. Λ is determined up to an operation of W by this condition.

Let $\Delta(h) = |D(h)|^{1/2}$ $(h \in A')$. Then Δ is an analytic function on A' and therefore $\sigma_{\pi} = \Delta \tau_{\pi}$ is a well-defined distribution on A'. Now if we transform the differential equation $zT_{\pi} = \chi_{\pi}(z)T_{\pi}$ $(z \in \mathcal{Z})$ for T_{π} into a differential equation for σ_{π} we get the following result which is one of the main steps of our argument.

LEMMA 2. τ_{π} being as in Lemma 1 put $\sigma_{\pi} = \Delta \tau_{\pi}$. Then

$$\gamma(z)\sigma_{\pi} = \chi_{\pi}(z)\sigma_{\pi}$$

for every $z \in 3$.

Now choose a linear function Λ on \mathfrak{h} such that $\chi_{\pi}(z) = \Lambda(\gamma(z))$ for $z \in \mathfrak{Z}$. Let ζ be an indeterminate and u an element in \mathfrak{U} . Since \mathfrak{U} is abelian we can consider the polynomial

$$\prod_{s\in W}(\zeta-u^s).$$

It is clear that every coefficient of this polynomial lies in J and therefore if w is the order of W, there exist uniquely determined elements $z_1(u), \dots, z_w(u)$ in \mathfrak{Z} such that

$$\prod_{s\in W}(\zeta-u^s)=\zeta^w+\gamma(z_1(u))\zeta^{w-1}+\gamma(z_2(u))\zeta^{w-2}+\cdots+\gamma(z_w(u)).$$

On replacing ζ by u we immediately get the identity

$$u^{w} + u^{w-1}\gamma(z_{1}(u)) + u^{w-2}\gamma(z_{2}(u)) + \cdots + \gamma(z_{w}(u)) = 0$$

in $\mathfrak U$ if we recall that $\mathfrak U$ is abelian. Now apply the left side to σ_{π} and

use Lemma 2. Then

$$u^w \sigma_{\pi} + \chi_{\pi}(z_1(u)) u^{w-1} \sigma_{\pi} + \cdots + \chi_{\pi}(z_w(u)) \sigma_{\pi} = 0.$$

But $\chi_{\pi}(z_j(u)) = \Lambda(\gamma(z_j(u)))$, $1 \leq j \leq w$, and since Λ is a homomorphism of \mathbb{U} into C it is obvious that

$$\prod_{s\in W} (\zeta - \Lambda(u^s)) = \zeta^w + \Lambda(\gamma(z_1(u)))\zeta^{w-1} + \cdots + \Lambda(\gamma(z_w(u))).$$

Therefore the above differential equation for σ_{π} may be written in the form

$$\prod_{s\in W} (u-\Lambda(u^s))\sigma_{\pi}=0.$$

However if H_1, \dots, H_l is a base for \mathfrak{h}_0 over R and $\square = H_1^2 + \dots + H_l^2$ it is obvious that the differential equation

$$\prod_{s \in W} \left(\Box - \Lambda(\Box^s) \right) \sigma_{\pi} = 0$$

is of the *elliptic* type (see Gårding [1]). Hence it follows from the work of Schwartz [4, p. 137] and John [3a, 3b] that σ_{π} must be an analytic function on A'. Now if we take into account Theorem 5 of [2b] and the fact that $\prod_{s \in W} (u - \Lambda(u^s))\sigma_{\pi} = 0$ for every $u \in \mathbb{I}$, we get Theorem 2 without difficulty.

 π being any quasi-simple irreducible representation we denote by T_{π} , η_{π} , and χ_{π} respectively the character, the central character, and the infinitesimal character of π . Also we denote by F_{π} the analytic function on G' such that $T_{\pi} = F_{\pi}$ on G'. Let T be a distribution on G. Since D is an analytic function on G the product D^mT $(m \ge 0)$ is a well-defined distribution. It is then possible to prove the following result.

LEMMA 3. There exists an integer $m \ge 0$ with the following property. Suppose π_1, \dots, π_k is a finite set of quasi-simple irreducible representations and $c_1F_{\pi_1} + \dots + c_kF_{\pi_k} = 0$ $(c_i \in C)$. Then if $T = c_1T_{\pi_1} + \dots + c_kT_{\pi_k}$, $D^mT = 0$.

From this lemma one can deduce the following theorem.

THEOREM 3. Let π_0 be a quasi-simple irreducible representation of G such that F_{π_0} is not identically zero. Then, apart from infinitesimal equivalence [2d, p. 230], there exist only a finite number of quasi-simple irreducible representations π such that $F_{\pi} = F_{\pi_0}$.

Let $\eta \neq 0$ and $\chi \neq 0$ respectively be given homomorphisms of Z and \mathfrak{Z} into C. Let ω denote the set of all quasi-simple irreducible repre-

sentations π of G such that $\eta_{\pi} = \eta$ and $\chi_{\pi} = \chi$. As we have seen, it follows from Theorems 1 and 2 that the functions F_{π} ($\pi \in \omega$) span a finite-dimensional vector space over C. Hence if ω is not empty, we can choose a finite set of elements π_1, \dots, π_k in ω such that F_{π_1}, \dots, π_k F_{π_k} form a base for this vector space. Then if π is any representation in ω , $F_{\pi} = c_1 F_{\pi_1} + \cdots + c_k F_{\pi_k}$ $(c_j \in C)$. If one could conclude from this equation that $T_{\pi} = c_1 T_{\pi_1} + \cdots + c_k T_{\pi_k}$ it would follow (see [2e, Theorem 6]) that π is infinitesimally equivalent to some π_j $(1 \le j \le k)$ and therefore, apart from infinitesimal equivalence, ω has only a finite number of representations. Therefore it is important to consider the following question.

Let π_1, \dots, π_k be a finite set of quasi-simple irreducible representations of G such that $c_1F_{\pi_1} + \cdots + c_kF_{\pi_k} = 0$ $(c_i \in C)$. Then is it always true that $c_1T_{\pi_1} + \cdots + c_kT_{\pi_k} = 0$?

I believe the answer is yes but do not know how to prove it.

REFERENCES

- 1. L. Gårding, Math. Scand. vol. 1 (1953) pp. 55-72.
- 2a. Harish-Chandra, Ann. of Math. vol. 50 (1949) pp. 900-915.
- 2b. ——, Trans. Amer. Math. Soc. vol. 70 (1951) pp. 28-96.
 2c. ——, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 366-369.
- 2d. —, Trans. Amer. Math. Soc. vol. 75 (1953) pp. 185-243.
- 2e. ——, Trans. Amer. Math. Soc. vol. 76 (1954) pp. 234-253.
- 2f. —, Trans. Amer. Math. Soc. vol. 76 (1954) pp. 485–528.
- 3a. F. John, Comm. Pure Appl. Math. vol. 3 (1950) pp. 273-304.
- 3b. —, Proceedings of the symposium on spectral theory and differential problems, Stillwater, Okla., 1951, pp. 113-175.
 - 4. L. Schwartz, Théorie des distributions I, Paris, Hermann, 1950.
 - 5. I. E. Segal, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 13-15.
 - 6. H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395.
 - 7. I. M. Gelfand and M. A. Naimark, Trudi Mat. Inst. Steklova vol. 36 (1950)

COLUMBIA UNIVERSITY