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if the boundary b is displaced by an amount 6n—ep(s) in the direc­
tion of the inner normal. Later the more general variational method 
of M. Schiffer and the numerous results obtained by means of it are 
discussed. 

While in the preceding chapters the existence of the Green's func­
tion, the Neumann function, etc., is assumed (which is permissible 
since the proofs can be found in many places in the literature), this 
borrowing is now dispensed with and the slit mapping is carried 
through without this assumption. 

In Chapter 10 it is shown that the methods applied in the preced­
ing chapters can also be applied to the solutions of partial differential 
equations of elliptic type. Here there are unexpected results from 
recent investigations of Bergman and of Bergman and Schiffer. The 
chapter ends with a treatment of the equation of elasticity, AA#=0, 
in order to show how the process must be modified for equations of 
higher order. 

The final chapter is concerned with functions of two complex vari­
ables and the analytic (pseudo-conformal) mappings generated by 
them. It is written for readers who are already familiar with the 
foundations of the theory of functions of several complex variables. 
First special regions (bicylinder, hypersphere, etc.) are treated; then 
the orthogonal functions are introduced for arbitrary schlicht 
bounded domains, and the mappings on representative regions by 
means of minimal functions and the invariant metric are set up. 
Finally the author discusses regions with distinguished boundary 
surfaces, the corresponding Bergman integral representations, and the 
"extended classes of functions." The choice of the topics in this 
chapter is perhaps somewhat too much oriented in the direction of 
the author's own extensive publications. 

However, the book as a whole gives a distinguished introduction 
to the theory of orthogonal functions with its abundance of new 
results. 

H. BEHNKE 

Théorie des distributions. By Laurent Schwartz. (Publications de 
l'Institut de Mathématique de l'Université de Strasbourg, nos. 9 
and 10; Actualités Scientifiques et Industrielles, nos. 1091 and 
1122.) Vol. I, 1950, 148 pp. Vol. II, 1951, 169 pp. 

In Euclidean Ek we consider a general function <p(x) —<p(xi, • • •, xk) 
which is defined and infinitely differentiable everywhere and is zero 
outside a bounded domain D —D^ and, as in a previous context, we 
call such a function a testing function. Next, if F — F{x) is a fixed 
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function in Ek which at first is continuously differentiate of order 
not less than n, then, by partial differentiation, we obtain, for 
fe = l, for the integral 

d*F 
dx -00 dxn 

the value 

(2) 
/

°° dn<p 
F — dx, 

-oo dxn 

and for general k we obtain for 

<P dvx 
Ek dnlXi • • • dn*Xk 

the value 

F dvx. 
Ek d^Xi • • • dn*Xk 

Now, for the computation of the integrals (2), (4) the function F 
need not be differentiate and this leads to defining the symbols (1), 
(3) for testing functions <p (in terms of their values (2), (4)) even if 
the differentiation on F cannot be carried out literally. Such gen­
eralized integrals have been long in developing, and their systematic 
use was the very basis for the theory of generalized Fourier trans­
forms as presented in the reviewer's book Fouriersche Integrale, 1932. 

Now, the author proceeds as follows. On the distributive space of 
testing functions [<p} introduce a limit topology by calling a sequence 
{(pj) convergent to <p if the given functions all vanish outside a 
joint bounded domain D0, and if we have, uniformly in £&, 

(5) lim 
J - » dnixi • • • dn*xk dnixi • • • dn*°Xk 

for all ftitgO, • • • 9 ft*s=0; and, more generally, call the sequence 
«-convergent if (5) holds for ni+ • • • +tt*^w. Obviously, (4) repre­
sents for every continuous F a distributive functional on {<p} which 
is continuous in this topology, and for given n even «-continuous; and 
the author establishes the following converse which is the actual con­
tent of volume I. Given any continuous functional of this kind, then 
corresponding to any bounded Do there exist an F and a system {nj} 
such that for those testing functions which vanish outside D0, the 
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functional can be represented by the integral (4), and is thus also 
w-continuous in D0l for some finite n. 

In the first half of volume II this theorem is adapted to a Euclidean 
multi-torus, a testing function being any function 

(6) <p(%) = Z ) a r i . . .rke
i(nxi+' ' '+rkxk) 

which is infinitely differentiate, without its being required to vanish 
anywhere ; it can also be characterized by the necessary and sufficient 
condition that for every n>0 we have 

(7) an...rk = 0(\r\-«) 

as | r | —>oo, where r =» (r\ + • • • +rl)112. Now, the topology for testing 
functions being introduced as before, the result is that any continu­
ous functional is automatically ^-continuous for some n=n0) and that 
the functional has the value 

(8) 2~i an' ' -rjri' • -ru 
(r) 

where the "multiplier" tri...rk is the value of the functional for the 
particular testing function ei(~riXi+'"+rkxk). We may then also associate 
with the functional itself the unique expansion 

(9) 5^fc.1...ribe*(rl*1+--,+r***) 

and a sequence of multipliers will constitute such an expansion if and 
only if for some w 0 > 0 w e have 

(10) ^ . . . r 4 - 0 ( | r | - ) 

as | r | —> oo. And finally it follows that the series (9) is convergent by 
arbitrary partial sums of itself in the (dual) topology of the space of 
functionals. The author rather prides himself on this last statement, 
but within the given context if amounts only to stating that if (10) 
holds, then for some other exponent n = w we have 

v-^, I tri...rk I 
2J — r ~ i — < °° » 

as we indeed do have for m = w 0 + 2 , say. We might perhaps recall 
that in the L2-theory, the multiple Fourier series likewise converges 
by arbitrary partial sums in the dual topology there given. 

The second half of volume II is given over to generalized Fourier 
integrals, and there the analysis had always been very much subtler, 
and has so remained. 

If f(x) in (—00, oo) is 0( |x\~ 2 ) a t infinity, say, then it has a 
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transform 

1 /•" 
(11) g(a) = — I f{x)e~ixadx 

from which it can be re-obtained as 

eixag(a)da. 
- 0 0 

If, now, for any n>0, gn(<x) denotes an nth indefinite integral of g(a), 
then we write for (12) 

(13) ƒ(*)<-ƒ 
00 ... <*»«»(*) 

da, 
dan 

and in a suitable normalization we have 

n~1 (—»#«)* 
j — ixa \ A 

(14) 

f1 M kl 
2irg»(a) = I f(x) — dx 

J-I (tX)n a -1 p oo\ e-ixa 

Now, this expression may be calculated even if f(x) does not vanish 
at infinity; it suffices that we have f(x) = 0 ( | x | l ) for some finite /, 
and (14) may be then introduced, for n*zl+2 a t any rate. The result­
ing function gn(oi) will not be differentiate any more, but we never-
the less envisaged the relation (13) in a symbolic fashion, and these 
were the generalized Fourier integrals in our book cited. Actually we 
gave a first but different systematic version in an earlier paper,1 and 
we also gave an application to almost periodic functions which ought 
to be generalized to several variables.2 In these earlier papers we fol­
lowed a lead of Norbert Wiener in considering functions which were 
locally 1,2-integrable instead of Li-integrable, and this made the 
theory so much more complicated than the one we arrived at even­
tually in Fouriersche Integrale that we even did not emphasize them 

1 Darstellung reellvariabler una analytischer Funktionen durch Verallgemeinerte 
Fourier- una Laplace-Integrale, Math. Ann. vol. 97 (1927) pp. 635-662. 

2 Tiber gewisse Differential- una allgemeinere Gleichungen, deren Lösungen fast-
periodisch sind I, II, III, Math. Ann. vol. 102 (1929) pp. 489-504; vol. 103 (1930) pp. 
588-597; vol. 104 (1931) pp. 579-587.—For a later application of generalized Fourier 
integrals see also our paper jointly with R. P. Boas, Jr. : Closure theorems for trans­
lations, Ann. of Math. (2) vol. 39 (1938) pp. 287-300. 
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afterwards; but for the present-day re-study of the entire topic they 
may contain view points yet explorable. 

Now, turning again to our relation (13) we note that the author 
goes a step further than we did and he also differentiates the function 
f(x) itself symbolically, thus 

~ I e%xa(ta)p da. 
dxp J _«, dan 

At first sight this still leaves the two sides unsymmetric in that, 
seemingly, on the right side the integrand is 

(to)* } 
dan 

with the unbalancing factor (ia)p in front. I t turns out however that 
for a suitable G (a) and m this can be symbolically written as 

(15) — ^ i 
dam 

and in this way the author arrives at a symmetric Fourier trans­
formational reciprocity between symbols 

dpF(x) d"G{a) 
(16) ; 

dxp dam 

as it were, the functions F(x), G (a) being arbitrary continuous func­
tions in (—00, oo) which are 0(1*1*) and 0(|ce|n) a t infinity, the 
indices p, tn, q, n being unrestricted. 

The operational foundation for this reciprocation is as follows. If 
<p(x) is a testing function as before, then its transform 

1 r00 

(17) \p(a) = — I (p(x)e'ix«dx 
27rV_oe 

will not vanish outside a finite interval. But if we assume only that 
<p(x) is infinitely differentiable and that itself and each derivative is 
O(|x|""0 at infinity for every finite /, then its transform \f/(a) has 
the same property. Thus, the class of these functions is self-in-
versible under Fourier transformation, and we shall call them semi-
testing functions. Now (11) and (17) imply by "convolution" 

(18) — f f(x)<p(x)dx = f g(aM-a)da 
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and this suggests that for a pair of reciprocal symbols (16) we ought 
to have the relation 

1 r00 d*F(x) r™ dnG(a) 
(19) —-LL^te^i _^i^(.a)ia. 

2TTJ_00 dx* J -oo daM 

This is indeed so, provided we interpret the symbol 

—^<p(x)dx, 
-oo dxv 

and also the right side in (19), in the following manner. In the space of 
semi-testing functions we introduce a topology which is based on the 
following limit concept: a sequence {<pj} converges to 0 if for every 
p^O, q^O the sequence 

d«<p,{x) 
XP 

dxq 

is convergent to 0, as j—> oo, uniformly in (— oo, oo ). This topology is 
different from the previous one even if applied to testing functions 
proper, and we now consider among the functional originally given 
only such ones as are continuous with respect to the new topology of 
the testing functions as well. Such a functional can be extended to 
the semi-testing functions and remains continuous over them, and it 
is such a functional which can be represented in the form (20). 
These are the "distributions tempérées" of the author and they can 
be associated in pairs in such a manner that (19) shall hold for any 
pair of semi-testing functions themselves reciprocal, and two distribu­
tions thus associated are Fourier transforms of one another. 

The author does all this for several variables as well, the class of 
semi-testing functions being again self-inversive. We note however 
that the resulting self-inversiveness of the class of distributions, in­
teresting as it is, is only the "dual" to the self-inversiveness of the 
semi-testing functions themselves, which latter self-inversiveness is a 
rather obvious phenomenon and, for instance, cannot compare in 
subtlety to the self-inversiveness of the Plancherel transforms, say, 
where a natural norm is preserved as well. 

The author also gives an extension of the reviewer's theorem on 
positive definite functions 

(21) P(xh • • - , * * ) = f ««*i«i+--'+**«*)dr(ai, • • - , « * ) 
J Ek 

for positive masses düT^O, from such ones for which the total mass is 
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bounded 

f dT(a) < oo, 

to more general ones for which the total mass is only "slowly" 
bounded, that is 

JEk ( i + «; + -•• + a\y 
for some Z. The transform P(x) is then not a function but a distribu­
tion of the author's kind, and he adapts our necessary and sufficient 
condition of positive-definiteness to his distribution so as to secure 
again the representation (21). But we might state that, contrary to 
what the author seems to think, we ourselves gave the theorem not 
only for one variable in Fouriersche integrale, but also for several 
variables immediately afterwards.8 

A dominant analytical tool in the work is a certain "smoothing" 
process (in French "régularisation") which is used both to localize 
pieces of a spectrum or of a functional, and to approximate to a dis­
tribution by a function. As an analytical tool it is older than some­
times realized and it has been constantly used by us both for gen­
eralized Fourier integrals and almost periodic functions; and the 
closely related "partition of unity," so-called, which is gaining in im­
portance in the cohomology theory of differential forms was intro­
duced for the first time for just such a purpose in our note: Remark on 
the theorem of Green, Duke Math. J. vol. 3 (1937) pp. 333-338. And 
as regards the novelty of introducing "distributions" which are more 
general than Stieltjes integrals, say, we think that the credit for it 
ought to be assigned to Riemann who in his paper on trigonometric 
series interprets a series 

00 

(22) ^2 Q^n cos nx + fxn sin nx), 
l 

with only Xn—»0, fxn—»0, as a symbol 

d2F 

dx2 

where F(x) is defined as the uniformly convergent series 

3 Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. 
Ann. vol. 108 (1933) pp. 378-410. 
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* \n cos nx + fin sin nx 

! ft" 

and then "convolves" the series (22) with that of a testing function in 
the appropriate manner. 

We have recounted all this with a view to suggesting that it would 
not be easy to decide what the general innovations in the present 
work are, analytical and even conceptual, and that it is in order to 
appraise the value of the book by its specific results, such as we have 
extracted above; and of such let the author produce many more, by 
all means. 

S. BOCHNER 

Tables relating to Mathieu functions. Characteristic values 1 coefficients, 
and joining factors. Prepared by the Computation Laboratory of 
the National Applied Mathematics Laboratories, National Bureau 
of Standards. New York, Columbia University Press, 1951. 48+278 
pp. $8.00. 

Since its foundation (January 1938) the New York Unit of the 
Computation Laboratory of the National Applied Mathematics 
Laboratories, a division of the National Bureau of Standards—until 
July 1947 it was called the Mathematical Tables Project—has been 
very active in producing extensive and accurate numerical tables of 
important mathematical functions. Besides a series of tables of the 
elementary transcendents, they have published almost a dozen 
tables relating to the higher transcendents such as sine, cosine, 
and exponential integrals, probability functions, Bessel functions, 
Legendre functions. No matter how high-speed electronic calculating 
machinery may be further developed, applied mathematicians will 
always owe a great debt to these and other table-makers. 

This particularly holds for the fascinating tables under review. As 
Professor Erdélyi emphasizes* in the foreword, the comparatively 
slender numerical material available for Mathieu functions shows 
the urgency of the task undertaken by the National Bureau of 
Standards. The more so, since several important problems of applied 
mathematics and theoretical physics involving Mathieu functions 
have so far received only little attention because of lack of adequate 
numerical data. These problems include all types of vibrational, 
wave and diffusion problems connected with ellipses or elliptic 
cylinders, as well as stability investigations of various mechanical 
systems, the theory of frequency modulation, and loud-speaker 
theory. 


