
ÉLIE CARTAN AND HIS MATHEMATICAL WORK 

SHIING-SHEN CHERN AND CLAUDE CHEVALLEY 

After a long illness Élie Cartan died on May 6, 1951, in Paris. 
His death came at a time when his reputation and the influence of 
his ideas were in full ascent. Undoubtedly one of the greatest mathe­
maticians of this century, his career was characterized by a rare 
harmony of genius and modesty. 

Êlie Cartan was born on April 9, 1869 in Dolomieu (Isère), a 
village in the south of France. His father was a blacksmith. Cartan's 
elementary education was made possible by one of the state stipends 
for gifted children. In 1888 he entered the "École Normale Su­
périeure," where he learned higher mathematics from such masters 
as Tannery, Picard, Darboux, and Hermite. His research work 
started with his famous thesis on continuous groups, a subject sug­
gested to him by his fellow student Tresse, recently returned from 
studying with Sophus Lie in Leipzig. Cartan's first teaching position 
was at Montpellier, where he was "maître de conférences" ; he then 
went successively to Lyon, to Nancy, and finally in 1909 to Paris. 
He was made a professor at the Sorbonne in 1912. The report on his 
work which was the basis for this promotion was written by Poincaré;1 

this was one of the circumstances in his career of which he seemed to 
have been genuinely proud. He remained at the Sorbonne until his 
retirement in 1940. 

Cartan was an excellent teacher; his lectures were gratifying intel­
lectual experiences, which left the student with a generally mistaken 
idea that he had grasped all there was on the subject. It is therefore 
the more surprising that for a long time his ideas did not exert the 
influence they so richly deserved to have on young mathematicians. 
This was perhaps partly due to Cartan's extreme modesty. Unlike 
Poincaré, he did not try to avoid having students work under his 
direction. However, he had too much of a sense of humor to organize 
around himself the kind of enthusiastic fanaticism which helps to 
form a mathematical school. On the other hand, the bulk of the 
mathematical research which was accomplished at the beginning of 
this century in France centered around the theory of analytic func­
tions; this subject, made glamorous by the achievement represented 

1 This report was in part published in Acta Math. vol. 38 (1921) pp. 137-145. It 
should be of considerable historic interest to have now a complete version of this 
report. 
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by Picard's theorem, offered many not too difficult problems for a 
young mathematician to tackle. In the minds of inexperienced begin­
ners in mathematics, Cartan's teaching, mostly on geometry, was 
sometimes very wrongly mistaken for a remnant of the earlier 
Darboux tradition of rather hollow geometric elegance. When, largely 
under the influence of A. Weil, a breeze of fresh air from the outside 
came to blow on French mathematics, it was a great temptation to 
concentrate entirely on the then ultra-modern fields of topology or 
modern algebra, and the ideas of Cartan once more, though for other 
reasons, partially failed to attract the amount of attention which was 
their due. This regrettable situation was partly corrected when 
Cartan's work was taken (at the suggestion of A. Weil) in 1936 to be 
the central theme of the seminar of mathematics organized by Julia. 
In 1939, at the celebration of Cartan's scientific jubilee, J. Dieudonné 
could rightly say to him: " . . . vous êtes un "jeune," et vous com­
prenez les jeunes"—it was then beginning to be true that the young 
understood Cartan. 

In foreign countries, particularly in Germany, his recognition as a 
great mathematician came earlier. It was perhaps H. Weyl's funda­
mental papers on group representations published around 1925 
that established Cartan's reputation among mathematicians not in 
his own field. Meanwhile, the development of abstract algebra 
naturally helped to attract attention to his work on Lie algebra. 
However, the reception of his contributions to differential geometry 
was varied. This was partly due to his approach which, though lead­
ing more to the heart of the problem, was unconventional, and partly 
due to inadequate exposition. Thus Weyl, in reviewing one of 
Cartan's books [41 ],2 wrote in 1938:8 "Cartan is undoubtedly the 
greatest living master in differential geometry. . . . I must admit 
that I found the book, like most of Cartan's papers, hard 
reading. . . ." This sentiment was shared by many geometers. 

Cartan was elected to the French Academy in 1931. In his later 
years he received several other honors. Thus he was a foreign mem­
ber of the National Academy of Sciences, U.S.A., and a foreign Fel­
low of the Royal Society. In 1936 he was awarded an honorary degree 
by Harvard University. 

Closely interwoven with Cartan's life as a scientist and teacher 
has been his family life, which was filled with an atmosphere of 
happiness and serenity. He had four children, three sons, Henri, Jean, 

2 Numbers in brackets refer to the bibliography at the end of the paper. 
8 Bull. Amer. Math. Soc. vol. 44 (1938) p. 601. 
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and Louis, and a daughter, Hélène. Jean Cartan oriented himself 
towards music, and already appeared to be one of the most gifted 
composers of his generation when he was cruelly taken by death. 
Louis Cartan was a physicist; arrested by the Germans at the be­
ginning of the Résistance, he was murdered by them after a long 
period of detention. There is no need to say here that Henri Cartan 
followed in the footsteps of his father to become a mathematician. 

Cartan's mathematical work can be roughly classified under three 
main headings: group theory, systems of differential equations, and 
geometry. These themes are, however, constantly interwoven with 
each other in his work. Almost everything Cartan did is more or less 
connected with the theory of Lie groups. 

S. Lie introduced the groups which were named after him as 
groups of transformations, i.e., as systems of analytic transforma­
tions on n variables such that the product of any two transforma­
tions of the system still belongs to the system and each trans­
formation of the system has an inverse in the system. The idea of 
considering the abstract group which underlies a given group of 
transformations came only later; it is more or less implicit in Killing's 
work and appears quite explicitly already in the first paper by 
Cartan. Whereas, for Lie, the problem of classification consisted in 
finding all possible transformation groups on a given number of 
variables—a far too difficult problem in the present stage of mathe­
matics as soon as the number of variables is not very small—for 
Killing and Cartan, the problem was to find all possible abstract 
structures of continuous groups; and their combined efforts solved 
the problem completely for simple groups. Once the structures of all 
simple groups were known, it became possible to look for all possible 
realizations of any one of these structures by transformations of a 
specified nature, and, in particular, for their realizations as groups 
of linear transformations. This is the problem of the determination of 
the representations of a given group; it was solved completely by 
Cartan for simple groups. The solution led in particular to the dis­
covery, as early as 1913, of the spinors, which were to be re-dis­
covered later in a special case by the physicists. 

Cartan also investigated the infinite Lie groups, i.e., the groups of 
transformations whose operations depend not on a finite number of 
continuous parameters, but on arbitrary functions. In that case, 
one does not have the notion of the abstract underlying group. Cartan 
and Vessiot found, at about the same time and independently of each 
other, a substitute for this notion of the abstract group which con­
sists in defining when two infinite Lie groups are to be considered as 
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isomorphic. Cartan then proceeded to classify all possible types of 
non-isomorphic infinite Lie groups. 

Cartan paid also much attention to the study of topological prop­
erties of groups considered in the large. He showed how many of 
these topological problems may be reduced to purely algebraic 
questions; by so doing, he discovered the very remarkable fact that 
many properties of the group in the large may be read from the in­
finitesimal structure of the group, i.e., are already determined when 
some arbitrarily small piece of the group is given. His work along 
these lines resembles that of the paleontologist reconstructing the 
shape of a prehistoric animal from the peculiarities of some small 
bone. 

The idea of studying the abstract structure of mathematical ob­
jects which hides itself beneath the analytical clothing under which 
they appear at first was also the mainspring of Cartan's theory of 
differential systems. He insisted on having a theory of differential 
equations which is invariant under arbitrary changes of variables. 
Only in this way can the theory uncover the specific properties of the 
objects one studies by means of the differential equations they 
satisfy, in contradistinction to what depends only on the particular 
representation of these objects by numbers or sets of numbers. 
In order to achieve such an invariant theory, Cartan made a sys­
tematic use of the notion of the exterior differential of a differential 
form, a notion which he helped to create and which has just the re­
quired property of being invariant with respect to any change of 
variables. 

Raised in the French geometrical tradition, Cartan had a constant 
interest in differential geometry. He had the unusual combination of a 
vast knowledge of Lie groups, a theory of differential systems whose 
invariant character was particularly suited for geometrical investiga­
tions, and, most important of all, a remarkable geometrical intuition. 
As a result, he was able to see the geometrical content of very compli­
cated calculations, and even to substitute geometrical arguments for 
some of the computations. The latter practice has often been baffling 
to his readers. But it is an art whose presence is usually identical 
with the vigor of a geometrical thinker. 

In the 1920's the general theory of relativity gave a new impulse to 
differential geometry. This gave rise to a feverish search of spaces 
with a suitable local structure. The most notable example of such a 
local structure is a Riemann metric. It can be generalized in various 
ways, by modifying the form of the integral which defines the arc 
length in Riemannian geometry (Finsler geometry), by studying 
only those properties pertaining to the geodesies or paths (geometry 
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of paths of Eisenhart, Veblen, and T. Y. Thomas), by studying the 
properties of a family of Riemann metrics whose fundamental forms 
differ from each other by a common factor (conformai geometry), etc. 
While in all these directions the definition of a parallel displacement 
is considered to be the major concern, the approach of Car tan to 
these problems is most original and satisfactory. Again the notion of 
group plays the central rôle. Roughly speaking, a generalized space 
(espace généralisé) in the sense of Cartan is a space of tangent spaces 
such that two infinitely near tangent spaces are related by an in­
finitesimal transformation of a given Lie group. Such a structure is 
known as a connection. The tangent spaces may not be the spaces of 
tangent vectors. This generality, which is absolutely necessary, gave 
rise to misinterpretation among differential geometers. As we shall 
show below, it is now possible to express these concepts in a more 
satisfactory way, by making use of the modern notion of fiber 
bundles. 

We can perhaps conclude from the above brief description that 
Cartan's mathematical work, unlike that of Poincaré or Hadamard, 
centers around a few major concepts. This is partly due to the 
richness of the field, in which his pioneering work has opened 
avenues where much further development is undoubtedly possible. 
While many of Cartan's ideas have received clarification in recent 
years, the difficulties of conceiving the proper concepts at the early 
stage of development can hardly be overestimated. Thus in writing 
on the psychology of mathematical thinking, Hadamard had to ad­
mit "the insuperable difficulty in mastering more than a rather ele­
mentary and superficial knowledge of Lie groups."4 Thanks to the 
development of modern mathematics, such difficulties are now eased. 

Besides several books Cartan published about 200 mathematical 
papers. It is earnestly to be hoped that the publication of his col­
lected works may be initiated in the near future. Not only do they 
fully deserve to find their place on the bookshelves of our libraries 
at the side of those of other great mathematicians of the past, but 
they will be, for a long time to come, a most indispensable tool for all 
those who will attempt to proceed further in the same directions. 

We now proceed to give a more detailed review of some of the 
most important of Cartan's mathematical contributions. 

I. GROUP THEORY 

Cartan's papers on group theory fall into two categories, dis­
tinguished from each other both by the nature of the questions 

4 J. Hadamard, The psychology of invention in the mathematical field, Princeton, 
1945, p. 115. 
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treated and by the time at which they were written. The papers of 
the first cycle are purely algebraic in character; they are more con­
cerned with what are now called Lie algebras than with group theory 
proper. In his thesis [3], Car tan gives the complete classification of 
all simple Lie algebras over the field of complex numbers. They fall 
into four general classes (which are the Lie algebras of the uni-
modular groups, of the orthogonal groups in even or odd numbers of 
variables, and of the symplectic groups) and a system of five "excep­
tional" algebras, of dimensions 14, 52, 78, 133, and 248. Killing had 
already discovered the fact that, outside the four general classes, 
there can exist only these five exceptional Lie algebras; but his proofs 
were incorrect a t several important points, and, as to the exceptional 
algebras, it is not clear from his paper whether he ever proved that 
they actually existed. Moreover, in his work, the algebra of dimen­
sion 52 appears under two different forms, whose equivalence he did 
not recognize. Cartan gave rigorous proofs that the classification 
into four general classes and five exceptional algebras is complete, 
and constructed explicitly the exceptional algebras. 

Let g be any Lie algebra; to every element X of g there is asso­
ciated a linear transformation, the adjoint ad X of X, operating on 
the space g, which transforms any element F of g into [-X", F ] . Be­
cause of the relation [X, X]=0, this linear transformation always 
admits 0 as a characteristic root; those elements X of g for which 0 
is a characteristic root of least possible multiplicity of ad X are 
called regular elements. Let H be a regular element; then those ele­
ments of g which are mapped into 0 by powers of ad H are seen to 
form a certain subalgebra Ï) of g, and this subalgebra is always nil-
potent (which means that, in the adjoint representation of such an 
algebra, every element has 0 as its only characteristic roots). A sub­
algebra such as Ï) has been called a Cartan subalgebra of g. I t is a 
kind of inner core of the algebra g, and many properties of the big 
algebra g are reflected in properties of this subalgebra fy. In the case 
where g is semi-simple, Ï) is always abelian (which means, for a Lie 
algebra, that [X, F ] is always 0 for any X and F in the algebra). 
Moreover, g has a base which is composed of elements which are 
eigenvectors simultaneously for all adjoint operations of elements of 
Ï). The factors by which these elements are multiplied when bracketed 
with elements of t) are called the roots of the Lie algebra; it is the 
study of the properties of these roots which leads to the classification 
of simple Lie algebras. In establishing these properties, Cartan made 
a systematic use of the "fundamental quadratic form" of g, whose 
value at an element X is the trace of the square of ad X (if g is 
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semi-simple, or more generally if it coincides with its derived algebra, 
then the trace of ad X itself is always zero). One of the most im­
portant results of Cartan's thesis is that a necessary and sufficient 
condition for g to be semi-simple is that its fundamental quadratic 
form be nondegenerate (i.e. that its rank be equal to the dimension 
of g). Incidentally, Cartan also applied similar methods to the study 
of systems of hypercomplex numbers (cf. [4]) and obtained in this 
manner the main structure theorems for associative algebras over the 
fields of real and of complex numbers; however, these results were 
superseded by the work of Wedderburn, which applies to algebras 
over arbitrary basic fields. By studying those algebras which have 
only one integrable (or, as we say now, solvable) ideal, Cartan also 
laid the foundations in his thesis for his subsequent study of linear 
representations of simple Lie algebras; in particular, he determined, 
for each class of simple groups, the linear representation of smallest 
possible degree. 

The general theory of linear representations is the object of the 
paper [5]. As above let g be any semi-simple Lie algebra over the field 
of complex numbers (any algebraically closed field of characteristic 0 
would do just as well); a linear representation of g is a law which 
assigns to every X in g a linear transformation p(X) on some finite-
dimensional space; p(X) depends linearly on X, and is such that 
p([X, Y])=p{X)p(Y)-p(Y)p(X) for any X and Y in g. Let $ be a 
Cartan subalgebra of g. Then it turns out that the matrices which 
represent the elements of § may all be reduced simultaneously to the 
diagonal form ; the diagonal coefficients which occur in these matrices, 
considered as linear functions of the element which is represented, are 
called the weights of the representation. The roots of g are the weights 
of a particular linear representation, viz. the adjoint representation. 
Cartan proved that all relations between weights of one or several 
representations are consequences of certain linear relations with 
rational coefficients between these weights, a fact which can now be 
explained in two different manners: it reflects the properties of 
characters of compact abelian groups, and also the properties of alge­
braic groups of linear transformations. Cartan then introduces an 
order relation in the system of all weights and roots, and proves that 
any irreducible representation is uniquely determined by its highest 
weight for this order relation. The problem of finding all irreducible 
linear representations of g is thereby reduced to th^t of finding all 
possible highest weights of representations. The sum of the highest 
weights of two irreducible representations is again the highest weight 
of an irreducible representation, which is contained in the tensor 
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product (or rather, sum, if we speak of representations of Lie algebras 
and not of groups) of the two given representations. If r is the rank 
of the Lie algebra g (i.e. the dimension of any Cartan subalgebra of 
ô), Cartan established that all possible highest weights of irreducible 
representations may be written as linear combinations with non-
negative integral coefficients of r particular linear functions which 
depend only on the structure of fl and the order relation in the sys­
tem of roots. Considering one by one the various types of simple 
Lie algebras, he established that every one of these r basic functions 
is the highest weight of some irreducible representation; this led to 
a complete classification of all irreducible linear representations of 
simple Lie algebras. This theory of linear representations was later 
completed in an important point by H. Weyl, who established by 
transcendental methods that every representation of a semi-simple 
Lie algebra is completely reducible, and who expressed the degree of 
an irreducible representation in terms of its highest weight. It has 
also recently become possible to give a direct proof of the existence 
of irreducible representations corresponding to the possible highest 
weights predicted by Cartan's theory, a proof which applies not only 
to simple but also to semi-simple algebras (Lie algebras behave dif­
ferently from associative algebras in this respect that algebras which 
are not simple may have faithful irreducible representations; this 
happens for instance for the Lie algebra of the orthogonal group in 4 
variables). In the process of classifying all possible linear representa­
tions, Cartan discovered the spin representations of the orthogonal 
Lie algebras, which later played such an important rôle in physics. 
In a book published later (Leçons sur la théorie des spineurs, Hermann, 
Paris, 1938), Cartan developed the theory of spinors from a geo­
metric point of view. 

In [ô] Cartan classifies all simple Lie algebras over the field of real 
numbers instead of that of complex numbers. The method is to 
study the "complexification" of the Lie algebra under consideration; 
this complexification is either simple or the sum of two simple Lie 
algebras, and there is defined in it an operation of passing to the 
imaginary conjugate which admits the elements of the given simple 
Lie algebra as fixed elements. Starting with a suitable complex 
algebra, Cartan determines all possible operations of conjugation in 
it and arrives in this manner at a complete classification of simple 
real Lie algebras (the method was later simplified by himself and by 
others, making use of the compact real forms and replacing the 
determination of all possible conjugations by that of all classes of 
involutive automorphisms of the compact form). 
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It turned out that, but for one exception, the structure of a simple 
real Lie algebra is characterized by that of its complexification and by 
its character, i.e., by the index of inertia of its fundamental quadratic 
form. Cartan noticed that, for every complex form, there is a unique 
real form whose fundamental quadratic form is negative definite; 
this real form is the Lie algebra of a compact Lie group. This fact 
was to play a very important rôle in the subsequent theory of Lie 
groups, because it establishes a one-to-one correspondence between 
semi-simple connected complex Lie groups and compact semi-simple 
Lie groups. While the former are more readily amenable to an alge­
braic study, because of the algebraically closed character of the basic 
field, the latter lend themselves more easily to study by trans­
cendental methods because the volume of the whole group (in the 
sense of Haar measure) is finite. 

The last paper of the first cycle is [7] in which Cartan determined 
all real linear representations of simple real Lie algebras. 

The work of Cartan's second group-theoretic period is concerned 
with the groups themselves, and not with their Lie algebras, and in 
general with the global aspect of the group. This period opens with a 
paper [8] which contains#a study of group manifolds from a local 
differential geometric point of view. A group G may operate on itself 
in three different ways: by the left translations, by the right trans­
lations, and by transformation (we call here transformation a map­
ping t—>sts~~l, where 5 is a fixed element of the group). In relation to 
this, Cartan shows that there are three affine connections which are 
intrinsically defined on G. Two of these connections (those which cor­
respond to the left and right translations) are without curvature but 
in general have torsion; the third one has no torsion but has in 
general a curvature. The geodesic lines are the same for all three 
connections : they are the cosets with respect to the one-parameter 
subgroups. Cartan determines also the totally geodesic varieties on 
G (varieties such that any geodesic which is tangent to it is entirely 
contained in it); they are of two different kinds. The varieties of 
the first kind are the subgroups of G and their cosets. The varieties 
of the second kind are determined by what have since been called the 
Lie triple systems contained in the Lie algebra Q of G, i.e., the linear 
subspaces of g which, together with three elements X, Y, and Z, 
contain the element [[-X", F], Z]. 

After the paper we have just mentioned, Car tan's interest orients 
itself very definitely towards the topological study of Lie groups in 
the large. 

This period begins around 1925, at the time when H. Weyl had 
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just published his fundamental papers on the theory of compact Lie 
groups. I t is difficult to appreciate to what extent Cartan was in­
fluenced by Weyl's methods and results; a t any rate his book Leçons 
sur la Géométrie des espaces de Riemann shows clearly that, even 
before Weyl's paper, Cartan was already getting more and more 
interested in topological questions. Whereas Weyl's line of attack 
was, if we may say so, brutally global, depending essentially on the 
method of integration on the whole group, the work of Cartan puts 
the emphasis on the connection between the local and the global. This 
essential difference has a great bearing on the nature of the results 
it is possible to expect from these two methods. Weyl's methods are 
not bound to the differentiate structure of the group under con­
sideration; as soon as the possibility of integrating on any locally 
compact group was established Weyl's results could be extended to 
all compact topological groups. However, the assumption of com­
pactness is essential (it insures the convergence of the integrals on 
the group), and Weyl's methods give nothing on noncompact groups, 
whereas those of Cartan, applied in the domain of Lie groups, have 
led to a very complete knowledge of the topology of these groups, 
whether compact or not. 

In his paper [9] Cartan studies the topology of compact semi-
simple Lie groups and of their complexifications. Let G be a compact 
semi-simple Lie group, g the Lie algebra of G, and I) a Cartan sub-
algebra of g. Cartan establishes that every element of G belongs to 
a one-parameter subgroup (at least), and that every infinitesimal 
transformation may be transformed by an operation of the adjoint 
group into an element of Ï). Every element H of % gives rise to a one-
parameter subgroup with a definite parameter on it; let us denote 
by exp H the point of parameter 1 on this subgroup. Then every ele­
ment of G is conjugate to some element of the form exp H\ the next 
question is to find out under which condition two elements exp H 
and exp H' of this form are conjugate to each other. Cartan shows 
tha t a necessary and sufficient condition for this to happen is that 
H' can be transformed into H by an operation of a certain discon­
tinuous group 5 operating on the space §. This group admits a funda­
mental domain which is a polyhedron P with a finite number of 
vertices. The points of P , with suitable identification of faces, will rep­
resent in a one-to-one manner the classes of conjugate elements of G. 
The inner points of P correspond to the regular elements of the 
group, i.e., to those elements which may be represented in the form 
exp H, where H is a regular element of I). I t follows that any closed 
path in G which does not meet the set of singular (i.e., not regular) 
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elements will be represented by a continuous path in P , not neces­
sarily closed. Now, it turns out that the singular elements of G form 
a set of dimension at least 3 less than the dimension of the whole 
group; as a consequence they may be entirely disregarded in the 
determination of the fundamental group. This allows one to proceed 
to the determination of this fundamental group IT by the mere 
consideration of the polyhedron P itself; the order of T is the number 
of vertices H of P such that exp H is the unit element of G. From this 
follows Weyl's theorem to the effect that the fundamental group of 
a compact semi-simple Lie group is finite. This implies that, if the 
fundamental quadratic form of a Lie group G is definite negative, 
then not only does there exists a t least one compact group which 
is locally isomorphic with G, but G itself is compact. Moreover 
Cartan's methods allow one to determine, for every semi-simple in­
finitesimal structure with a negative definite fundamental quad­
ratic form, the number of times that the simply-connected group 
with this structure covers the adjoint group, and to study the various 
types of closed one-parameter groups (or geodesies) in the space of a 
compact group. The last part of the paper, devoted to the study of 
simple complex groups, is a prelude to the future theory of non-
compact simple groups ; it is proved in particular that, for any simple 
Lie algebra over the complex numbers, there always exists a simply-
connected complex linear group having this Lie algebra. 

After the determination of the fundamental group was accom­
plished, the next step was to determine the higher-dimensional Betti 
numbers of compact Lie groups. The method of accomplishing this 
was indicated in Cartan's paper [ l l ] . Cartan considers a homo­
geneous space E whose group of transformations G is compact; the 
space may then be considered to be the space of cosets of G modulo 
some closed subgroup g. Let us say that two exact differential forms 
are equivalent when their difference is the differential of a form of 
degree p — 1, and let bp be the maximal number of forms of degree p 
no linear combination of which is equivalent to 0. I t was conjectured, 
but not yet proved at the time, that bp is equal to the pth Betti 
number of the space E (this was established soon afterwards by de 
Rham). Let co be any exact form of degree p. Any operation s of the 
group G transforms into a new exact form sco, which Cartan proves to 
be equivalent to o). He then constructs the average of the form sco, s 
running over all elements of the group G; this new form is still exact, 
is equivalent to c*>, and is furthermore invariant under the group G. 
Moreover, Cartan proves by a similar argument that, if oo is invariant 
and equivalent to 0, then œ is the differential of a form which is it-



228 ÉLIE CARTAN AND HIS MATHEMATICAL WORK [March 

self invariant. These theorems reduce the determination of the num­
ber bp to that of the integral invariants of the space E. Cartan then 
shows that the latter problem may be reduced to a purely algebraic 
problem depending only on the Lie algebra of the group G and the 
subalgebra corresponding to the subgroup g (this, at any rate, in 
the case where the group g is connected). This algebraic problem 
has been solved since for the case where E is either the group G 
itself or a symmetric Riemann space with G as its group of isometric 
transformations. 

We now come to the results obtained by Cartan in the study of 
Lie groups which are not compact. The proof he gave of the converse 
of Lie's third theorem (i.e., every Lie algebra over the field of real 
numbers is the Lie algebra of some group) implied that every simply-
connected Lie group is topologically the product of a Euclidean space 
by the space of a simply connected semi-simple group. The problem 
was therefore reduced to the special case in which the group G under 
consideration is semi-simple. Let then g be its Lie algebra, and let g' 
be the complexification of g. Since g' is semi-simple, it has a compact 
real form gc; i.e., it may be considered as the complexification of a 
Lie algebra gc which is the algebra of a compact semi-simple group. 
Cartan proves (in his paper [lO]) that there exists an involutory 
automorphism a of gc such that g is spanned by those elements of gc 

which are invariant under a and by the products by i of those ele­
ments of gc which are changed into their opposites by a. The sub-
algebra gHgc is the Lie algebra of a maximal compact subgroup g 
of G. Cartan then considers the space R whose points are the conju­
gates of g in G ; the essential fact is that the existence of the auto­
morphism a implies that R is a symmetric Riemannian space, having 
the adjoint group r of G as its group of isometries (more precisely, 
T is the component of the identity in the group of isometries of R). 
This opened the way to the application of the theory of symmetric 
Riemannian spaces which Cartan had already developed for its own 
merits (cf. the part of this article which is concerned with the 
geometric aspects of Cartan's work). Assume that G is T itself. 
Then, every operation of G may be decomposed uniquely into a 
rotation around the origin (the origin in R being the point which 
represents the group g itself) and a transvection. The transvections 
are the operations of G which result from the integration of those 
infinitesimal transformations which are changed into their negatives 
by the operation a. They form a subvariety of G, homeomorphic to 
2?, and it turns out that this variety has the topological structure of a 
Euclidean space. This establishes that the adjoint group of any con-
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nected semi-simple Lie group is topologically the product of the 
space of a compact group by a Euclidean space. Moreover, making 
use of the fact that any compact group of isometric transformations 
of the space R admits a fixed point, Cartan proves that every com­
pact subgroup of G is conjugate to a subgroup of g. These results 
relative to the adjoint groups may be extended without any difficulty 
to the simply-connected groups with the same infinitesimal struc­
ture; they are also true for all intermediary groups, as follows from 
the recent work of Iwasawa. 

II. SYSTEMS OF DIFFERENTIAL EQUATIONS 

The principal paper of Cartan on the theory of differential systems 
is [IS]. The reader will find a very clear exposition of the theory of 
Pfaffian systems in Cartan's book: Les systèmes différentiels extérieurs 
et leurs applications géométriques, Paris, Hermann, 1945. 

A Pfaffian system is a system consisting of a certain number of 
equations of the form A\dxx+ • • • +Andxn

:ss0, where Ai, • • • , An 

are functions of xi, • • • , xn, and possibly of certain equations of the 
form F(xi, • • • , xn) = 0. A parametric r-dimensional manifold, given 
by Xi=fi(h, • • • , tr) iXSi^n) is a solution of the system if the 
equations of the system become identically satisfied when one re­
places the variables x and their differentials by their expressions in 
terms of the variables t and their differentials. 

It is first necessary to indicate how any system of differential equa­
tions may be reduced to a Pfaffian system. If the system contains 
equations of order higher than one, we may first reduce it to the 
order one by introducing new unknown functions which represent 
certain derivatives of the original ones. This being done, we obtain 
a system of equations of the form Fifa, • • • , xm\ Zi, • • • , zp; • • • , 
dzr/dxs, • • • ) = 0 where the z's are the unknown and the x'& the in­
dependent variables. If we set dzr/dxê—tr»', the original system of par­
tial differential equations may be replaced by the Pfaffian system 
composed of the equations Fi(x\ z\ t) = 0, dzr — X)« tr9dxa=*0. The solu­
tions of the original system correspond to those solutions of the 
Pfaffian system which are manifolds of dimension r on which the 
variables Xi9 • • • , xn are independent. 

The essential originality of Cartan consists in having introduced, 
besides the Pfaffian forms, the exterior differential forms of higher 
degree. The algebra of exterior forms had been developed by Grass-
mann for geometric purposes; before it could be used in the theory 
of differential systems, it was necessary to introduce the operation 
of exterior differentiation. An exterior differential form is an expres-
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sion of the form X ) ^ H - - - * P ^XH * * • dxip, where the coefficients 
Aiv..ip are functions of the variables x; such expressions may be 
multiplied with each other with the convention that dxidxj — —dxjdxi 
(in particular, (dx*)2 = 0). The exterior differential of the form writ­
ten above is X/^*!••••'* d%h • ' * dxtp where it is understood that the 
differentials dAiv..ip are expressed as linear combinations of 
dxi, • • • , dxn. The fundamental property of the operation of dif­
ferentiation is that it is invariant with respect to any change of vari­
ables. Now, let us consider any Pfaffian system coi = 0, • • • , COA = 0, 
ft = 0, • • • , ^« = 0, where Fit • • • , Fm are functions and «i, • • • , co* 
Pfaffian forms; then we see immediately that any solution of the 
system will also be a solution of the system obtained by adjoining to 
the original one the equations dFi~Q, • • • , dFm — 0, dcoi = 0, • • • , 
do)h — 0. More generally, let I be the smallest set of differential forms 
containing Fi, • • • , Fmy coi, • • • , co* and such that, whenever co and 
co' are in ƒ, then co+co' is in I, the product of co by an arbitrary dif­
ferential form is in I , and dco is in ƒ ; ƒ is called the differential ideal 
generated by Fi, • • • , Fm, coi, • • • , co*. Then any solution of the 
original system will be a solution of the system obtained by equating 
to 0 all forms in I". The operation of adjoining to a system the exterior 
differentials of its forms is an invariant counterpart of the method of 
obtaining conditions of compatibility by writing that certain higher 
derivatives which may be computed in two different ways by means 
of the equations of the system have the same value. 

By a contact element Ep of dimension p in the Cartesian w-space 
Rn is meant a pair (M, P) formed by a point M of Rn and a ^-dimen­
sional linear subspace P of Rn going through M. I t is sometimes 
necessary to generalize this notion to the case of an arbitrary w-di-
mensional manifold V instead of Rn\ M is then any point of V, and 
P any ^-dimensional vector subspace of the w-dimensional tangent 
vector space to V a t M. The totality of all ^-dimensional contact 
elements of a given manifold V is itself a manifold Vu the so-called 
first prolonged manifold of V. If X\y * • • , Xfi a r e local coordinates a t 
the origin of the contact element (M, P ) , P may be represented para-
metrically by equations of the form d#»=L»(z/i, • • • , vp), where the 
Li s are linear forms in p parameters vi, • • • , vp. Let co be a differ­
ential form; if we substitute the coordinates of the origin of a con­
tact element Ep for the variables xu • • • , xn in the coefficients of 
co, and the linear forms Li for the differentials dxi which occur in co, 
we obtain an exterior form in the variables v. If this form is 0, then 
we say that co is 0 a t Ep. If we are given a differential ideal J of dif-
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ferential forms, and if every form of J is 0 at Ep, then we say that Ep 

is an integral element of 7. 
Let W be a ^-dimensional submanifold of V. If M is a point of 

W, we may represent W locally around M by equations of the form 
#*=/*(wi, • • • , Up), the UiS being parameters. The contact element 
(M, P) formed by M and by the ^-dimensional tangent space P 
to W a t N is called the tangential element of W a t Jkf ; the space P 
may be represented by the equations dxi — dfi, the dujs taking the 
place of the parameters Vi considered above. A solution (or integral 
manifold) of the system obtained by equating to 0 the forms of a 
differential ideal J is a manifold W whose tangential contact ele­
ments are integral elements of I . The problem of looking for such 
solutions may be decomposed into two parts: the determination of 
all integral elements, which is an algebraic problem, and the de­
termination of the ways of grouping these integral elements together 
in such a way that they may be the tangential elements of some 
manifold. 

The ideal I" may contain forms of degree 0, i.e., functions of the 
variables. Assume that these functions, equated to 0, represent an 
irreducible analytic manifold VQ. Assume that any point of VQ is the 
origin of oori integral elements of dimension 1. There may be points 
of V which are the origins of more than oori integral elements of 
dimension 1, but they form lower-dimensional submanifolds of V. A 
point of V which does not lie on any one of these submanifolds is 
called an ordinary point. The smallest manifold (in the space of 
integral elements of dimension 1) which contains the integral elements 
whose origins are ordinary points is called the manifold of general 
integral elements of dimension 1; the origin of a general integral 
element is not necessarily ordinary. Assume now that any general 
integral element of dimension 1 is contained in oo r% integral elements 
of dimension 2 ; then those integral elements of dimension 1 which are 
not contained in more than oor2 integral elements of dimension 2 
are called ordinary; proceeding as above, we define the notion of a 
general integral element of dimension 2. We may continue in the same 
manner, and define inductively the integers r%f r2, • • • , rn. For a 
certain dimension n, the rn+i will be 0, which means that not every 
general integral element of dimension n will be contained in an 
integral element of dimension n+1. The number n is called the 
genus of the system, and the system is said to be in involution for 
every dimension not greater than n. A ^-dimensional general integral 
element Ep is called regular if there exists a chain EoC-EiC • • • 
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C.Ep-iC.Ep where, for each i<p, Ei is an ordinary general integral 
element of dimension L A ^-dimensional general solution of J is a 
^-dimensional manifold whose tangential contact elements are gen­
eral integral elements of I, at least one of these integral elements 
being regular. In this manner, Cartan succeeded for the first time in 
giving a precise definition of the notion of the general solution of 
any differential system. The existence theorem for general solutions 
states that any regular ^-dimensional integral element Ep is a tan­
gential contact element of some manifold which is a solution of I. 
More precisely, if EP-i is a regular element of dimension p — 1 con­
tained in Ep and is a tangential element of a (£ — 1)-dimensional 
integral manifold V*"1 of I, then Vp~l is contained in at least one 
integral manifold Vp tangent to Ep. This general theorem allowed 
Cartan to determine exactly the degree of indétermination of the 
general solution (i.e. on how many arbitrary constants, arbitrary 
functions of 1, 2, • • • arguments, it depends). Its application is 
however limited to the consideration of analytic differential systems 
and to the determination of analytic solutions. 

The next step was to try to determine the singular solutions of the 
system, i.e. the solutions which are not in the general solution (for 
instance, for a differential equation in the plane, the envelope of the 
general solutions). Here the idea of Cartan was to construct from 
the given differential system new systems which are obtained from 
it by a method of prolongation, in such a manner that any singular 
solution of the original system should become a general solution of 
one of these new systems. The method consists, generally speaking, 
in adjoining new unknowns which are the coordinates of integral 
elements which are not general, and constructing a priori the finite 
and differential equations these new unknowns must satisfy. How­
ever, an exact description of the method would be a little too long 
to be given here. In every concrete case in which it was applied, 
Cartan's method led to the complete determination of all singular 
solutions. But a general proof that it always does so is still missing; 
this is a theme of research which would richly deserve to attract the 
attention of ambitious young mathematicians. 

One of the main applications of Cartan's theory of systems of dif­
ferential equations is his theory of infinite groups of transformations 
(cf. [16; 17; 18; 19]). We touch here a branch of mathematics which 
is very rich in results but which very badly needs clarification of its 
foundations. For the infinite Lie groups, in spite of their name, are 
probably no groups at all, in the precise sense the word has received 
in modern algebra; what they really are is not clear yet. Lie defined 
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them as follows: he considers a set of analytic transformations 
x[ = Fi(xi, • • • , xn) on n variables which is closed with respect to 
the ordinary operations of forming the product of two transforma­
tions and taking the inverse of a transformation of the set, and 
which has furthermore the property of being composed of all trans­
formations of the form indicated above for which the functions Fx 

satisfy a certain system of partial differential equations. The hitch is 
of course that nothing is said about the domains in which the trans­
formations are to be defined and invertible, and that this domain 
may apparently vary from one transformation to another. Cartan 
establishes that any Lie group, whether finite or infinite, may be 
defined (after possible adjunction of new variables, which transform 
in a suitable way when the original variables are transformed by an 
operation of the group) to be the group of all transformations which 
leave invariant a certain number of functions and Pfaffian forms. A 
simple but not typical example is the group of transformations of the 
form x1 = F(x), y' = G(y) on two variables x and y (where F and G are 
arbitrary analytic functions). It may be considered to be the group 
which leaves invariant the two Pfaffian forms udx and vdy, where u 
and v axe new variables, which are transformed as follows: we have 
u1 — u^dF/dx)*1, v' =v(dG/dx)~l. Having written a group in the form 
we have just indicated, Cartan was able to extend to infinite groups 
the structure theory which Lie had developed for finite groups. As­
sume that we have a group G which is defined by the conditions that 
some of the variables, say xr+i, • • • , xn, axe invariant and that 
some Pfaffian forms «1, • • • , «A are invariant, the co/s containing 
only the differentials of the variables xi, • • • , xn but their coefficients 
involving possibly certain other variables u. Then we may write 

do)i = X) cu*Wk + X) aw&jrjk 

where the rjk's are certain linear combinations of the differentials of 
the auxiliary variables u. Cartan shows that it is always possible to 
assume that the coefficients £»•#., a ^ depend only on the invariants 
xr+u • • • » %n (if the group may be put into a form where it is transi­
tive, which always happens for finite-dimensional groups, then the 
djk's and a^ ' s are constants). These coefficients define the structure 
of the group. Just as in the case of finite-dimensional groups, they 
cannot be taken arbitrarily; Cartan gave the conditions they must 
satisfy in order to define a group, thus generalizing to infinite groups 
Lie's third fundamental theorem. 

The operation of adjoining new variables to those which are trans­
formed by a group is called the prolongation of the group. Cartan 
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says that two groups are isomorphic to each other if they admit 
prolongations which are similar, i.e., which can be deduced from each 
other by a change of independent variables. He showed how it is 
possible to recognize whether two infinite groups whose structures 
are known are isomorphic or not. He applied this method to the 
problem of the classification of simple infinite groups, and found that 
they fall into 8 general types. 

Cartan's theory of infinite groups had its origin in the study he 
made of equivalence problems. The general problem can be formu­
lated as follows: Let G be a linear group acting in a space of n 
dimensions. Let 0i, • • • , 0» and 0i, • • • , $n be two sets of linearly 
independent Pfaffian forms in the variables #i, • • • , ffn and #1, • • • , 
#n, respectively. Determine whether there exists an admissible trans­
formation of coordinates 

Xi « Xi(xu - • • , xn), i = 1, • • • , nf 

such that 
n 

0* = ]C «</(*)0»i t « 1, • • • , », 

where the linear transformation belongs to G. To treat this problem let 
Uu • • • , um be the parameters of G and let us introduce the Pfaffian 
forms 

n 

*~1 

n 

w* = ] £ aij(ü)6j, i = 1, • • • , n, 
; - i 

in which we regard the u's and the ü's as auxiliary variables. The sets 
of forms di and 0»- are equivalent in the above sense if and only if 
x\ ür can be determined as functions of x*f u9 (i, j — 1, - • - , n; 
r, 5 = 1, • • • , m) so that 

03% = CO» i = 1 , • • • , ft. 

Such a system may be discussed by the general methods for dealing 
with Pfaffian systems. The first step is, of course, to adjoin to the sys­
tem the equations dûi = dcûi; if we express the forms do)i by means 
of the forms co*- themselves and of the differentials of the auxiliary 
variables, the coefficients of these expressions, when they contain 
the variables x only, will yield invariants /*(#), and we may enlarge 
the original system by adjoining the equations Ik($) -Ik{x)y together 
with the equations which are obtained from them by differentiation. 
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Cartan shows that the continuation of this procedure eventually 
leads to a complete system of invariants which can be obtained by 
operations of differentiation only. However, when the systems one 
is led to consider are not in involution for the dimension n% the com­
pleteness of the system of invariants depends on the theorem that all 
singular solutions of a differential system may be obtained by the 
method of prolongation, a theorem which is not completely proved as 
yet (cf. above). 

Among other applications which Cartan made of his theory of 
differential equations we mention the following: (1) Various ap­
plications to differential-geometric problems; (2) Principle of integral 
invariants in analytical dynamics; (3) Theory of general relativity. 

As a matter of fact, the study of differential equations arising 
from problems of differential geometry had always interested him, 
and his papers on this subject run through most of his scientific 
career. The numerous examples given in [23] show quite decisively 
the advantages of using differential forms. One of the notable results 
is his proof of a conjecture of Schlâfli to the effect that every Rie-
mann metric of n dimensions can be imbedded locally into a 
Euclidean space of dimension n(n+l)/2 [22]. This theorem played 
no small part in Levi-Civita's original definition of his parallelism 
and has attracted the attention of differential geometers. 

Also his work on integral invariants in analytical dynamics can 
be considered as an application of the theory of differential equations 
[2 l ] . Mathematically the problem is to determine the trajectories, 
which are to be solutions of a differential system of the type 

dX' 
—- « Xi(xu • • • , xn, t)y i = 1, • • • , n. 
at 

The standard way is by means of Hamilton's principle, which defines 
the trajectories as the extremals of a certain variational problem. 
Unfortunately the integrand of the latter does not have a simple 
physical interpretation. An alternative way was suggested by 
Poincaré. He called a multiple integral 

I • • • I 2 0<i...<„(ffif " • • * » • t)&*ix • • • dxip 
J p J t l f . . . t t p 

invariant when its value over a domain covered by the trajectories is 
invariant under the motion. In fact, it is called absolute if the domain 
is arbitrary and relative if the invariance is true only for closed 
domains. If pi, q^ i = l , • • • , nt are the canonical variables of a 
dynamical system with n degrees of freedom, Poincaré's principle 
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asserts that the trajectories can be characterized as the curves ad­
mitting the relative integral invariant 

n 

2 J pidqi. 
t - 1 

Cartan's principle is a modification of Poincaré's. He derived his 
ideas from his theory of differential systems. The differential system 
of the trajectories has 2n — 2 functionally independent first integrals. 
Cartan observed that the property of an exterior differential form 
to be invariant and thus to depend only on the trajectories is that 
it is a form in these first integrals. Expressed in terms of the original 
variables, it may involve the independent variable /. Omitting from 
this the terms involving dt, we obtain the integrand of an invariant 
integral in the sense of Poincaré. Thus the latter is the truncated 
form of an invariant differential form (i.e., a form in the first integrals 
of the trajectories). Conversely, it can be proved that, given the 
integrand of an invariant integral of Poincaré, terms involving dt 
can be added to it so as to obtain an invariant differential form. 
Cartan's principle characterizes the trajectories as admitting an 
invariant differential form. Moreover, the latter has a simple physical 
interpretation. The work therefore furnishes an interesting comple­
ment to formal dynamics. 

In connection with the general theory of relativity and the unified 
field theory Cartan studied on several occasions the question of the 
possible forms of the equations of gravitation and of the unified 
gravitational and electro-magnetic field. He made a very detailed 
analysis and determined all possible forms of such differential sys­
tems. He was also the first one to introduce the notion of Riemann 
spaces without curvature and with torsion, which later served as the 
basis of Einstein's unified field theory. Apparently these studies are 
not of the same importance as his studies on pure mathematics. 

III. GEOMETRY 

Although the theory of Lie groups has an intimate relationship 
with differential geometry, Cartan did not begin his substantial 
work on differential geometry until a relatively late stage. His first 
series of papers on differential geometry was concerned with the 
problem of deformation [27; 28]. It is clear that he had then all the 
essential ideas of the method of moving frames, one of his favorite 
subjects in later years, which has not been fully exploited even now. 

The method was not new. It is a generalization, to an arbitrary 
homogeneous space, of the method of moving trihedrals, so success-
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fully used by Darboux, Ribaucour, and others [39; 41 ]. Even in 
the most general case some of its essential ideas had been given by 
Emile Cotton. It is also closely related to Cesaro's "intrinsic method" 
in differential geometry, as later developed by Kowalewski. To 
Cartan the attraction was not the method, but the geometrical re­
sults to which it so effectively leads. It is interesting to notice in his 
book [4l] how he took pleasure in studying numerous examples and 
did not care to discuss the generalities, except in very sketchy out­
lines. 

We attempt to give a description of this method in modern ter­
minology. The problem is the local theory of a ^-dimensional sub-
manifold If in a homogeneous space E of dimension n, acted on by a 
Lie group G of dimension r. Let 0 be a point of E and H the sub­
group of G leaving O fixed. Then the set of all transformations of 
G carrying 0 to a point P of E is a left coset gH of G relative to iT, 
and E can be identified with the space of left cosets G/H. Under this 
identification the action of G on £ is represented by left multiplica­
tion. This process depends on the choice of 0. If we replace 0 by 0 ' 
and if go is a transformation of G carrying 0' to 0, the subgroup of G 
leaving 0' fixed will be go1 H go and the set of transformations of G 
carrying 0 ' to P will be gHgo. In other words, the latter is defined 
up to multiplication by a fixed element to the right. 

The method of moving frames is a method for the determination 
of differential invariants of M under G, and in fact for determining 
enough of them to enable us to decide whether two given submani-
folds differ from each other only by a transformation of G. Its main 
idea is that of passing from the homogeneous space E to the group 
space G. In fact, denote by yf/\G-^G/H the natural projection which 
assigns to an element g£G the coset gH. From M we get the sub-
manifold Fo =\lr-1(M) CG, determined up to multiplication by a fixed 
element on the right (depending on the choice of the point 0). Fo is 
in general a manifold of dimension higher than p and will be called 
the manifold of frames of order 0 of M. Now the Lie algebra fy of H 
is a subalgebra of the Lie algebra fl of G. There is therefore in the 
dual space g* of g, whose elements are the so-called Maurer-Cartan 
forms, a linear subspace n*(G, H) of dimension n consisting of all 
elements of g* orthogonal to I). The dual mapping of the identity 
mapping i0:Fo-+G maps the elements of n*(G, H) into Pfaffian forms 
on F0, called by Cartan the principal components of order 0. Among 
them there are exactly p linearly independent ones, the others being 
their linear combinations. The coefficients of such linear combinations 
play an important rôle in the method of moving frames. From them 
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it is sometimes possible to derive differential invariants of M by 
elimination. 

In order to get more information about M, we have to pass to the 
elements of contact of higher order. The general principle is to ex­
tend the above considerations to them. Let M be defined locally by 
the equations 

Xi = fi(uu • • • , «*), * = 1, • • • i n, 

where the functions ƒ*• possess sufficiently many continuous partial 
derivatives or even are analytic. The values, at a certain point, of 
the functions Xi and their partial derivatives up to the order s inclu­
sive, subject to the usual laws of transformation when either the x's 
or the u's undergo an admissible coordinate transformation, con­
stitute an element of contact C8 of order s. Thus an element of con­
tact of order 0 is the point itself. Moreover, an element of contact 
of order s > 0 determines uniquely an element of contact of order 
5 — 1, obtained by ignoring the derivatives of order 5. 

The totality of the elements of contact of order 5, for all sub-
manifolds of dimension p in E, is a space E8 on which G acts. The 
elements of contact of order s of M constitute a submanifold M8 of 
E9. The case for general 5 differs from the case $ = 0 in two essential 
aspects: (1) The group G does not necessarily act in a transitive 
manner on E8, so that the latter decomposes into domains of transi­
tivity; (2) The subgroup H8 of G leaving fixed a given C8 may not be 
connected, as for instance in the case when E is the Euclidean space 
with the group of rigid motions, and £ = 1, 5 = 1. In this example M 
is a curve and & can be identified with the tangent direction; the 
motions leaving a line fixed have two connected components. 

This phenomenon shows that the same C8 may carry several 
"oriented" elements of contact of order 5, obtained by replacing H8 

by the component of the unit element in H8. The latter process in­
volves an arbitrary choice, because only the class of conjugate sub­
groups of H8 is defined by C8. On the other hand, the first fact, 
together with generality assumptions, allows us to coordinatize the 
generic oriented elements of contact of order 5 by a finite set of 
numbers. These are the differential invariants of order not greater 
than 5. 

Denote by T a domain of transitivity of E8 under G, by H8(T) 
the subgroup of G leaving one of its points fixed, and by H8(T) the 
connected component of the unit element of H8{T). Then the space 
of oriented elements of contact of order 5 can be identified with the 
union \JTG/HI(T), and those of M can be considered as a submani-
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fold M8 of \)TG/Hi(T). li$8tT:G-*G/Hl{T) is the natural projection, 
the submanifold 

F. - U £j(C.) 

is called the manifold of frames of order s of M. Generalizing the situa­
tion on frames of order 0, let §8 denote the Lie algebra of H8(T) and 
n*(G, H8(T)) the linear subspace of the dual space fl* of fl which 
consists of all elements of fl* orthogonal to ty«. The dual mapping of 
the identity mapping i8:F8—>G maps the elements of ît*(G, H8(T)) 
into Pfaffian forms on F8, called the principal components of order 
not greater than s. The main feature of the method of moving frames 
is the result that the study of the manifold F8 in G gives some of the 
most important of the local geometric properties of M in E. The de­
termination of the manifolds of frames of different orders is achieved 
by induction on s. 

Cartan had a more geometrical picture of the frames. To him they 
are configurations in E such that there exists exactly one transforma­
tion of G carrying one such configuration into another. In Euclidean 
space with the group of rigid motions we can take as frames sets of 
points (P, Ux, U2, Us) with the properties: (1) the points Ux, U%, Uz 
are at a distance 1 from P ; (2) any two of the lines PUx, PU2, PUz 
are perpendicular; (3) the vectors PUx, PU2, PUz form a right-
handed system. For a surface in Euclidean space the frames of order 0 
are those with P on the surface. The frames of order one satisfy the 
further condition that P Uz is normal to the surface. Here an orienta­
tion has to be made according as Uz is along one sense of the normal 
or the other. If P is not an umbilic, the frame of order two is uniquely 
determined at each point by the condition that PUxf PU2 are in the 
principal directions. The two principal curvatures are invariants of 
order two. 

So far we have restricted our discussion to the generic elements of 
contact. Among the most interesting properties of differential geom­
etry are perhaps those concerning the nongeneric ones. Thus the 
four-vertex theorem for closed plane curves and the theorem on the 
existence of umbilics on closed surfaces of genus T* 1 are statements 
on the existence of certain types of elements of contact on a closed 
submanifold. No general result along this direction is known, and it 
is hoped that the method of moving frames will give some clues. 

From this viewpoint the problem of deformation naturally presents 
itself. Two submanifolds Mp and M*p in E are said to be applicable 
or deformable of order 5 relative to G if there is a transformation of 
G which carries the elements of contact of order 5 of Mp into those of 
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M*p, that is, if there is a one-one mapping between the submanifolds 
under which the invariants and the principal components of order 
not greater than s are equal. When G is the group of motions in 
Euclidean space and £ = 2, s = l, this notion of applicability reduces 
to the classical one studied by Gauss, Minding, Darboux, and others. 
When G is the group of projective collineations in a real projective 
space and £ = 2, 5 = 2, the problem was known as the projective de­
formation of surfaces and was studied at great length by Fubini and 
Cech. 

When the order s is sufficiently large, the method gives a solution 
of the fundamental problem of local differential geometry in a homo­
geneous space, namely, that of deciding whether two submanifolds 
differ from each other by a transformation of the group G. 

Actually it may be quite complicated to carry out the method 
(i.e., to determine the invariants and frames of different orders) in 
concrete cases, particularly when p is large. Moreover, the generality 
assumptions may soon become unrealistic. Cartan developed various 
ways of simplifying the computations and adapting the method to 
special cases. As frequently happens in mathematics, the generality 
of the viewpoint helps also to treat the special cases in a more 
effective way. 

Some of the applications he made are: the conformai deformation 
of hypersurfaces [28], the projective deformation of surfaces [27], 
and the theory of submanifolds of constant curvature in a Euclidean 
or non-Euclidean space [25 ; 26]. The second was a problem which had 
received considerable attention from the Italian geometers. Cartan 
proved that, except for a class of surfaces which depends on six 
arbitrary functions of one variable, a surface is not deformable in a 
nontrivial way. Moreover, if a surface is projectively deformable 
(i.e., in a nontrivial way), the surfaces to which it is deformable de­
pend at most on three arbitrary constants. This does not settle the 
problem. It perhaps makes the study of projectively deformable 
surfaces even more interesting. To cite an example, the question 
whether there exist surfaces projectively deformable to oo2 projec­
tively inequivalent surfaces is not yet solved. 

The study of the submanifolds of constant curvature in a Eu­
clidean or non-Euclidean space generalizes the classical treatment of 
developable surfaces [25; 26]. Cartan made an exhaustive study and 
determined the degree of generality of such submanifolds. They do 
not exist under all circumstances. For instance, if the curvature of 
the submanifold of dimension p is less than the curvature of the 
space, the latter must have dimension not less than 2p — l. His em-
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phasis was on the necessity of investigating the existence of sub-
manifolds with prescribed properties, and their degree of generality, 
before their study can be undertaken with sense. For this purpose 
his theory of differential systems in involution was applied to the 
best advantage. 

Most remarkable among his works along this line are the results 
on the isoparametric families of hypersurfaces in a spherical space 
[42; 43]. It started with a problem of Levi-Civita: to study the 
scalar functions in a Riemannian space which are functionally de­
pendent on both their first and second Beltrami differential param­
eters. The hypersurfaces obtained by equating such a scalar func­
tion to a constant are said to form an isoparametric family. When 
the Riemannian space is of zero or constant negative curvature, the 
determination of its isoparametric families of hypersurfaces does not 
cause much difficulty. This is due to the fact that every such hyper-
surface has at most two distinct principal curvatures. When the 
Riemannian space is of constant positive curvature, the situation is 
very complicated, but also most interesting. Cartan proved that in 
this case there do exist isoparametric families of hypersurfaces hav­
ing three distinct principal curvatures but that this can happen 
only when the dimension of the space is 4, 7, 13, or 25. The last 
family admits the exceptional simple Lie group in 52 parameters; 
this was the first time that this group was geometrically realized. 
Similar results hold for isoparametric families of hypersurfaces in 
spherical space with four distinct principal curvatures. These exist 
only in spaces of 5 and 9 dimensions. This is one of the few in­
stances of geometrical problems where the dimension of the ambient 
space plays an essential rôle. 

Einstein's theory of general relativity gave a new impetus to dif­
ferential geometry. In their efforts to find an appropriate model of 
the universe geometers have broadened their horizon from the study 
of submanifolds in classical spaces (Euclidean, noneuclidean, projec­
tive, conformai, etc.) to that of more general spaces intrinsically 
defined. The result is an extension of the work of Gauss and Riemann 
on Riemannian geometry to spaces with a connection, which may be 
an affine connection, a Weyl connection, a projective connection, 
of a conformai connection. In these generalizations, sometimes called 
non-Riemannian geometry, an important tool is the absolute differ­
ential calculus of Ricci and Levi-Civita. The results achieved are of 
considerable geometric interest. For instance, in the theory of projec­
tive connections, developed independently by Cartan, Veblen, Eisen-
hart, and Thomas, it is shown that when the space has a system of 
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paths defined by a system of differential equations of the second 
order, a generalized projective geometry can be defined in the space 
which reduces to ordinary projective geometry when the differential 
system is that of the straight lines. Numerous other examples can be 
cited. The problem at this stage is twofold: (1) to give a definition of 
"geometry" which will include most of the existing spaces of interest; 
(2) to develop analytic methods for the treatment of the new geom­
etries, it being increasingly clear that the absolute differential calculus 
is inadequate. 

For this purpose Cartan developed what seems to be the most 
comprehensive and satisfactory program and demonstrated its ad­
vantages in a decisive way [31; 39] . This contribution clearly illus­
trates his geometric insight and we consider it to be the most im­
portant among his works on differential geometry. It can be best 
explained by means of the modern notion of a fiber bundle. Let 
p: B—*X be a fiber bundle with fiber Y and structural group G. We 
assume X to be a differentiate manifold and G a Lie group. Let 
U, V, W, • • • be a covering of X by coordinate neighborhoods. A 
point of B belonging to p~l(UC\V) has, with respect to U and V, 
respectively, the coordinates (x, y) and (x, guv(x)y), xÇ.UC\Vt y€zY, 
where we denote the action of G on Y by multiplication to the left. 
The function guv(x) is defined for xÇzUCW, with values in G. Its 
dual mapping maps the Maurer-Cartan forms of G into forms in 
UCW, to be denoted by w^r» i — l, • • • , r. Let (o}(g)), g £ G , denote 
the adjoint representation of G in the space of the Maurer-Cartan 
forms. A connection in the bundle is defined in each coordinate 
neighborhood U by a set of Pfaffian forms 0\j, i = l, • • • , r, such 
that in UC\ V, 

r 

6u = o)uv + £ aj(guv)0v, i = 1, • • • , r. 
*-i 

I t is easy to verify that this condition is coherent in the intersection 
of any three coordinate neighborhoods 27, Vt W. 

The curvature tensor is given by the exterior quadratic differential 
forms 

&%u = ddu - — X c)kfiu A Out i = 1, • • • , r 
2 /,fc«i 

where the c% are the constants of structure of G. Under a change 
of the coordinate neighborhood they are transformed according to 
the adjoint representation. 

Actually Cartan proceeded in a different way. Guided by the clas-
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sical notion of parallelism he laid more emphasis on the possibility of 
"developing" the fiber along a parametrized curve. In the present 
formulation this possibility arises from the fact that the differential 
system 

E */(*)*'+«'(*) = 0, * - 1, . . • , r; g EG, 

is independent of the choice of the coordinate neighborhood. Cor­
responding to a parametrized curve in X there is a uniquely de­
termined integral curve g(t) of the differential system through the 
unit element of G. The curve g(t) gives rise to a one-parameter family 
of transformations in F. Cartan called this process the development 
along a parametrized curve, and took it as the definition of a connec­
tion. 

Without the notion and terminology of fiber bundles it was diffi­
cult to explain these concepts in a satisfactory way. The situation 
was further complicated by the fact that Cartan called tangent space 
what is now known as fiber while the base space X, being a differ­
entiate manifold, has a tangent space from its differentiable struc­
ture. But he saw clearly that the geometrical situation demands the 
introduction of fiber bundles with rather general fibers. Attempts by 
several other mathematicians to tie up the fiber with the differentiable 
structure of the base space were suggested by their experience from 
affinely connected spaces and led to complicated computations which 
have nothing to do with the geometrical problem. 

When one takes the notion of a connection as the guiding principle 
in differential geometry, the fundamental problem is to define the 
fiber bundle and the connection in every geometrical problem. This 
is not at all a routine matter, and Cartan carried it out in various 
cases. Some of the more important ones are: (1) the projective con­
nection of the geometry of paths [29]; (2) the conformai connection 
in the conformai theory of Riemann spaces; (3) the metrical connec­
tion in Finsler spaces ; (4) the metrical connection in spaces based on 
the notion of area of hypersurfaces, now known as Cartan spaces 
[38] ; (5) the geometry of the integral fF(x, y, y', y")dx, which is a 
generalization of plane Finsler geometry. 

Results from these particular examples tend to substantiate the 
belief that the notion of a connection is a guiding principle in dif­
ferential geometry. For instance, in Finsler geometry, the spaces of 
interest are those defining a "regular" problem in the calculus of 
variations. This fact manifests itself clearly when one tries to define 
a connection in the space. 
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In order that the connection in a space may be useful it must 
have a further property : it should give all the geometrical properties 
of the space. This can be made precise by the requirement that two 
spaces are to be equivalent under admissible transformations of the 
coordinates if and only if the connections are equivalent. This 
naturally leads to an equivalence problem whose analytical aspects 
have been discussed in Part II. It suffices to remark here that, while 
in simpler geometrical problems (such as Riemannian geometry) the 
introduction of a connection in the space automatically solves the 
equivalence problem, it is advisable in more general cases to go the 
other way around by first solving the equivalence problem and then 
interpreting the solution geometrically. Cartan's treatment of the 
equivalence problem furnishes a method which is particularly suit­
able for such geometrical problems. 

Cartan, first in his Mémorial volume and later in his Leçons, applied 
his general ideas on connections to the case of Riemannian geometry 
[30; 35]. Although he himself never refrained from computations, 
he did not hide his distaste for the computational work on differential 
geometry which was then very fashionable and much of which was of 
little geometrical interest. He stated his aim in the preface of [35] 
as that of bringing out the simple geometrical facts which have often 
been hidden under a debauch of indices. The result is a very original 
account of Riemannian geometry, still the standard book in the field. 

His most important work on Riemannian geometry is undoubtedly 
the theory of symmetric Riemann spaces [33; 34; 37]. It is well 
known that the local properties of a Riemann metric are given by 
Riemann-Christoffel curvature tensor and its successive covariant 
derivatives. Besides the locally Euclidean spaces the simplest Rie­
mann spaces are therefore the ones for which the covariant deriva­
tive of the Riemann-Christoffel tensor is zero. These spaces, which 
include the Riemann spaces of constant curvature, are called sym­
metric by Cartan, for an obvious reason which will be brought out 
below. He published papers on the subject during the period from 
1927 to 1935. Perhaps because of their extensiveness the subject did 
not receive the attention it deserves. Its significance for the de­
termination of the real forms of complex simple Lie groups has been 
discussed above. We proceed to give a very brief survey of the 
geometrical aspects of the theory, together with its relations to 
classical geometries, the theory of analytical functions of several 
complex variables, number theory, and topology. 

Cartan soon discovered that the definition can be put in a more 
geometrical form. A symmetric Riemann space can be defined either 
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as one for which the Levi-Ci vita parallelism preserves the sectional 
Riemannian curvature or as one for which the symmetry about a 
point is an isometry. From the second equivalent definition it follows 
immediately that the space admits a transitive group of isometries 
and that the connected component of the subgroup of isometries 
leaving fixed a point of the space is compact. This result brings the 
symmetric Riemann spaces into relation with homogeneous spaces. 

The enumeration of all the symmetric Riemann spaces is not a 
simple problem. Car tan first observed that if a symmetric Riemann 
metric can be decomposed (locally) into a sum of two lower-dimen­
sional Riemann metrics, each of the latter is symmetric. The problem 
is thus reduced to the irreducible case in which such a decomposition 
is not possible. Cartan then applied two different methods to the 
problem. 

The first method consists in the determination of the subgroups of 
the orthogonal groups which can be the groups of holonomy of an 
irreducible symmetric Riemann space. Such a subgroup leaves in­
variant a form 

where RUM is the Riemann-Christoffel curvature tensor. I t is thus 
not a most general subgroup of the orthogonal group, and this limita­
tion makes it possible to carry out the program to the end. Unfor­
tunately the method leads to very complicated computations. 

It is the second method that opens up entirely unexpected views. 
Denote by G the connected component of the group of all isometries, 
and by H the connected component of the subgroup of G leaving a 
point O fixed. Then H is compact. If <r denotes the symmetry about 
0, the mapping which sends g £ G into ag<jÇz.G is an involutory auto­
morphism of G. Under this automorphism all elements of H remain 
fixed. Conversely, when a connected Lie group G has an involutory 
automorphism such that the connected component of the set of fixed 
elements is compact, the homogeneous space G/H can be given a 
symmetric Riemann metric. Now choose a base in the Lie algebra of 
G such that the endomorphism induced by the involutory auto­
morphism changes the signs of some of the base vectors and leaves 
the remaining ones fixed. This normalization allows one to draw 
far-reaching conclusions on the infinitesimal structure of G. In fact, 
it follows that if the space, which we can now denote by G/H, is 
irreducible and is not locally Euclidean (that is, its Riemannian-
Christoffel tensor is not 0), the group G is simple or is the direct 
product of two isomorphic compact simple groups. 
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In the latter case the elements of G can be written as (a, b), a, bÇ£H, 
H being a simple group. Then the involutory automorphism has to be 
(a, &)—>(&, a), and the space can be identified with the space of H. In 
other words, this case reduces to the geometry of the space of a com­
pact simple Lie group. 

More interesting is the case in which G is simple. If G is a complex 
simple Lie group and H its compact real form, the space G/H is 
homeomorphic to a Euclidean space and is the only symmetric 
Riemann space with G as its group of isometries. Cartan called it 
the fundamental Riemann space of G. When G is a noncompact 
simple real Lie group, we consider its corresponding complex group 
G and the fundamental Riemann space E of G. The involutory auto­
morphism in G, which maps every element into its complex conjugate, 
induces a symmetry in E leaving invariant a totally geodesic mani­
fold of E. The latter is homeomorphic to a Euclidean space and is 
the only symmetric Riemann space with the group G. The situation 
is more complicated when G is a compact simple real Lie group, 
as then the symmetric Riemann space with G as the group of isom­
etries is not unique. Thus there is, from the point of view of the 
infinitesimal structure, one and only one symmetric Riemann space 
belonging to a given noncompact simple group G : it is that of the 
homogeneous space G/H, where H is a maximal compact subgroup of 
G (which turns out to be uniquely determined up to an inner auto­
morphism of G). For instance, the symmetric Riemann space belong­
ing to the unimodular real linear group GLn(R) is the space of positive 
definite quadratic forms in n variables; to the unimodular complex 
linear group GLn{C) there belongs similarly the space of positive 
definite Hermitian forms in n variables. This undoubtedly accounts 
for the rôle played by those forms both in classical and in modern 
number theory. 

The study of symmetric Riemann spaces also throws considerable 
light on the relations between Riemannian geometry and the classical 
geometries, and helps to unify and explain some of the phenomena 
in classical geometries. Cartan carried out this idea for the case of 
complex projective geometry in his book [36]. It is known, for in­
stance, that there is a correspondence between the geometry on the 
complex projective line and non-Euclidean hyperbolic geometry in 
space. In the present terminology the hyperbolic space is the funda­
mental Riemann space of the group of projective collineations on the 
complex projective line. 

Actually Cartan's interest in symmetric Riemann spaces was 
aroused by a related but different problem. It is the study of Rie-
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mann spaces which admit an absolute parallelism, whose auto-
parallel curves are geodesies. The guiding example is the Clifford 
parallelism in non-Euclidean elliptic space. The first result in this 
direction was achieved jointly by Cartan and J. A. Schouten. They 
found that the irreducible spaces with absolute parallelism are 
exactly the spaces of compact simple Lie groups with one exception, 
which is the 7-dimensional elliptic space. The existence of the latter 
is related to properties of Cayley numbers. 

Another application of the theory of symmetric Riemann spaces 
is to functions of several complex variables. Henri Cartan studied 
the group of all pseudo-conformal transformations which leave in­
variant a bounded domain in a space of several complex variables 
and proved that it is a Lie group. Using this result, Cartan studied 
the domains which are homogeneous, that is, which admit a transitive 
group of pseudo-conformal transformations. He did not succeed in 
determining all such domains, because there are perhaps too many. 
However, he did determine all those which are also symmetric, that 
is, which have the further property that to every point 0 of the 
domain there exists an involutory pseudo-conformal transformation 
of the domain onto itself which admits 0 as an isolated invariant 
point. This is due to the fact that the group is then semi-simple. 
The irreducible bounded symmetric homogeneous domains form 
four large classes and two exceptional cases, of dimensions 16 and 
27 respectively. These domains have recently been found to play an 
important rôle in Siegel's work on automorphic functions and an­
alytic number theory, where the discontinuous subgroups of these 
groups are studied. No bounded homogeneous domain is known 
which is not symmetric. 

The notion of a symmetric space can be extended to the case 
which Cartan called non-Riemannian. It is a homogeneous space 
G/H such that there is an involutory automorphism <r of G with H 
as the connected component of the subgroup of invariant elements of 
<r, where H is not necessarily compact. His main contribution to 
general symmetric homogeneous spaces is concerned with their 
Betti numbers, of which an account was given above in connection 
with the Betti numbers of compact Lie groups [ l l ] . The results 
given there are valid for any compact symmetric homogeneous space, 
so that the determination of the Betti numbers of such a space can 
be reduced to a purely algebraic problem. Non-Riemannian sym­
metric spaces have otherwise hardly been studied. 

Besides the importance of integral invariants in studying the topo­
logical properties of a space as a consequence of de Rham's theorems, 
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they play a rôle in another field of geometry, now known as integral 
geometry. There again Car tan's exterior differential forms can be 
applied to the best advantage. In 1898 he devoted a paper to multiple 
integrals in the spaces of lines and planes of Euclidean space, which 
are invariant under the group of motions. The paper marks an im­
portant step in integral geometry, a subject founded by the English 
mathematician Croftdn and later developed by Blaschke and his 
school. I t is quite curious that, although Cartan laid much emphasis 
on the idea of defining a group as the set of transformations leaving 
invariant a set of linear differential forms and took this to be the 
starting point of his theory of infinite groups, he did not come back 
to invariant differential forms of higher degree, except in the paper 
discussed above. His exterior differential forms have now become an 
indispensable tool in integral geometry. 
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