
THE ORIGIN AND GROWTH OF 
MATHEMATICAL CONCEPTS 

R. L. WILDER 

1. Introduction. According to A. N. Whitehead [l, p. 20 ], "The 
science of Pure Mathematics, in its modern developments, may claim 
to be the most original creation of the human spirit"; a statement 
with which probably few mathematicians would quarrel. A layman, 
however, might and probably would take this to mean that modern 
mathematics is something which has already been created; a creation, 
that is, which has already been accomplished and is now safely em­
balmed with remains on view in any good library. 

Of course, as mathematicians we know that mathematics is in no 
such static shape; that it is, on the contrary, a dynamic affair, chang­
ing even from day to day. Our late colleagues who were in the fore­
front of mathematical creation about the turn of the century, 1900, 
would be amazed to see what mathematics is like today; indeed, many 
of them, I'd wager, would not like some of the modern developments, 
probably taking the same atti tude toward them that some mathe­
maticians of the late 19th century took toward Cantor's innovations 
regarding the infinite. Moreover, those of us who are active today 
would probably feel the same way toward the mathematics of the 
year 2000, if we were in some way able to view it. We ourselves prob­
ably have not sufficient perception of the changes going on in mathe­
matics a t the present time; it is well known that the participants in 
great social changes are usually unaware of them. And there is some 
evidence that our awareness of the process of mathematical change, 
although not so at variance with the facts as that of the layman, 
is still so defective in some ways as to lead to unfortunate but avoid­
able situations. This is partly due, I suppose, to our being so busy 
creating new mathematics that we have little time or patience to 
view our behavior from the outside and study its characteristics. 
And even when we do so, we seem prone to take such a specialized 
angle from which to make our observations that we get only a partial 
perspective. 

2. Motives. Poincaré remarked, in one of his numerous essays 
[2, p. 376], that "mathematical science must reflect on itself," and 
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supported this dictum with several studies of the psychological 
aspects of mathematical creation. These studies inspired others of a 
similar nature, among which might be noted especially the little book 
[3 ] by Hadamard on the Psychology of invention in the mathematical 

field, published 7 years ago. 
However, the angle from which these studies were made, that of 

psychology, can furnish only part of the general picture. Studies 
of a psychological nature are significant in that they analyze the 
mental processes by which the individual mathematician uses the 
materials and tools present in his culture to make new constructs. 
But they fail to make proper connection with the cultural stream in 
which they are imbedded. The mathematician is not an isolated entity 
grinding out new ideas, with everything coming out and nothing 
going in. Rather he is making new syntheses out of the concepts that 
are going in. Young men who have just received the doctorate usually 
seem to have at least an intuitive recognition of this, for how often 
do we hear them express their fears of having to accept positions 
where there are few or no mathematicians who have interests similar 
to their own; or, if they find it necessary to accept such positions, 
they worry over whether the libraries, by which they mean the means 
of keeping contact with their fellow workers through the medium of 
journals, are good or not. The popularity of such centers as Göttingen 
in the twenties, and now the Institute for Advanced Study, furnishes 
further evidence of the gregariousness of the mathematician. And 
of course there are our societies and associations, through whose 
meetings and journals we may exchange ideas. 

I believe, therefore, that even if it only leads to a rational under­
standing and appreciation of these matters, a study of these co­
operative features of mathematical creation, or what we might call 
a study of the "group dynamics" of mathematical creation, is war­
ranted. Because of its high level of abstraction, we are inclined to 
look upon mathematics as strictly an individual activity. In his ad­
dress opening the recent International Congress of Mathematicians 
in Cambridge [4, p. 125], Oswald Veblen comments that "Mathe­
matics is terribly individual. Any mathematical act, whether of 
creation or apprehension, takes place in the deepest recesses of the 
individual mind." However, he goes on to say, "Mathematical 
thoughts must nevertheless be communicated to other individuals 
and assimilated into the body of general knowledge. Otherwise they 
can hardly be said to exist." Note that last sentence, by the way— 
"Otherwise they can hardly be said to exist." Obviously Veblen is 
aware that while, in one of its aspects, mathematical creation is, as 
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he says, "terribly individual," in its other aspects it is not an indi­
vidual affair at all. Later, in the same address, we find an affirmation 
of the necessity for mathematicians forming such associations as we 
have today: "The resultant organizations of various kinds have ac­
complished many important things known to us all. Of these accom­
plishments I am sure that the most important is the maintenance of 
a set of standards and traditions which enable us to preserve that co­
herent and growing something which we call Mathematics." [Italics 
mine.] 

To summarize my motives, then, I wish to inquire, above the in­
dividual level, into the manner in which mathematical concepts orig­
inate, and to study those factors that encourage their formation and 
influence their growth. I think that much benefit might be derived 
from such an inquiry. For example, if the individual working mathe­
matician understands that when a concept is about to make its ap­
pearance, it is most likely to do so through the medium of more than 
one creative mathematician; and if, furthermore, he knows the rea­
sons for this phenomenon, then we can expect less indulgence in bad 
feelings and suspicion of plagiarism to ensue than we find in notable 
past instances. Mathematical history contains numerous cases of 
arguments over priority, with nothing settled after the smoke of 
battle has cleared away except that when you come right down to it 
practically the same thing was thought of by someone else several 
years previously, only he didn't quite realize the full significance of 
what he had, or did not have the good luck to possess the tools where­
with to exploit it. Coolidge, in his A history of geometrical methods, 
remarks [5, p. 122], "It is a curious fact in the history of mathe­
matics that discoveries of the greatest importance were made simul­
taneously by different men of genius." This is quite true, except that 
there is nothing "curious" about it, nor is it confined to mathe­
matics. And it is exactly what one should expect if he is acquainted 
with the manner in which concepts evolve. 

I shall have to be brief and incomplete in my presentation here, 
giving only a general description of my study. In particular, I shall 
pay little attention to questions such as "What is a concept?", or to 
the different type levels of concepts, important though these are. I 
shall take it for granted that we know what we mean by such terms as 
"the group concept," "the concept of limit," and the like—these are 
well defined today. Other things which we label "concepts" are not 
at all well defined. And of course some concepts embrace other con­
cepts, such as that of the calculus embracing the concept of limit of a 
set of real numbers. 
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Furthermore, in the case histories which I shall presently mention, 
you will probably be impressed with the fact that in tracing the 
roots of a concept under discussion, we find invariably that some of 
them go back to Greece. I t should not be inferred from this that they 
began in Greece. The fact is, that these roots have many smaller 
tendrils that reach out into pre-Greek or contemporary cultures, and 
I am not enough of a historian to have their identities, if such exist, 
at my disposal. This will not, however, affect my main conclusions 
in the least. I do want to warn, however, against the impression that 
these roots necessarily start in Greece. 

In reviewing such case histories, I am of course going over much 
material which is well known. What we get out of such material, 
however, is strongly influenced by our orientation, and in repeating 
these historical details it is with the purpose of bringing out aspects 
that are not ordinarily emphasized and frequently not observed. 

3. Case studies. Now how do mathematical concepts originate; 
where do they come from? I suppose we might, without thinking very 
seriously about our answer, reply, "By taking thought;" or "by shut­
ting one's self in his study, getting out a pencil or piece of chalk, and 
going to work." This kind of reply is reminiscent of the answer which 
someone1 made to the question, "How does one write novels?", viz., 
"By pressing the seat of one's pants to a chair for three hours at a 
time and writing." 

Like most pat answers, this is not, on further reflection, quite ac­
ceptable. To be sure, concepts don't get born without someone taking 
thought. We must not forget, however, that gregarious aspect of 
mathematical activity which I mentioned above. Not only does this 
have its influence on the formation of concepts, but it must be con­
ceded an equal partner, at least, in the process. 

A concept doesn't just pop up full grown "like Venus from the 
waves," although it may seem to, to the individual mathematician 
who does the conceiving. Usually its elements are lying in what, if the 
term were not already in technical mathematical use, one might call 
the mathematical continuum, but which we might better call the 
mathematical culture stream. As the eminent historian of science, 
George Sarton, comments [6, p. 36]: "—creations absolutely de novo 
are very rare, if they occur at all; most novelties are only novel com­
binations of old elements, and the degree of novelty is thus a matter 
of interpretation, which may vary considerably according to the 
historian's experience, standpoint, or prejudices. —the determina-

1 I think it was the writer Sinclair Lewis, but I have been unable to confirm this. 
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tion of an event as the * first' is not a special affirmation relative to 
that event, but a general negative proposition relative to an unde­
termined number of unknown events." 

3a. Number and geometry concepts. The absurdity of always striving 
for a point of origin is nowhere better exemplified than in the origins 
of mathematics itself. We are unable here to find any "names" by 
which to label innovations even if we would. And this, I am certain, 
is not due simply to absence of adequate written record. The ac­
companying figure is supposed to represent the origin and growth of 
the earliest mathematical concepts, those of number and geometry. 

Commerce 

Astronomy ^ 
Agriculture 

Philosophy 

Just when these began to merit being called concepts we don't know, 
but enough evidence exists to warrant the conclusion that this oc­
curred at no particular date, since each gradually emerged from the 
cultures of the Middle East and Greece; and of course they may have 
emerged in other cultures, as the number concept did in the Mayan 
culture. The short arrows represent such influences as those of a 
Babylonian priesthood facing the necessity of assessing taxes and 
keeping records of a host of tax-gatherers, the desire to compute the 
quantity of seeds necessary to sow a given piece of land, and other 
social needs. From such matters to the concept of a number—"four" 
for example, as contrasted with "four men," "four dogs"—must have 
been a long evolution. Certainly no one has suggested a prehistoric 
Archimedes leaping out of his bath or primitive swimming pool and 
running through the forest primeval shouting, "I've got it—the num­
ber four, the number four!" Similarly, geometry did not begin with 
Euclid. 

3b. Analytic geometry. Or to take a very elementary, but his-
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torically important example, in histories of mathematics one finds 
serious discussion of whether Fermât or Descartes should be credited 
with the "invention" of analytic geometry, sometimes accompanied 
by a choice between the two and an extended argument supporting 
the choice. 

In such cases, I am inclined to feel that the historian is uncon­
sciously influenced by that principle of popular folklore ; "everything 
has a beginning." And conceding this, no historian worth his salt can 
fail to produce one. In some cases, particularly in that of a very 
specialized concept, such as that of the "theta-Fuchsian series" 
whose genesis in the mind of Poincaré is so interestingly described 
in his article on Mathematical creation [2, p. 387], to speak of a "be­
ginning" is perhaps justified—although even in such instances one 
could without doubt, given sufficient evidence, trace the inception 
of the notion from prior concepts. But in the case of broader concepts, 
such as "analytic geometry," we seem prone to error due to the 
vagueness of the concept. 

I t is interesting to note the way in which Coolidge handles the 
question in his A history of geometrical methods. To quote [5, p. 117]: 
"The opinion is currently held among mathematicians that analytic 
geometry sprang full-armed from the head of Descartes as did Athene 
from that of Zeus. . . . There is much to be said in favor of this 
thesis, but . . . another opinion is certainly possible. The fact is that 
in inquiring into the origin of analytic geometry we run into a diffi­
culty that lies at the bottom of a good proportion of our disputes in 
this Vale of Tears. What do we mean by the words 'analytic geom­
etry'? Till that is settled, it is futile to inquire as to who discovered 
it." That the essence of the subject, however we define it, was known 
to the Greeks, such as Apollonius, seems beyond dispute; but as a 
coordinate geometry with a workable algebra like that which we 
associate with the notion, it evolved through the works of Fermât and 
Descartes as well as various predecessors. Had the Greeks possessed 
a good algebra, the story might have been different. 

3c. Calculus. Everyone is familiar with the way the basic postulate 
of popular folklore that everything has a beginning has operated in 
the case of the Calculus. The dispute over its so-called "authorship" 
between Newton and Leibniz and their followers is, I suppose, the 
classical example of useless disputation attributable to the impulse to 
conform to the postulate. In a recent article [7], A. Rosenthal makes 
clear the indebtedness of both Newton and Leibniz to their fore­
runners as well as their contemporaries; and that no matter how you 
define it, the calculus is a product of a slow evolution that has been 
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recorded as far back as the Greeks. And although I suspect that the 
author privately feels that it makes little sense to speak of the in­
vention or the discovery of the calculus as an actual temporal event, 
he tries to justify the thesis that Newton and Leibniz originated the 
concept, by affording a definition. 

After remarking that "there certainly was an extensive develop­
ment of the theory of integration and differentiation in the period 
immediately before Newton and Leibniz," he asks [7, p. S3], "What 
then was missing at that time," —i.e., at the time when Newton and 
Leibniz entered the picture. He points out that one "very important 
point still missing was the general fact that differentiation and inte­
gration are inverse processes, that is, the so called fundamental 
theorem of integral calculus." And after some discussion as to whether 
various mathematicians, who evidently came very close to it, really 
recognized it or not, he discloses that it was known in full generality 
by Isaac Barrow, the teacher of Newton at Cambridge. So he repeats, 
"What more remained to be done?" replying, "What had to be 
created was just the Calculus, a general symbolic and systematic 
method of analytic operations, to be performed by strictly formal 
rules, independent of the geometric meaning. . . . it is just this Calculus 
which was established by Newton and Leibniz, independent of each 
other and using different types of symbolism." Although this is not 
really a definition in the true sense, at least it is an attempt to fix the 
general nature of just what it was that Newton and Leibniz did do. 
Whether it is a good thing to try to assign an originator to as broad 
a concept as the calculus, even when it is impossible to make the 
originator unique, is another question. 

I t should be noted that, as in the case of analytic geometry, if the 
Greeks had possessed enough symbolic material, they might have 
progressed further with the calculus. Also that despite the lack of a 
rigorous theory of limits, that which most agree to call "calculus" 
appeared nevertheless with Leibniz and Newton, but essentially as 
an operational apparatus. The theory of limits, and calculus as we 
know it, had still to evolve. 

It is interesting to compare Coolidge's comments [5, p. 38]. He 
speaks of the Greek geometers* "procedure in attacking problems in 
computation which led naturally to the integral calculus. If we seek 
the root of the difference between their method of attack and ours, it 
lies partly in the greatly increased flexibility of our notation, partly 
in their lack of a clear concept of a limit." That is, a suitable notation 
was lacking—a suitable tool—and a necessary concept, that of limit, 
had yet to evolve. Since the concept of limit was not developed until 
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after the work of Newton and Leibniz, this seems to place the em­
phasis again upon the Greek lack of an algebraic tool, as the root of 
the difference between the Greek calculus and that of Leibniz and 
Newton. 

3d. The curve concept. Finally, I would like to view the evolution 
of a narrower, more specialized concept, that had its origin in 
antiquity, and which not only continued its growth in modern times 
but contributed in a noteworthy manner to a large portion of modern 
mathematics. I t is not, I am sure, generally realized how great an 
influence this concept has had on the development of concepts which 
today contain hardly a trace of the notion. I refer to the concept of 
curve. 

The accompanying chart, which may be referred to during the 
discussion, is supposed to set forth the principal lines of influence, 
and it is to these that I shall confine myself. I t would be impossible 
to sketch here the history of the concept in full detail. I t has been a 
common mathematical notion, as a rule purely intuitive, since the 
time of the Greeks, a t least. And it is one of those mathematical 
notions that have been adopted by the layman. Usually it has been 
just a conventional categorical term, and seems to have continued 
so throughout the time when the study of curves was resumed 
analytically during the Renaissance. The first successful attempts at 
formulating precise definitions of the concept were not made by 
geometers, but by analysts! So far as I have been able to find, 
Georg Cantor was the first to be credited with a definition, but ap­
parently what he really did [8, p. 194] was to determine those set-
theoretic properties that constitute the continuous, as opposed to 
the discrete, aspect of a curve—or as a topologist would express it, 
he defined the topological notion of continuum. But a square together 
with its interior is a continuum, and we would hardly call this a 
curve ! However, if the continuum lies in the plane, all we need to do 
is require that it contain no such square and we get what came to be 
called a "cantorian line." And although satisfactory only as a defini­
tion of the concept of plane curves, the cantorian line coincides ex­
actly with what most topologists feel is the natural definition. 

The next most notable at tempt at definition was also not made by 
a geometer, but by C. Jordan in 1887. In the first (1882) volume of 
his Cours d'analyse [9], he speaks (as on p. 238, loc. cit.) of a plane 
curve as given by any two functions x ~f(t), y — g(t), where the range 
of t is the real number interval [0,1 ]. Although no mention of con­
tinuity is made, if he was familiar with Cantor's proof [8, p. 122 fL] 
published in 1878, 4 years earlier, of the (l-l)-correspondence be-
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tween the points of such an interval and the points of the square plus 
its interior, he must have realized that without it, this definition could 
not be satisfactory. However, in an appendix ("Note") to the 3rd 
volume of this work, published 5 years later, in repeating this defini­
tion, he added [9, vol. 3, p. 587], "If the functions are continuous, the 
curve will be called continuous." (See also [9a, p. 92]; this reference 
to the first volume of the second edition, 1893, is the one customarily 
cited as the "origin" of the concept "continuous curve.") Cantor had 
noted that the (1-1)-correspondence just referred to was impossible 
in case the functions were continuous, and Jordan's definition of 
continuous curve lay between the two extremes—it does not require 
(l-l)-ness, although the functions are of course single-valued, and it 
does require continuity. 

I t is not difficult to surmise where Jordan got this notion; it was 
common practice to define curves parametrically in the books on 
calculus. For instance, the parametric representation of the cycloid 
is given in Cauchy's famous calculus [10, p. 52], published in 1826. 
Evidently what Jordan did was to formulate a general concept which 
was already current. I don't know who first attached Jordan's name 
to the notion, as a matter of fact. The Polish topologists were already 
doing so during the 'teens of the present century, and most writers 
of the twenties assume he was the first to formulate it explicitly. 
However, I have found no evidence that either Jordan's contempo­
raries or his immediate successors associated his name with the 
concept, which seems to be further evidence that the notion was 
generally current among analysts. 

But to get on with the story: Geometers, possibly becoming sud­
denly conscious of their inadequacy, or perhaps jealous of their 
prerogatives, pounced upon the notion. I am confident that Jordan 
had no idea of usurping their natural rights; that all he had in mind 
was to make precise certain analytic notions that were already cur­
rent, for his own special purposes. For instance, he showed that for a 
curve to be rectifiable, it is necessary and sufficient that the functions 
defining it be of bounded variation [9, vol. 3, p. 594 ff.]. And for the 
proof of his famous theorem, the Jordan Curve Theorem [9, vol. 3, p. 
587 ff.; 9a, p. 92], he stipulated that the continuous curve was to have 
no double points except a t the end points of the interval of definition 
of the variable t. For these purposes, his definition was a good one, 
and still is. 

As is well known, it was only three years after Jordan's formulation 
until the Italian logician and geometer Peano published, in 1890, 
his famous space-filling curve. Hilbert and E. H. Moore followed suit 
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soon after (for discussion and references, see [13, p. 943 ff.]). None of 
them mentions Jordan's name, incidentally,—perhaps further evi­
dence that the concept was probably not considered as his personal 
property! Their examples show, of course, that Jordan's definition 
was not a satisfactory formulation of the precise notion of curve as 
it was intuitively conceived. 

However, fortunately for the development of modern mathe­
matics, the fact that the geometer found Jordan's analytic definition 
wanting did not mean that it was doomed to oblivion so far as 
geometry was concerned ; even though it came to be recognized that 
in addition to including configurations we don't want to call "curves," 
it excluded some we do want to call curves (such as the well known 
continuum formed from sin 1/x and its limit points on the y-axis). 
That it included among its special cases the general euclidean space 
element—for of course the cube and its interior in three and higher 
dimensions are continuous curves in Jordan's sense—was of intense 
geometric interest. Thus it developed that interest in the continuous 
curve was focused on the nature of its geometric counterpart; if this 
counterpart was not what we call "curve" in geometry, just what 
configurations do come within its scope? 

The first systematic investigation of this question was made by 
Schoenflies, who gave a complete answer for the planar continuous 
curves (for discussion and reference, see [13, p. 964 ff.]). His work, 
incidentally, shows a remarkable perception of the nature of the prob­
lem as well as ingenuity in selecting the right methods for solving it. 
Realizing that it could not be solved by any of the methods common 
to the older forms of geometry, he called upon the new set-theoretic 
ideas introduced by Cantor and the (apparently unrelated) topology 
of polyhedrals of Riemann and Poincaré. 

Among the first to be influenced by Schoenflies' work was Brouwer, 
probably best known for his Intuitionism, but among topologists and 
analysts famous for the remarkable work which he did on the theory 
of manifolds, especially as regards mapping and fixed point theorems, 
during the second decade of the present century. Brouwer was im­
pressed not only by Schoenflies' positive results, but by certain funda­
mental errors which, due to faulty intuition, subtly crept into 
Schoenflies' work. For in his study of the Jordan Curve Theorem, 
Schoenflies conceived the idea of separating, from its tie-up to the 
topological images of the circle, the property of a curve being "common 
boundary of two domains in the plane" and called any configuration 
having this property a "closed curve." That a closed curve so defined 
could not be the common boundary of more than two domains seemed 
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perfectly natural to assume. Only it happens not to be true, as 
Brouwer was able to prove (for discussions and references, see [13, 
p. 924 ff.]). Also, Schoenflies was unable to give any proof of the in­
variance of the closed curve under topological transformations. 
Brouwer also supplied this [ l l ] , using a method of proof which con­
tained the central idea of the extension, to general metric spaces, of 
the homology theory of polyhedrals which had been initiated by Rie-
mann, Poincaré, and others, and extended in this country by Veblen 
and his colleagues. 

But I must not get too far ahead. The threads of influence leading 
from Jordan's definition begin now to entangle with one another and 
with threads from other sources. About the time when Brouwer was 
writing his dissertation on the law of the excluded middle, with per­
haps little thought of topology, Fréchet was working on his disserta­
tion [l2] on "abstract spaces." This tendency to abstract from the 
euclidean situation, which of course goes back, in its roots, to 
Fréchet's predecessors but was given clear-cut realization by him, 
was to influence the treatment of the continuous curve problem in the 
following manner: I t had proved impossible, with the tools available 
at the time, to extend Schoenflies' methods to 3-space or higher di­
mensions. Here the point of view is relative to the imbedding space, 
the Euclidean space of 3 or higher dimensions, rather than intrinsic. 
The introduction of the abstract space idea led to the problem of 
intrinsic characterization, by geometric methods, of the continuous 
curve. In order to eliminate the separate functions defining the co­
ordinates in Jordan's definition, one recognized that an equivalent 
idea is to consider the curve as defined by a single function, ƒ(/), 
single-valued and continuous over the interval [0, l ] , but the values 
of the function to be in any space allowing of the definition of limit. 
From this point of view the problem became manageable and received 
a solution, independently, at the hands of Hahn and Mazurkiewicz. 
Using the topological notion of local connectedness, which had ac­
tually been introduced (presumably unknown to them) three years 
earlier by Pia Nalli in another connection (for reference, see [13, 
p. 922, footnote 224]), they characterized continuous curves as 
compact metric continua that are locally connected (for discussion 
and references, see [13, p. 947 ff.])—a thoroughly intrinsic definition, 
as contrasted with the results of Schoenflies. 

This was about the time of the start of World War I, and the 
simultaneity of these results did not become known until after the 
War. There followed, not only in Poland and Austria, but in this 
country where the students of E. H. Moore had become interested in 
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the new ideas in the foundations of geometry, a fairly complete 
analysis, especially during the period up to 1930, of the concept of 
continuous curve from the set-theoretic point of view. 

Now it is characteristic of mathematical concepts that they often 
tend to be swallowed, as for instance in the process of generalization, 
by more embracing concepts. As a rule, this happens subsequent to 
the formulation and investigation of the concept. The number con­
cept is a simple example of this. But in the case of the curve concept, 
the assimilation was to be coincident with the formulation of the 
larger concept. And so, for a few minutes, I shall turn to the concept 
of dimension. I cannot take time to review its ancient history— 
remarks analogous to those which I made concerning the concept of 
curve hold here, such as its use by the Greeks, its adoption into popu­
lar parlance, etc. As we approach modern times, attempts to formu­
late a dimension concept begin to crop out in the literature, often 
in the works of analysts, whose formulation was usually based on 
the number of parameters involved in the description. Cantor gave 
the body blow to this when he showed [8, p. 122 fï.] that a single 
real parameter suffices, if one neglects continuity. The resulting in­
vestigations—and these included the Jordan formulation of curve as 
well as the Peano results already mentioned—especially the problem 
of the invariance of dimension under bicontinuous (1-1)-transforma­
tions, are too detailed for me to go into here. They played their part, 
however, in the evolution of the dimension concept. On the left-hand 
side of the chart will be found some indications of the miscellaneous 
work done in this direction—note the names of Baire, Brouwer, and 
Lebesgue accompanied by the date 1911. In addition certain dimen­
sion definitions or attempts at definitions are also indicated, and 
there is a notation regarding "cantorian lines," which were studied 
by both Zoretti and Janiszewski among others. (For references, see 
sections 12, 17 of [13], especially pp. 907 and 951-952.) 

Now I do not maintain that any particular mathematician read 
any of the work of these men, and was directly influenced thereby. I 
call attention to their work chiefly as a proof that the notions of curve 
(or "line" as it was frequently called) and dimension were evolving 
in the mathematical culture stream. 

To the right of the center of the chart you will notice the notation 
"Poincaré dimension, 1912." It seemed appropriate to place this over 
to the other side of the chart for several reasons ; the most important 
being that it leads quite naturally to the concept which was finally 
generally accepted as embodying the precise formulation of the in­
tuitive notion of curve and dimension. Another reason for setting 
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this apart from the material on the left side of the chart is that al­
though Poincaré did the most important kind of work in laying the 
foundations of the topology of polyhedrals, as is well known he had 
little acquaintance with or use for the theory of sets. Consequently, 
when he tried to indicate just what the dimension of a space is, in 
such essays as that on The notion of space, for instance [2, p. 243 ff.] 
(or see [14, p. 3]), he thought globally instead of in the small. And 
so his definition is an "in the large" definition—which may suffice for 
a homogeneous space, but most topological spaces are not homo­
geneous. However, the terminology in which it is formulated, such as 
"continua" and "separating" or "cutting," were actually set-theo­
retic. As a result, the definition was not given in precise mathematical 
terms. Nevertheless, anyone who happened to notice it and who had 
the suitable tools in hand could make it precise and a better ap­
proximation to a satisfactory definition. And this is exactly what 
Brouwer did the very next year, in 1913. (See [14, p. 4].) 

Brouwer's paper attracted little attention, and when, in the early 
twenties, a satisfactory theory of curve and dimension was announced 
by Menger and Urysohn (citations may be found in [IS, p. S3 ff.]), 
evidently neither of these gentlemen knew of the work of Brouwer, 
nor of each other's work. It is now known, of course, that all three 
theories are equivalent for a wide class of spaces—the locally con­
nected, separable metric spaces. 

The arrows on the chart, which, as the key in the upper right-hand 
corner states, are supposed to represent influence of any kind, need 
perhaps some further explanation. That the curve and dimension 
theory of Menger and Urysohn was influenced by the various set-
theoretic activities of their predecessors is, I think, too obvious to 
need further comment. As I have already pointed out, it is probable 
that lack of contact with these could have prevented Poincaré from 
setting up some kind of a precise definition of dimension. The arrows 
coming in from the sides, however, are not so obvious. Just how much, 
if any, of the works on dimension problems which preceded them were 
actually read by Menger or Urysohn, I don't know. In the introduc­
tion to his formal presentation of his work published in 1925, Urysohn 
refers to the work of Zoretti on cantorian lines, for instance, and not 
only adopts the same term but entitles his monographs Sur les multi­
plicités Cantoriennes ; he also remarks that his dimension definition is 
quite in conformity with the desires that motivated Poincaré. But 
even if no such direct and obvious influences existed, there is still the 
indirect influence that may have been exercised through the medium 
of others. Menger frequently made gracious acknowledgment to his 
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teacher, Hans Hahn, not, so far as I know, for specific suggestions 
regarding definitions but for general guidance and inspiration; 
Urysohn's association with Alexandroff is well known. 

But my time is running out, and I cannot give further details. I 
have already mentioned how the Brouwer proof of invariance of the 
Schoenflies closed curve contained the germ of the application of the 
homology theory of polyhedrals to general spaces—a fact which led 
Vietoris, who acknowledges his debt to Brouwer, to extend this theory 
to general metric spaces in order to establish an intrinsic form of the 
analogous higher dimensional invariance. (For citations and sketch of 
the developments discussed here, see [16, p. 14].) Let me also call 
attention to the arrows on the extreme right of the chart leading 
from the Jordan Curve Theorem to work of Lebesgue and Brouwer 
in higher dimensions, and thence to the Alexander Duality Theorem 
(which was motivated by the desire to obtain a general higher-dimen­
sional extension of the Jordan-Brouwer separation theorem), and 
hence into algebraic aspects of modern topology. Incidentally, I have 
said very little about the role played by algebra in these matters ; but 
its influence is mainly quite modern, and my intent has been not to 
sketch a history of curve theory, but to indicate as well as I can, in 
the time at my disposal, the manner in which the curve concept has 
influenced various other concepts right down to the inception of 
modern topology. Of course other concepts played a part too, but as 
I said before the threads of influence become quite tangled, and it is 
better to follow one at a time. 

Before leaving the chart, let me point out, to prevent misunder­
standing, the "simplified and incomplete" notation in the upper 
right-hand corner. Many things have been omitted, not because they 
are unknown (although there are many such), but to avoid com­
plicating the diagram. There are, for example, geometric contacts 
that are omitted. If only in the way of providing certain perspective, 
geometric concepts exercised an influence on set theory, for example, 
and on curve and dimension theory. 

4. Some inferences from case histories. Now what can be inferred 
from such observations as these? We can hardly prove anything, in 
the sense that we prove a mathematical theorem, any more than we 
can prove that certain methods of teaching mathematics are the best 
we might use. In such matters we are dealing with a kind of "meta-
mathematics," although not in the technical sense in which the term 
is being used, to be sure. We can, however, make certain inferences 
of value. 

4a. Factors influential in concept formation. For the sake of com-
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pleteness we first note the existence of evolution of mathematical 
concepts from the general cultural environment—the non-mathe­
matical environment, that is. This was not only operative in the 
origin of the primitive concepts concerning number and geometry, 
but has continued throughout mathematical history. I t is going on 
today, as anyone who has worked on war or government projects 
can bear witness. And although it deserves closer study, I shall not 
give it any more attention here, but shall pass on to factors operative 
within mathematics. So from now on, in my conclusions, I shall 
treat mathematics as an organism which, although influenced by an 
outside environment, is going to be of interest only from the stand­
point of its internal structure. 

I have just used the term "organism." This was to emphasize the 
cooperative character of mathematical creation, as contrasted with the 
individual aspect. As Veblen observed, mathematics is "terribly in­
dividual." But we don't work in a vacuum. Neither, it is true, do we 
work in teams like the experimental scientists do, although we do 
collaborate in small groups of two or three—rarely in greater number. 
I have in mind, however, also those types of cooperation which are 
not so obvious—especially the type of cooperation I imply when I 
make the statement that a Newton can carry on only from the level 
which the mathematics of his time has reached. This is not peculiar 
to mathematics, of course—Beethoven was as much indebted to the 
musical developments of his predecessors as to the more obvious in­
ventions of the musical scale in which he wrote and the instruments 
for which he composed. But I think that we mathematicians have 
not been properly conscious of the fact. When, for example, a genius 
of the stature of Leibniz expends so much energy in collecting evi­
dence of the priority of his ideas over those of Newton (see [17], for 
instance), is it not clear that he is not properly aware of the debt 
owed to those on whose shoulders he stood? Or, when a concept has 
germinated and gradually emerged over a period of anywhere from 
50 to 2000 years, and then is suddenly brought into full light through 
the inventive powers of two, or possibly three or four mathematicians 
—and when, moreover, historical research shows that others were 
nearly ready to bring out the idea—does it make sense to call the 
event a coincidence! 

This is not to deprive brilliant intellects that make final syntheses 
of concepts of any credit. Without them, concepts would never get 
born. But it is equally true that without the cooperation which they 
have received from innumerable other workers, many of whom may 
be gone and forgotten, the material from which they made their 
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syntheses, and the tools they used, would not have been available. 
And by properly giving credit where credit is due, perhaps more 
modesty in the effort to establish priority will make everyone con­
cerned a little happier. 

Of course many mathematicians have sensed the organic character 
of mathematics. One of the most recent examples I have noticed of 
this was in an article by H. Weyl entitled A half-century of mathe­
matics [18]. When half-way through this article he pauses and ex­
claims, "The constructions of the mathematical mind are at the same 
time free and necessary. The individual mathematician feels free to 
define his notions and to set up his axioms as he pleases. But the ques­
tion is, will he get his fellow-mathematicians interested in the con­
structs of his imagination? We can not help feeling that certain 
mathematical structures which have evolved through the combined 
efforts of the mathematical community bear the stamp of a necessity 
not affected by the accidents of their historical birth. Everybody who 
looks at the spectacle of modern algebra will be struck by this com­
plementarity of freedom and necessity. " 

The individual mathematician cannot do otherwise than preserve 
his contact with the mathematical culture stream; he is not only 
limited by the state of its development and the tools which it has 
brought forth, but he must accommodate his desires to those concepts 
that have reached a state where they are ready for synthesis. 

Analytic geometry could not be synthesized in the manner which 
Fermât and Descartes are usually credited with doing, until both the 
necessary geometry and algebra were at hand ; nor until their prede­
cessors had carried the synthesis nearly to fruition. The same re­
mark holds for calculus. If we interpret the achievement of Newton 
and Leibniz as the creation of a symbolic method which synthesized 
those ideas of the calculus which were already in existence, then 
their dependence on the cooperation of others is clear. And it seems 
doubtful that Menger and Urysohn would have, independently, ar­
rived at the precise notions of dimension and curve which they 
formulated, without the preliminary development of not only the 
topological tools necessary for their formulation, but of such concepts 
as that of localization which were not, apparently, possessed by Poin-
caré. And that a concept of dimension was trying to break through to 
the mathematical consciousness is evidenced by the related problems 
that had been treated during the preceding decades, as well as by its 
ultimate formulation by two independent workers (as in the case of 
analytic geometry and calculus). 

As I said before, let me emphasize that I do not make these ob-
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servations with any intent of taking away credit where credit is due. 
Furthermore, we must beware of looking backward from the heights 
which we have now scaled and concluding that the tasks of our prede­
cessors were easy. Not long ago I overheard a group of young topolo-
gists discussing the state of topology about 1920, particularly the 
fertile field for research which was opening up at that time in the in­
vestigation of continuous curves. They seemed quite in agreement 
that they had been born 30 years too late—that it is a much harder 
task to find a subject for a dissertation now than it was then. As I 
was one of those who had been born 30 years sooner, I felt compelled 
to point out what the situation really was like at that time. I could 
tell them, for instance, of one young mathematician, who had just 
received the Ph.D. degree, and who decided to forsake topology since 
it was obviously all worked out! None of us really knew of the possi­
bilities at tha t time. And much energy had to be expended on the in­
vention of concepts which now seem almost trivial, and of new 
methods of attack. 

The greatest factor in the evolution of concepts today is probably 
what I would call conceptual contacts] on the individual level, it is 
what we might call a "meeting of minds"; on the group level, it is 
the diffusion of concepts. Examples of the former, the meeting of 
individual minds, are to be found in the many cases of mathe­
maticians, who, due to the political conditions prevailing in Europe 
the past 40 years, moved to new mathematical centers and established 
contacts with men whose ideas and methods often found fruitful 
syntheses with their own. Similar contacts are, of course, being made 
today through the medium of grants to foreign mathematicians 
enabling them to visit mathematical centers in this country—as well 
as in the reverse process wherein members of our group visit abroad. 
Diffusion of concepts on the group level is of that type which was 
exemplified in the past by the fusion of algebra and geometry to form 
analytic geometry; or by the diffusion into geometry of set-theoretic 
methods in order to provide satisfactory formulations of the curve 
and dimension concepts ; or in the recent past by such fusions as those 
of algebra and topology to form algebraic topology or topological 
algebra, depending on which aspect of the fusion you place emphasis. 
Concepts such as these are not the result of the chance meeting of 
two mathematicians at a mathematical gathering or because of an 
invited lectureship, as was the case in some instances which I can 
recall; but resulted from the gradual building up, by many inde­
pendent workers, of a host of component concepts. The manner in 
which such syntheses as these are brought about needs, I imagine, no 
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further amplification. For the individual mathematical discipline 
they form the analogue, within the field of mathematics, of the inter­
play between mathematics and its environment in the general cul­
ture. They point up, of course, the desirability and the necessity, if 
we would encourage healthy mathematical growth, of inter-university 
cooperation on a more enduring basis than is provided by the meet­
ings of societies; even though the latter do foster individual contacts 
and undoubtedly play an important part in developments on the 
higher group level. 

Not far removed from the types of concept formation already men­
tioned is that which consists in the observation of similar patterns 
in several different branches of mathematics, or, at a lower level, in 
several special cases. The classic example is probably the concept of 
abstract group. The Jordan definition of continuous curve illustrates 
the formulation of a concept from observation of its special cases 
commonly used in analysis. And again this is a kind of concept-
formation which, within mathematics, is the analogue of the type of 
concept-formation which has for its basis the observation of mathe­
matical patterns in the external environment, particularly in physics. 

Also of a related character is the introduction of new tools from 
other branches of mathematics. The concept of the general continu­
ous curve space, formulated independently by Hahn and Mazur-
kiewicz, making use of the tools provided by abstract space concepts, 
is one example. Another example is the introduction of the axiomatic 
method into algebra with results which have been remarked upon by 
a number of writers, particularly Weyl [18]. A current example is 
the use of metamathematical tools to establish theorems about the 
theorems in a given branch or branches of mathematics. 

This reminds one of certain methods, which, because of their wide 
applicability, have earned the right to special notice as concept-
builders. The axiomatic method is one of the most notable of these. 
I cannot resist recalling here what Poincaré, in his article entitled The 
future of mathematics, conceived as the chief use to which the method 
would be put [2, p. 382]. He devoted less than half a page to it; re­
member that when he wrote, the method was still quite new in its 
modern sense. After commenting that Hubert had obtained "the 
most brilliant results" with it, he observed that the problem of pro­
viding axiomatic foundations for various parts of mathematics would 
be very "restricted," and "there would be nothing more to do when 
the inventory should be ended, which could not take long. But when," 
he continued, "we shall have enumerated all, there will be many ways 
of classifying all; a good librarian always finds something to do, and 
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each new classification will be instructive for the philosopher." It 
would seem that Poincaré believed that the method was of little im­
portance for mathematical creation. I wonder what his opinion of it 
would be today, if he could see what a tool for research it has become? 

Related to the axiomatic method, in that it provides a special field 
for its use, is the process of altering of concepts already formulated. 
This is the kind of thing we do when we replace an axiom, such as 
the parallel axiom of euclidean geometry for instance, by a contra­
dictory—in the case mentioned replacing the parallel axiom by one 
of the types of non-parallel axioms. Here one has to be especially 
careful, of course, to preserve contact with established theories—or 
as Weyl put it, mindful of whether one will "get his fellow-mathe­
maticians interested in the constructs of his imagination." 

Tha t this process operates on the group level as well as on the in­
dividual level is shown by the case already cited, that of non-euclidean 
geometry. When this began to break through to the individual 
mathematical consciousness, it had already smoldered for years in the 
fires of Saccheri's and others' determination to prove its logical im­
possibility. When it did find expression, it found it in several places. 
As Coolidge remarks [5, p. 73], "The outstanding effect of a com­
parison of the work of Lobachevski and Bolyai is surprise at their 
likeness. Both start with the parallel angle, both note the Euclidean 
nature of the geometry on the limiting surface, both develop the 
formula for corresponding lengths on parallel limiting surfaces, both 
note the relation to spherical trigonometry and the independence of 
this from the parallel axiom." And then when Gauss revealed that 
he had obtained almost identical results earlier, is it to be wondered 
that Bolyai suspected Lobachevski of plagiarism and exclaimed, "It 
can hardly be possible that two, even perhaps three, persons, know­
ing nothing of one another, have achieved almost complete the same 
results at about the same time, even if by different paths." I t is a 
pity that he could not know that not only was it possible, but quite 
probable, since the evolution can be clearly traced in the mathe­
matical and philosophical thought of the preceding centuries. 

Then there is the well known and much abused generalization! 
That this operates on the individual level needs not to be elaborated 
on, since we all use it in our individual research. However, it does 
operate on the group level. For instance, that kind of generalization 
which results from the splitting of concepts may take place on the 
group level; I suppose the splitting of the concept of the real number 
system into its structural or topological aspects, and its operational 
or algebraic aspects, furnishes an example of this. Splitting of con-
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cepts, that is, may be due to the gradual evolution of the mathe­
matical organism rather than to the conscious act of an individual 
mathematician—even though the final syntheses may be the acts of 
individuals. 

4b. Life span of a concept. Having discussed some of the modes by 
which concepts originate, let us turn for a moment to the life of the 
concept, following its exact formulation. The examples of the precise 
formulation of the topological character of continuous curve by 
Hahn and Mazurkiewicz, and that of the general curve and dimen­
sion theory by Menger and Urysohn, are instructive here. I t seems 
that the formulation of a new concept may result in a distinct branch, 
or sub-branch of mathematics as the case may be—a kind of "specialty, " 
we might call it. This may become so popular that one is not in the 
"swing" in his particular field unless he joins in the investigation of 
the new concept. Mathematics is as subject to fashions as any other 
aspect of man's behaviour! Sooner or later, however, the so-called 
specialty is developed to such an extent that either it loses its popu­
larity or achieves immortality through contact with other concepts. 
Thus we find in the cases mentioned that as soon as the related 
widespread investigations had resulted in solutions of the main 
problems, the fundamental parts of the theories were either absorbed 
in new concepts or made part of the general framework, both as to 
tools and materials, of general topology. The theory of continuous 
curves contributed not only such notions as that of local connected­
ness and its properties to the study of other theories, such as that of 
Lie groups, but was absorbed in a new concept, that of lcn spaces 
(see [16, VI] , for instance), whose definition became possible be­
cause of the extension of homology tools to general spaces in the 
decade succeeding the investigations on continuous curves. Like 
comments can be made concerning dimension theory, whose funda­
mental notions are now part of the general equipment of a topologist; 
and which was absorbed in a more general theory of dimensions utiliz­
ing homological notions [19; 14, VI I I ] , and is constantly used in 
applications of topology. I presume that a more elementary example 
may be furnished by elementary geometry as the Greeks knew it. I 
imagine that it had already reached its zenith and was on the wane 
when Euclid wrote his encyclopaedic work—the historians can cor­
rect me if I am wrong about this. Here, if ever, was a case of a mathe­
matical theory being embalmed. When mathematical archeologists, 
so to speak, resurrected it, it seems to have stimulated only futile 
at tempts to prove the parallel postulate or to trisect the angle and 
square the circle. Only new perspective that comes with conceptual 
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contacts and new tools could infuse life into it. And, of course, this 
came in the realization of the validity of the non-euclidean geometries, 
and the introduction of methods of algebra and analysis which re­
sulted in the modern form of analytic geometry, and a surge upward 
in analysis following the rise of the calculus. 

To summarize, then, a concept, having only a limited range of 
possibilities, seems to have a certain life span like that of a star, going 
through a period of tremendous activity and then waning. Without 
the infusion of, or fusion with, new conceptual material, it is prob­
ably destined to die. But there is insufficient evidence to judge of this, 
since fortunately the new material is usually ready. New tools may be 
introduced from other parts of mathematics or even from the same 
branch, or even suggested by cultural elements outside of mathe­
matics; or the concept may join with other concepts to form new ones 
more fruitful than the old; I have mentioned examples of all these 
possibilities. I cannot, as a matter of fact, cite offhand any case of a 
mathematical concept that has died in the sense that it no longer has 
any use whatsoever. The accumulated body of knowledge to which it 
has led is sooner or later seized by workers in other branches of mathe­
matics, or even outside of mathematics, and put to work—often in a 
way of which its devotees never dreamed. 

An interesting fact, which is probably a result of this, is that 
whereas there may seem to emerge from all this the spawning of a 
host of narrow specialties, a process of unification is continually going 
on. It is as though mathematics strikes out in all visible directions, 
but conscious that it will never do to become too diverse, pauses 
periodically to consolidate and unify the gains made before making 
new advances. (For further discussion and case histories see [20] and 
citations therein.) 

5. Import to the individual mathematician. Since I have spent so 
much time in this talk on the group level, I should like to make a 
comment or two about the implications to the individual. Some of 
these I mentioned in my introduction and will not repeat here. I 
should like to make one amplification of my previous remarks con­
cerning the benefits that may accrue to the individual research 
worker, especially those who are starting their careers. I have been 
continually impressed, since beginning this study, with the manner 
in which it brings out not only the advisability and necessity of 
keeping in touch with the mathematical culture stream through the 
media of journals and personal contacts—something we already 
habitually do—but with the suggestive ideas that may be found by 
exploring the works of the past. I am not advocating here a mathe-
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matical "great books program," but just a little browsing now and 
then in the original attempts at formulations of commonly used 
concepts, as well as of concepts not yet satisfactorily denned. They 
often contain suggestions which were impossible of fulfillment at thfc 
time when written, because the tools for exploiting them were not 
available. I t is not difficult to imagine that the dimension theory of 
Poincaré, which was published in a philosophical journal, might, if 
mathematics had developed in different fashion, not yet be susceptible 
to precise formulation; and would, in that case, be lying ready for the 
moment to arrive when the suitable tools become available. 

For a similar reason, it seems that every new generation of mathe­
maticians should give attention to the famous unsolved problems— 
for one never knows when the tools adequate for a solution may have 
evolved. 

6. Future developments. I t is time I brought this talk to a close. 
In doing so, I hope you will be so kind as to let me indulge in a little 
speculation. Up to this point I believe I have stuck to facts as well as 
one can in a domain where, as I said before, proofs are not possible 
in the mathematical sense. What I want to say now I shall freely label 
"speculation," and you can take it for what it seems worth to you. 

Whenever I reflect on the changes that have occurred in mathe­
matics during the past 40 years, I invariably recall that statement of 
Spengler whose Decline of the West, published in 1918, caused such a 
commotion in the intellectual world, namely: That in the concept of 
an abstract group mathematics achieved its "last and conclusive crea­
tion." And his prediction that "the time of the great mathematicians 
is past. Our tasks today are those of preserving, rounding off, refining, 
selection—in place of big dynamic creation, the same clever detail-
work which characterized the Alexandrian mathematic of late Hellen­
ism." Could any prophecy have been demonstrated fallacious more 
quickly and conclusively than this one has been? Also I recall a state­
ment in Struik's little history that "toward the end of the 18th cen­
tury some of the leading mathematicians expressed the feeling that the 
field of mathematics was somehow exhausted. The laborious efforts of 
Euler, Lagrange, D'Alembert, and others had already led to the most 
important theorems; the great standard texts had placed them, or 
would soon place them, in their proper setting; the few mathemati­
cians of the next generation would only find minor problems to solve." 
And this was before 1800! 

If I were given to the vice of prophecy, I would not hestitate to 
risk my reputation as a prophet with the prediction that mathe­
matics, in this year of our Lord 1952, is only reaching out toward 
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maturity, and that given encouragement it will, during the next 50 
years, yield new concepts and methods which will revolutionize the 
subject. I envy those young men who are only on the threshold of 
their mathematical careers, for they will be possessed of powers that 
will put their elders to shame. I have already noticed, and no doubt 
some of you have, evidence of greater powers among recent recruits 
to the ranks of mathematical research. The future will no doubt see 
not only an increase in this, but a corresponding improvement will 
also be noticed in the ranks of undergraduates. I am one of those who 
believe that genius is not a rare occurrence—genius seems rare chiefly 
because of lack of opportunity. And in mathematics opportunity is 
measured to considerable extent by the quantity and magnitude of its 
concepts and the power of its methods. There is every indication 
that these are now approaching an all time high. To take a leaf from 
my own experiences: For some 30 years I have witnessed the growth 
of topology, sometimes halting, sometimes feverish, from a mere 
infant to a size where we don't even at tempt to give it explicit defini­
tion any more. Yet today, I am amazed at the power and ingenuity 
of the new methods and concepts that are being introduced. And 
topology is not unique in this. 

But it is not only for this reason that I feel as I do about the future 
of mathematics. I am also a firm believer in the evolutionary char­
acter of mathematical development. Concepts are not stable; they 
continually grow even though their outcroppings are discrete events. 
This we have noted in the evolution of the concepts of number and 
curve. And when a concept has evolved so far as to achieve a precise 
formulation in the mathematical framework then available, its further 
growth or evolution seems virtually determined by the existence of 
those logical laws and methods which every mathematician observes 
and uses. I t is much as in the case of a particular axiomatic system, 
which, once set up, will lead almost inevitably to a certain set of theo­
rems as its logical consequences. Or, to draw once more upon our 
case history of the concepts of curve and dimension, it is quite clear 
that the concepts of curve and dimension were already evolving in 
the mathematical culture stream before being precisely formulated. 
I t is a nice experiment, by the way, to take a group of graduate stu­
dents who have been trained in basic modern methods, especially in 
topology, but who have little or no acquaintance with dimension 
theory, and to give them Poincaré's notions about dimension. If they 
are any good, they will unfailingly grind out the concept of dimen­
sion which corresponds to these notions, just as Poincaré might have 
if he had had the necessary tools. This would not, of course, be the 
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form which Menger and Urysohn gave. Similarly we can find, with­
out reading too much into the prior facts, the evolving forms of con­
cepts such as the calculus and analytic geometry. Their eventual 
emergence seems to be virtually a certainty. The ways of thought 
in which we are all trained, and which we all share more or less, seem 
as much of a guarantee of certain eventual conceptions being syn­
thesized, from given basic material, as do the logical laws for the 
theorems of an axiomatic system. 

As in any evolutionary process, however, the environment cannot 
be ignored. Just as the individual mathematician does not work in a 
vacuum, and is influenced by the work of his predecessors and co­
workers, so does mathematics itself not evolve in a vacuum. If world 
crises occur, as we have ample reason to fear they may, they may 
negate entirely what I said above about the future of mathematical 
creation. That interplay between evolving concepts and the minds of 
those individual mathematicians who achieve their syntheses can be 
interrupted by forces from without. The process of mathematical 
creation can cease either from stagnation, as from lack of diffusion 
and the resultant mixing of concepts, or from stifling incidental to 
major disruptions of society. The former we have no longer any cause 
to fear; with modern means of communication, and other aids to cul­
tural contacts, our field is more alive than ever before. With good 
fortune, we may escape the latter, and then I think the prophecy that 
I said I would make, if I were a prophet, will come true! 
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