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1. Introduction. The subject of this paper is the theory of a special 
class of linear partial differential equations with variable coefficients 
which are rational functions of the independent variables. The type 
of differential equation considered here is of particular interest be­
cause it arises in a number of seemingly disconnected fields in pure 
and applied mathematics both classical and modern. 

The simplest elliptic differential equation with constant coeffi­
cients is the Laplace equation. Our class may be considered as the 
simplest among those with variable coefficients. Like Bessel's equa­
tion, which plays such a prominent role among ordinary differential 
equations with rational coefficients, our class is derived from the La­
place equation by introduction of a particular type of symmetry. 

We shall deal mainly with elliptic equations, but in a natural way 
our subject will touch upon a class of hyperbolic equations of the 
Euler-Poisson type and on mixed equations of Tricornes type. 

Let us begin by considering a solution ƒ (xi, #2, • • * , xn) of the La­
place equation 

d2f d2f d2f _ 

dx\ dx\ dxl 

We are interested only in axially-symmetric solutions of (1), namely, 
in those which depend on two variables x = Xi, and y = (#2+#I+ • • • 
xl)lf2

y the x-axis being the axis of symmetry. Under these restrictions 
ƒ becomes a function <f>(xy y) of the two variables x and yy and satisfies 
the equation 

d / d<l>\ d / d A 

(2) rfrrj+»v~ïù-°-
The case n = 3 is classical and was investigated already in Laplace's 
time. Later, fundamental progress was made by Stokes in 1842 and 
above all by Beltrami [ l ] in his celebrated papers on symmetric po­
tentials published about 1880. While these investigations were con­
cerned only with ordinary three-dimensional space, it was Arndt [2] 
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who in 1915 first pointed out the importance of the case w = S for 
the theory of torsion of shafts of revolution. 

Let us consider in a more general way the equation 

d / d<l>\ d / d<l>\ 
(3) -lyP - ) + -lyP - J - O , ^ 0 , 

ox \ ox/ oy \ oyf 

for all positive values of the parameter p. For all such values of p we 
shall call </> an axially symmetric potential in a space of n = p+2 di­
mensions. For nonintegral values of p this space is of course fictitious, 
but the corresponding equation (3) can be studied in the "meridian 
plane" (x, y), where it still retains some of the properties of equation 
(2). The theory of our equations for general values of the parameter p 
will be called generalized axially symmetric potential theory and will 
be abbreviated as GASPT. The integral values of p, especially p = 1 
(n = 3), will serve as a guide in the study of these generalized poten­
tials. There is usually no great difficulty in rewriting for any positive 
value of p the familiar and classical formulas of ordinary axially sym­
metric potential theory. For instance, the function (x2+y2)~~lf2 is re­
placed by (x2+y2)~p!2. The limiting case p = 0 leads us back to the 
theory of harmonic functions in the (x, y) -plane. I t will be seen that 
most of our results apply in this case provided the harmonic function 
is symmetric about the x-axis. 

The introduction of nonintegral values of p is not done for the sake 
of formal generalization. On the contrary, it will be shown that some 
interesting problems can be investigated by the method of GASPT. 

2. The stream function and the generalized Stokes-Beltrami equa­
tions. Our differential equation (3) indicates the existence of a 
stream function \f/(x, y) which is defined by the equations 

(4 ) y»<j>x = i/y\ yp<l>v = - \px. 

We shall call (4) the generalized Stokes-Beltrami equations. Beltrami, 
who considered only the classical case p = l, was the first to point 
out the similarity to the Cauchy-Riemann equations. He showed 
by a process of repeated differentiation and integration that every 
potential or stream function generates a descending and ascending 
sequence of pairs of functions satisfying the same equations (4). For 
instance, in order to obtain Beltrami's first "derivative" (<£i, \f/i) 
of the pair (<£, \(/) we put 

(5) <f>i = <t>x\ ^ i = ^*. 

On the other hand, the pair (0*, ̂ * ) , 
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(6) 6» = I (<£<** - y~vWy)\ ^* = I GM* + y p ^)» 

will give us the "primitive function" of the pair (#, ^ ) . In this way 
Beltrami founded a generalized theory of analytic functions which 
was later developed in a systematic way by Bers and Gelbart [3]. 
They considered equations of a more general type than (4) but re­
stricted themselves exclusively to regular solutions, which do not con­
cern us in this paper. Further details of this generalized theory of 
analytic functions can be found in the literature and will not be dis­
cussed further. 

I t follows from (4) that the stream function satisfies the equation 

(7) — ( r p — ) + — ( r p — ) - o. 
dxV dxj dyV dy/ 

Obviously the equation for ^ is obtained from the equation for <j> by 
replacing p by — p. Therefore, both </> and \p satisfy the equation 

d / dz\ d ( dz\ 
(8) _ ( y » - ) + _ ( , * - 1 = 0, 

dx\ dx/ dy\ dy/ 
or 

(9) zxx + zvy + kyrhy = 0, 

for k=p and k= —p respectively. I t is, however, convenient in some 
applications to retain the notations 4> and yp and to write <t>{p} and 
\p{p} in order to emphasize the dependence upon the parameter p. 
In the same sense we shall use the notation z{k}. Since the line y = 0 
is a singular line for the coefficients of our equations, we shall usually 
restrict our considerations to the half-plane y g: 0. 

3. The correspondence principle. The following simple but funda­
mental correspondence principle will be of great importance. It can 
be easily shown (see Weinstein [4]) that 

(10) *{p} - C y * + t y { f + 2} f # à 0 . 

This result means that, given a xp {p}, we can find a function <f> {p+2} 
in two more dimensions, which is defined up to a constant factor C, 
and vice versa. In the notation of equation (9), equation (10) can be 
written as follows: 

(11) z{k} = Cyl~H{2 - * } , - oo < k < + oo. 

In the following paragraphs we shall apply our principle to certain 
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boundary value problems. 

4. The hydrodynamical flow problem and the method of general­
ized electrostatics. The classical boundary value problem in axially-
symmetric hydrodynamics of incompressible perfect fluids is the de­
termination of the flow about a body, the flow having a uniform ve­
locity at infinity. It is an exterior Neumann problem for the potential 
<&. This potential can be written for any index p in the form 

(12) *[p) - x-<l>{p}, 

where the normal derivative d$/dv vanishes on the meridian profile 
of the body. At infinity we have for <£ a development of the type 

ax 
(13) ${p\ = x + + • • • . 

The boundary condition d$/dv = 0 means that d<f>/dv~dx/dv on the 
profile. The introduction of the stream function 

(14) *{p] - (p + l)-*yH-i - f{p} 

reduces our problem to an exterior Dirichlet problem. The stream 
function ^ {p} is single-valued and has at infinity the expansion 

(is) *{p} = (p + i ) - y - - ^ ^{p+2m + ••-. 

It vanishes on the #-axis and assumes a constant value ^o on the 
profile. If the profile and the #-axis form a single streamline, Ŝo will 
be zero. We shall discuss here only this last case in which the domain 
exterior to the profile is simply connected. The Dirichlet problem for 
ty{p} is actually a Dirichlet problem for ${p} which is of a rather 
complicated nature, since ${p\ must assume the value (p+l)~l yp+l 

on the profile. For this reason the following new procedure (see Wein-
stein [5]) is more successful. We make use of (10) and replace i/{p} 
in (14) by (p+l)~1yp+1<t>{p+2}. In this way we obtain in place of 
(14) the following expression: 

(16) *{p} ~(p+ 1)-V+ 1[1 - <t>{p + 2}]. 

The condition &{p} =0 means that <t> {p+2} = 1 on the profile. More­
over, it follows from (15) that <f>{p+2} admits the expansion 

(17) 4>{p + 2} + • • • 
V ' YUT * ) (X2 + 3>2)(H-2)/2 

at infinity. This means that formula (16) reduces the determination 
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of *&{p} to the determination of the electrostatic potential <f>{p-\-2} 
of the body with the same meridian profile but in a space of two more 
dimensions. This simple but fundamental remark is based on the fact 
tha t we have the same factor yp+l in our correspondence principle 
(10) and in equation (14). 

y 

E 

x 

FIG. 1 

A trivial example of our procedure is the determination of the flow 
about a sphere of unit radius which is usually obtained by putting a 
dipole at the origin. In contrast to this classical method we must 
merely find the electrostatic potential of a five-dimensional sphere, 
which is obviously (x2+y2)~zl2. Thus we obtain immediately the fa­
miliar formula 

(18) *{ l} = y— [1 - (x2 + y*)-»/*]. 

Naturally, the applications of our method of generalized electro­
statics are not confined to such simple examples. In fact L. E. Payne 
[6] has recently obtained in this way the flow about a spindle (Fig. 1) 
which, despite its obvious importance, has not been treated pre­
viously. 

In the case of the spindle we use dipolar coordinates defined by the 
equation 

(19) x + iy = ic cot (£ + «y)/2, 

where c is an arbitrary positive constant. The range of coordinates 
is chosen as — <x> <rj<+<x>, 0<%^w. The profile of a spindle in the 
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upper half -plane y ^ 0 is a circular arc given by £ = £o<7r. The region 
exterior to the profile is defined by 0<£<£o. The electrostatic poten­
tial of the three-dimensional spindle was first given by Mehler [7] in 
1881. G. Szegö [8] in his address to the American Mathematical So­
ciety attributes it to C. Neumann. We need here, however, the elec­
trostatic potential of a spindle in five-dimensional space. The gen­
eralization of Mehler's solution to any odd-dimensional space, a 
generalization which is far from trivial, is given by L. E. Payne [ó]. 
By using equation (16), Payne obtains finally the following formula 
for the stream function for the flow about a spindle in a space of 
n = p+2 dimensions (n odd): 

(c sin 02(q+1) [ 21 '2r(l /2)(s - /)*+3'2 

2 ( ? + l ) ( s - 0 2 ( f l + 1 ) L 1 T(q + 3/2) 

/ • - Kg+1\-to)KTl\t) cos aydal 

J o K<?+1>(t0) cosh ax J ' 

In this formula 

5 = cosh rj} t = cos £, and q = (p — l ) / 2 . 

The symbol 2£«+1(£) denotes the (q + 1) -derivative of the conal func­
tion Ka(t) [9]. The classical case is of course given by p = l, and by 
inserting this value for p in (20) we obtain the solution for a three-
dimensional spindle. 

In order to evaluate the advantages of the method of generalized 
electrostatics, let us consider now the flow problem about a lens (Fig. 
2). This flow was determined for the first time in 1947 by M. Shift­
man and D. C. Spencer [lO], who applied an ingenious and difficult 
procedure involving the method of images in a multi-sheeted Rie-
mann-Sommerfeld space. In a much simpler way Payne obtains the 
solution [ô] by a straightforward generalization to five dimensions 
of the electrostatic problem for the ordinary three-dimensional lens 
solved already in 1868 by Mehler [ l l ] . Payne uses in place of (19) 
the peripolar transformation 

(21) x+ iy = - c cot (£ + ir?)/2, c > 0. 

The profile of a lens is given by two intersecting circular arcs £=£1 
and £ = £2. We assume that 0 <& <£2 < 2w. The external region is given 
by the inequalities rç>0, £2 — 2ir<%<%\. The stream function ob­
tained by Payne in the most interesting case w = 3 (£ = 1) is given by 
the formula 

(20) 
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*{!} = 
(22) 

where 

c sinh2 r\ 

2 (cosh t\ — cos £)2 [ 1 + 2«'2(cosh i) - cos Ö"2 

ƒ. 
( i ) / 

• F(a,S)KV(s) 
COSh «7T 

<fo , 

*(«.*) ' 
sinh a(Si—£) cosh a(7r—fcO+cosh «Or—£i) sinh a(27r—£2+Ö 

sinh a(27T—$2+$i) 

and l^PCs) denotes the first derivative of the Mehler function [9]. 

FIG. 2 

There seems to be no elementary computational way of identifying 
Payne's results with those of Shiffman and Spencer. Of course, the 
identity of the two solutions is guaranteed by the uniqueness theorem. 
According to an oral communication from Professor Spencer, it would 
be difficult if not impossible to obtain the flow about a spindle by the 
method of images*. 

5. Torsion of shafts of revolution. Let us discuss here briefly 
another interesting application of the method of generalized electro­
statics, namely, an application to the problem of the torsion of shafts, 
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which has already been mentioned in the Introduction. This problem 
has been reduced by Arndt to the determination of two functions $ 
and ^ defined in the meridian plane and satisfying equations (4) for 
p = 3. The profile of the shaft is defined by lines ^ = \F {3} = constant. 

*{3} » const. 

D 

FIG. 3 

Therefore, the problem of torsion is essentially equivalent to the 
flow problem in a five-dimensional space. For instance, the flow about 
a closed profile on which S£ {3} = 0 (see Fig. 3) can be interpreted as 
the solution of a torsion problem for a shaft with a cavity, the outer 
boundary of the shaft being given by lines ^{3} = constant. For 
moderately large values of this constant the outer boundary of the 
profile deviates only slightly from a parallel to the #-axis. According 
to the correspondence principle (10) the five-dimensional flow prob­
lem may be interpreted as an electrostatics problem in a space of 
seven dimensions. In this way several problems in the torsion of shafts 
in ordinary three-dimensional space have recently been solved by an 
application of the theory of electrostatics in a seven-dimensional 
space (see Weinstein [12]). 

6. Capacity, virtual mass, and generalized symmetrization. The 
most important functional in electrostatics is the capacity of a con­
ductor. For bodies of revolution in a space of any number of dimen­
sions the capacity can be defined as a Dirichlet integral in the (xf y)-
plane taken over the region E exterior to the profile of the body. As 
always, we restrict ourselves to non-negative values of y. 

In the following we shall often use notations like <t>[n] in place of 
<f>{p] to indicate the number of dimensions. In this notation the ca­
pacity C[n] corresponding to a body B [n] with a meridian section D 
is given by the following formula, which generalizes the classical case 
# = 3: 

(23) C[n] = con-la^1 J J /""2(grad <t>[n]) dxdy. 

As in previous paragraphs, we take the same section D for all values 
of n. The co's in (23) denote areas of unit hyperspheres. The function 
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<t>[n] represents the electrostatic potential already introduced in sec­
tion 4. 

For the hydrodynamical problem the most important quantity is 
the virtual mass M[n] of B[n] for a flow in the ^-direction. Putting 
the density and the velocity at infinity equal to unity, we have 

(24) M[n] = « ^ i f f ;y*-2(grad <t>[n])Hxdy. 

Let us note that the potential <l>[n] in (24) is not the electrostatic 
potential but the velocity potential introduced by equation (12). 
Using the associate function ^[w],we may replace formula (24) by 

(25) M[n] = cow_! f f y-<*-2>(grad $[n])2dxdy. 

By the correspondence principle we can introduce in place of ^[n] 
the electrostatic potential # [ w + 2 ] . An integration by parts leads 
then to the following fundamental formula, given by Payne and 
Weinstein [13], 

(26) M[n] + V[n] = TT"'2 \{n - l ) l Y — + lX\ C[n + 2], 

where 

(21) V[n] = wn_i f f yn~Hxdy. 

Obviously V[n] is the w-dimensional volume of the body B[n]. For 
n = 3 formula (26) was given already by G. I. Taylor [14] and men­
tioned by Schiffer and Szegö [IS]. In these papers the right-hand 
side of (26) was called a dipole coefficient. However, it is advanta­
geous to interpret the dipole coefficient as a capacity in (n+2) dimen­
sions because numerous known results for the capacity of ordinary 
three-dimensional bodies of revolution remain valid for any value of 
n. Thus, the fundamental formula (26) may be used for the study of 
the virtual mass. In this connection let us now say a few words about 
generalized symmetrization. 

The influence of symmetrization on the capacity has been recently 
investigated by numerous authors, the foremost of whom are Pólya 
and Szegö [ ló] . Some particular results for the virtual mass have been 
obtained by Garabedian and Spencer [17]. It is interesting to note 
that the method of generalized electrostatics not only gives simpler 
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proofs of several known results but also leads to a natural extension 
of the concept of symmetrization. 

Let us consider an ordinary body of revolution B[3] in a three-
dimensional space. A line x = constant, y^O will intersect the profile 
Loi Bin m points, yi(x) >y^{x) > • • • >ym(x) >0. It is obvious that 
the number of intersections m depends upon x. (See, for example, 
Fig. 2.) This body can be symmetrized with respect to its axis of 
symmetry in a number of ways. One of these is the Schwarz symme­
trization, which preserves the volume of B [3]. Another is the Steiner 
symmetrization of the meridian section of B [3], which preserves the 
area of the section but in general decreases the volume. Under 
Schwarz symmetrization the profile L is replaced by a new profile Z,2 

given by the equation y2(x) = yl(x) — $(x)+ • • • . In the case of 
Steiner symmetrization the profile L is replaced by another curve Li 
defined by the equation y(x) =yi(x) — y2(x)+ • • • . This leads to the 
following generalization. Let us define a profile Lq by the equation 

(28) /(*) = £ ( - ! ) ƒ*(*), 

where q is any positive integral or nonintegral number. We say that 
the profile Lq given by the function y(x) has been obtained from L by 
a generalized symmetrization Sq. From now on let us assume, as in 
section 4, that for any n^S all profiles are boundaries of bodies of 
revolutions in an «-dimensional space. We can then prove the fol­
lowing three theorems (see Payne and Weinstein [13]): 

I. V[n] does not increase under Sq for 0<q^n— 1 and does not 
decrease under Sq for q^n — 1. In particular, V[n] remains invariant 
under Sw-i. 

II. C[n] does not increase under Sq for 0 < q ^ n — 1. 
III. M[n] does not increase under Sq for n — l^-q^n+1. Let us 

observe that, by (26), Theorem III follows immediately from Theo­
rems I and II. 

The main tools for the proofs of these theorems are the inequali­
ties 

[ m j. 1 «oVi1 / («+* ) r m nillq 

fc=i J L &=i J 

and 

[ m h 1 ni11* f m *• 1 «J-,"l1 / («+* ) 
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which are valid for positive q and 5 when^i>y2> • • • >ym>0. The 
first of these inequalities is classical. The proof of the second inequal­
ity is due to H. F. Weinberger and can be found in [13]. 

Theorem I follows immediately from (29) and (30). As to Theorem 
II concerning the capacity, we proceed following the pattern given 
in [16]. We introduce a function z(x, y) which is constant over the 
domain D and vanishes on the boundary of a large half-circle A. We 
find, using (29), that the integral generalizing the surface area 

(31) I = ƒ ƒ /~ 2 [1 + z\ + zl]V2dxdy 

does not increase under a symmetrization S„_i. Let us now replace 
z(x, y) by €%(#, y) where e is a small positive number tending to zero. 
Then we find, by using Theorem I, that the integral 

(32) ƒ ƒ y*~\x\ + xl)dxdy 

does not increase under Sn-i. By letting the radius of A tend to in­
finity, we find that we can replace % in (32) by the electrostatic poten­
tial <t>[n] and the domain of integration A by the exterior E of D. In 
this way it is shown that C[n] does not increase under Sn-i. Let us 
now consider the influence of the symmetrization Sq for 0<q^n— 1. 
According to the inequality (30) no point of the profile Lq lies out­
side of Ln_i. The well known monotone property of the capacity re­
mains valid in any number of dimensions. We see, therefore, that 
under Sq the capacity is a nondecreasing function of q. This remark 
concludes the proof of Theorem II. 

7. Existence and uniqueness theorems for data on the singular 
line. In the previous paragraphs we have been chiefly concerned 
with certain classical boundary value problems in GASPT. Let us 
now turn to the general theory of our associated equations (3) and 
(7), which we may replace by the single equation (9) considered for 
all real values of k. For positive values of y this equation is elliptic 
with regular analytic coefficients. Therefore, as long as y is positive, 
the general theory of such equations applies. However, the #-axis is 
a singular line for the coefficients of (9). In a certain sense there is an 
analogy between our equation and ordinary differential equations 
with a singular end point. As is well known, equations such as Bes-
sel's equation admit some solutions which remain regular^ at this 
point. Similarly we have some functions z which remain regular on 
the #-axis, for example, z~x. For such solutions the following unique-
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ness and existence theorems are of importance. 
If &3^0, — 1, — 2, • • • , then there is one and only one function 

z {k} which is regular analytic in a region containing a segment of the 
x-axis in its interior, and which takes prescribed analytic values g(x) 
on this segment. This function z is necessarily an even function of y. 
If k = 0, —2, —4, • • - , the solution z{k} always exists for arbitrary 
analytic values on the x-axis but is determined only up to an addi­
tive function of the type yl~kz{2 — k}, where the values of z\2 — k) 
on the x-axis are arbitrary. If, however, &= — 1, — 3, — 5, • • • , then 
z {k} exists only if the analytic values on the x-axis are given as an 
arbitrary polynomial in x of degree not exceeding —£. Again, in this 
case, the function z{k} is determined only up to an additive function 
yl-hz{2 — k}. This indétermination is to be expected in view of the 
correspondence principle. 

In this generality the existence and uniqueness theorems were given 
by Hyman [18], who used a power series expansion of z {k}. For posi­
tive k a uniqueness theorem had already been given by Weinstein 
[4]. I t should be noted also that for k>0, z {k} can be explicitly given 
as a Laplace integral, 

(33) z{ k} = Ck I g(% + iy cos a) sin*-1 ada 
Jo 

where Cï1 = 2k-1T2(k/2)T-1(k). A generalization of (33) for k^O will 
be given in a forthcoming paper by Diaz and Weinstein. 

8. The fundamental solution. The uniqueness theorem of section 
7 may be used as an identification principle permitting us to identify 
a complicated solution by its values on the x-axis. The simplest ex­
ample is the Lipschitz integral 

, , 2y-«T(q + 1) f °° 
(34) 4>*{p] - • ; W ' t*<r\*\*Jq(yt)dt - (*» + y«)-"». 

T{Zq + I) J 0 

This integral may be identified by its values on the x-axis, namely, 
|x|~~*. In (34) we have p>0 and q = (p — l)/2. This solution has a 
singularity on the x-axis. The first step of the general theory, already 
clearly recognized by Beltrami for p=*l, is to find a fundamental 
solution with a logarithmic singularity at an arbitrary point above the 
x-axis, say at x = 0, y = &>0. A fundamental solution has the form 

(35) 4>{p) - u(x, y) log [x2 + (y - by] + v(x, y), 

where u and v are regular analytic at the singular point. In the classi­
cal case p = 1 (n = 3) Beltrami points out that such a solution would 
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correspond to the potential of a uniform ring with the point b as the 
trace in the meridian half-plane. By our identification principle this 
solution can be easily constructed for p = 1 due to the fact that it 
takes on the #-axis the value (x2+62)~1/2. Beltrami's result suggests 
that for p>0 the fundamental solution defined in the entire half-
plane y^O will be the solution taking the value (x2+b2)~"pl2 on the 
x-axis. There is a bewildering variety of forms of such a solution, all 
of which coincide by the identification principle. The formula [4] 

(36) <t>{p) = TCp(by)-« f Vl'l*Jq(yt)Jg(bt)dt, q = ^— 
J o 2 

is a direct generalization of Beltrami's formula for p = l. The con­
stant Cp has been introduced in (S3). Another expression (see Wein-
stein [4]), which shows more easily that <t>{p] is actually of the form 
(35), is given by 

(37) 4>{p] = Cp f (x2 + y2 + b2 - 2by cos a)"»12 s i n ^ W a . 
J 0 

9. The stream function and the integrals of Weber-Shafheitlin. I t 
may be surmised that Beltrami chose the expression (36) for the fun­
damental solution because it was then easy to compute the associate 
function \[/. As | x\ is equal to x or — x according to whether x is posi­
tive or negative, we obtain, generalizing the computations of Bel­
trami, the following expressions for \{/: 

(38) +̂ = - «CJrty*1 f e^J^y^J^dt, ^ 0 , 
J 0 

(39) 4r = vCJbrty*1 f extJq+1(yt)Jq(bt)dt = - ^+, x g 0. 

At this point Beltrami, who considers only the case g = 0, makes a 
fundamental mistake in not realizing that the associate function xf/ 
is a many-valued function and that \p+ and \p~ represent two of its 
branches which do not coincide on a part of the ^-axis. Beltrami's 
error has often been repeated. We shall show that this error is more 
than a historic curiosity as the investigation of the situation leads 
to an interesting extension of the theory of discontinuous integrals. 
As d<j>/dx = Q on the y-axis, we see that \p+ takes constant values on 
the interval 0^y<b and the interval b<y< 00. The first of the con­
stants is zero as \p+ is zero at the origin. Let us now apply the rela­
tionship 
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yp —ds= —-ds 
ov J as 

to an infinitesmal arc of a circle with center at 6. The computation of 

y 

• ^+ «const. 

.,/,+ = () 

FIG. 4 

the residue of the integral on the left shows that \//+ is locally propor­
tional to the angle /3 (Fig. 4). This leads to the fundamental formula 
(see Weinstein [4]) 

(41) lim yq+1 

ƒ* 
J 0 

"J9+1(yt)Jq(bt)dt = — f, 
TT 

where P—»(0, b) along a ray. Let us note that, for integral values of 
p, Van Tuyl [19] and also Sadowsky and Steinberg [20 ] expressed 
the many-valued function \p, defined by (38) and (39), in terms of 
elliptic integrals. The formula (41) contains as a special case the re­
sults of Weber and Schafheitlin. In fact, by taking j3=7r, we obtain 
not only the limit but the constant value of \f/+ on the interval 
b <y < oo, namely —itCp. Choosing /3 = T / 2 , we obtain \p+ = — (T/2)CP 

at the branch point. These results are obviously equivalent to the 
classical Weber-Shafheitlein formula 

(42) ƒ' 
J o 

Ji+i{yt)Jq{U)dt = 

fO, y < b, 

(2b)~\ y = b, 

|_J«y-(«+l>( y>b. 
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Thus, our theory establishes a connection between discontinuous in­
tegrals and many-valued functions. 

10. The Green's function for a half-plane and Poisson's integral. 
Let us use again the notation z{k\ instead of <i>{p} and ${p}* In 
section 8 we gave several expressions which represent a fundamental 
solution z{k}1 k>0, in the half-plane 3>â0. The equation (11), 
z {k} = Cyl~~kz {2 — k}, permits us to find new fundamental solutions 
in the large which are of particular interest in the interval — <*> <k < 1. 
They are obtained by taking for z {2 — k} the fundamental solutions 
corresponding, in the presentation notation, to (36) or (37). As these 
new fundamental solutions vanish on the #-axis, we have thus estab­
lished an explicit formula for the Green's function belonging to the 
half-plane y^O for the equation zxx+zyy-\- (k/y)zy — 0, for — oo <k 
< 1 . Corresponding to this Green's function one has a Poisson's 
integral formula 

(43) z\k\ = Ay1 J ^ [ ( s_ ^ ^ p - * ) ^ 

which solves the Dirichlet problem for the half-plane y è 0, for given 
bounded continuous boundary values ƒ (J). The numerical constant 
A is determined by putting ƒ ( J ) s i . As it will be shown in a forth­
coming paper, Green's function does not exist for k*zl. 

11. Tricomi's equation. One of the most interesting applications 
of GASPT is a new approach, given by Weinstein [22], to the theory 
of Tricomi's equation 

(44) I?*** + s„ = 0, z = z(£, rj). 

This is the simplest equation of mixed type. It is elliptic in the upper 
half-plane rj>0 and hyperbolic in the lower half-plane 77 <0. 

In the hyperbolic half-plane rj <0 let us put 

(45) * - «, t = 2 ( - n ) "V3. 

In this way we get as a normal form for Tricomi's equation an 
Euler-Poisson equation 

1 
(46) Zxx — zu — — *t = 0, 

ot 

which belongs to the type of Euler's equation treated by Riemann 
in his celebrated memoir on gas dynamics. Equation (46) was used 
by Tricomi and his successors as a main road of access to the general 
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study of the mixed equation (44). More recently, the following new 
approach has been proposed [21 ; 22]. Let us first consider the elliptic 
half-plane T/>0. Tricomi's equation can be reduced by the trans­
formation 

(47) x - £, y - 27/»>2/3, v > 0, 

to the equation 

1 
(48) ZXX + Zyy + — Zy = 0 

3y 
which is an axially symmetric potential in 2\ dimensions. Therefore, 
the results of GASPT can be applied immediately. 

Before proceeding, let us make the following simple remark. To any 
solution of the equation 

k 
(49) ZXX + Zyy + — Zy - 0, * ^ 0, 

y 
there corresponds a solution of the equation 

k 
(50) zxx - ztt zt = 0, k < 0, 

V 

which is obtained from (48) by putting y~iL For instance, to the 
Laplace integral (33) corresponds the following solution of Euler's 
equation : 

(51) z{ k} = Ck f g(x + t cos a) sin*-1 ada, ,k > 0, zt(x, 0) = 0, 
J o 

which is a celebrated formula given by Poisson. 
For certain rational values of the parameter k the equations (49) 

and (50) are connected by an equation of Tricomi's type (44) in 
which the factor rj is replaced by rç2m+1, w = 0, ± 1 , ±2, • • • . 

Let us now return to Tricomi's equation. A question of paramount 
interest, widely discussed in recent years, is the determination of a 
fundamental integral which is defined in the entire plane and has a 
logarithmic singularity in the elliptic half-plane. 

The simplest way to obtain such an integral is to take the funda­
mental solution (37) corresponding to a ring and rewrite it in the 
J, t\ coordinates for t\ >0. This solution takes the value 

(52) «ft, 0) - ft2 + (4/9)/3')-i/«, (4/9)/3« - b\ 

on the £-axis while s, = 0. Then, using Poisson's formula (51) for 
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Euler's equation, we obtain an analytic continuation for all rj^O 
given by 

(53) *(*,*) = C 1 / 3 r T [ a+(2 /3 ) ( -~ i 7 ) 3 / 2 cosa ) 2 +(4 /9 )^h 1 / 6 s in - 2 / 3 a^ . 
J o 

This procedure indicates the fruitful correspondence between 
GASPT, the Euler-Poisson-Riemann equation, and Tricomi's equa­
tion. 

12. Concluding remarks. The review of GASPT given in the 
preceding paragraphs is by no means complete. We have omitted 
numerous applications such as transonic flow (Weinstein [22]), the 
method of sources and sinks (Weinstein [23; 24]), the theory of dis­
locations (Weinstein [12]), and turbulent diffusion [25]. Neither did 
we mention the extension of the Riemann's integration method as 
given by Martin [26] and later by Diaz and Martin [27] in which a 
pair of associate Euler-Poisson equations plays an important part in 
the Cauchy problem for the wave equation. 

Finally, there is an important extension of GASPT to equations 
for functions z(xi, • • • , xm) of m>2 variables. The equation (9) is 
here replaced by 

d2Z d2Z d2z k dz 

(54) __ + . . . + _ _ + _ + _ «o, 
<TXi ÖXm_i uXm Xm uXm 

which is the Beltrami-Laplace equation on a Riemannian manifold 
denned by the metric 

(55) ds2 - ' * + " ' + ^ . 
(02*/<2—> 

This metric is of particular interest, since a special case (k = 2 — m) 
of (55) is the ds2 of a Poincaré manifold of constant negative curva­
ture — 1. We note finally that there is a formal correspondence be­
tween (54) and the Euler-Poisson-Darboux equation in several vari­
ables which plays such an important role in the integration of the 
wave equation. These questions, however, would lead us into some 
problems concerning hyperbolic equations, which lie beyond the 
scope of the present address [28]. 

Added in proof {January 27, 1953). In a paper presented to the 
American Mathematical Society, A. Huber extended considerably the 
results of §7 by proving the following uniqueness theorem: If z{k} 
is a solution of (54) assuming the boundary value 0 on an open sub-
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set 5 of the hyperplane xm = 0, then, for k^l, z{k} = 0 , and for 
k<l, z{k) =xj,~fcz{2 — k}} where z{l — k) is analytic also on 5. A 
fundamental solution in the large for (54) has been recently given 
by Diaz and Weinstein in a paper to be published in the Anniversary 
Volume for R. von Mises. 
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