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1. Introduction. The purpose of this address is to sketch some 
aspects of the subject known as topology of Lie groups, i.e., of the 
study of the topological characteristics (mainly those of homology 
and homotopy theory) of the underlying spaces of the Lie groups, and 
of the connections between topological and group theoretical prop­
erties. The interest in this field seems to stem from the fact that a 
variety of disciplines from algebra, analysis, and topology have found 
a very natural domain of application here; on the other hand, the 
topological study of Lie groups has resulted in contributions to other 
fields such as the theory of fibre bundles [116],1 (generalized) affine 
connections [20 ], metric geometry [128], and topology (one might 
mention that the famous theorems of de Rham [102] were first 
formulated in this context). 

In [ l3] Cartan has given a beautiful account of everything that 
was known about topology of Lie groups at the time ; in the present 
paper we shall try to fill in some of the subsequent developments; 
some overlap is of course unavoidable (see also [115; 141 ]). I t should 
be said that we shall be concerned only incidentally with the general 
theory of topological groups; in particular we are not concerned with 
the developments centering around Hubert 's fifth problem, i.e., 
the problem of when topological groups can be proved to be Lie 
groups. 

2. Definitions. We begin by recalling briefly basic definitions and 
a series of classical facts: To describe a Lie group G, we have first of 
all a manifold of some dimension n, i.e. a (separable) Hausdorff space, 
usually assumed connected, in which every point has a neighborhood 
which is homeomorphic with Euclidean w-space £ n ; such a homeo-
morphism sets up a coordinate system in the neighborhood of the 
point. Secondly, the manifold carries an analytic structure: A class 
of coordinate systems, covering the manifold, is specified, such that 
wherever two of the systems overlap, one has a (real-) analytic trans­
formation of coordinates, with nonvanishing Jacobian. I t becomes 
then possible to introduce the concepts of (real-) analytic function, 
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analytic mapping, analytic (or only differentiate) curves, vectors, 
usually thought of as tangent vectors to curves, the space of all 
vectors at a point,~which is an w-dimensional linear vector space (over 
the reals), called the tangent space at the point in question, and more 
generally tensors of an arbitrary index constellation. Thirdly, the 
manifold carries a group structure, a multiplication is defined be­
tween the points of the manifold (the product of a and b denoted by 
a-b or ab) satisfying the usual group axioms. Fourth, the analytic 
structure and the group structure are related through the require­
ments that the product ab and the inverse a"1 depend analytically on 
a and b, i.e., the coordinates of ab and a"1 are analytic functions of 
the coordinates of a and b; or expressed in terms of a mapping: the 
map of GXG (endowed with the natural analytic structure) into G 
defined by (a, 6)—>ab~"1 is analytic. 

An important example is the group GL(n, R) of all real non-
singular nXn matrices, with matrix multiplication as group opera­
tion, and analyticity defined by considering the set of all these 
matrices in the obvious fashion as subset of w2-dimensional Euclidean 
space, and thus covering it with a single coordinate system. A second 
example is the group 0(n) of all orthogonal matrices; this is a sub-
manifold of GL{n, R), defined by the equations between the matrix 
elements which express orthogonality (M-M' = I). Here one needs 
several coordinate systems to cover the group, even to cover the sub­
group 0+(n) of orthogonal matrices of determinant + 1 (this is an 
open-and-closed connected normal subgroup of 0(n), of index 2); 
one can represent, e.g., the points in the neighborhood of the unit 
element I by the formula e8, with the skew symmetric matrix S 
ranging through a neighborhood of the 0-matrix; the elements s y of 
S with i<j serve then as coordinates [21 ; 96]. 

3. Covering groups. Homomorphisms and isomorphisms of Lie 
groups are always assumed to be continuous, and can then be proved 
to be analytic. A local homomorphism is an (analytic) map of a 
neighborhood of the unit element e in one group into a similar set in 
a second group, which preserves product relations between elements 
in the neighborhood; local isomorphism is defined analogously. A 
covering group of a group G is one that is mapped onto G by a 
homomorphism, called projection, which is also a local isomorphism 
of the two groups ; such a group is a covering space of G in the usual 
topological sense [108; 116]. Every group G possesses a unique simply 
connected (i.e. all closed paths are contractible to a point) "uni­
versal" covering group G; the—discrete—kernel of the projection is 
isomorphic with the fundamental group (cf. §6) of G. The simplest 
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example is the map of the real line R into the circle S1 (complex 
numbers of norm 1), defined by x—>exp (ix); the kernel consists of 
the multiples of 2TT. All groups locally isomorphic with a given group 
are obtained by factoring the simply connected covering group by 
various discrete normal (automatically central) subgroups. A local 
homomorphism of a simply connected group can always be extended 
to a homomorphism of the whole group [107; 108; 21; 96]. 

4. The Lie algebra. To every Lie group G there is attached the 
Lie algebra: let L be the tangent space at e; let £, r\ be two vectors of 
L> thought of as tangent vectors to two curves x(t), y{t)\ form the 
commutator x(t) -y(f) 'x{t)~l-y(t)-1, divide by t2; the limit, as /—»0, is 
again a tangent vector at e, depending on £ and rj, and called the 
commutator or Lie product [£, rj]. This multiplication is bilinear, anti­
symmetric, and satisfies the Jacobi identity [£, [77, f]]+fo> [j"> £]] 
+ [?> [£> rç]]=0, which reflects the associative law in G. With this 
multiplication L is called the Lie algebra of G. As an example, the 
Lie algebra of the orthogonal group 0(n) consists of the skew-sym­
metric matrices, and [£, 77] is the matrix combination £r7 —r;£. The 
principal fact concerning the Lie algebra is that two groups with 
isomorphic Lie algebras are locally isomorphic, and that therefore 
almost all properties of a group must be contained in the Lie algebra. 
Every subalgebra is the Lie algebra of a subgroup (which is a Lie 
group itself, but may or may not be closed in G ; on the other hand, 
a closed subgroup is automatically a Lie group, not necessarily con­
nected [13 (16)]); ideals correspond to normal subgroups; homo­
morphism of the Lie algebra and local homomorphism of the group 
correspond to each other. In particular, every vector in L gives 
rise to a 1-parameter subgroup, i.e., a subgroup which is homomorphic 
image of the real line R; such a subgroup is either homeomorphic 
and isomorphic with R (in which case it "diverges to <*> ") or its 
closure is a torus group Tm, i.e., a product of a certain number of 
circle groups S1. 

The inner automorphism x—mxa"1 by an element a leaves the unit 
e fixed, and so induces a linear transformation Aa (actually an auto­
morphism) of L. The map a—>Aa is called the adjoint representation, 
and the Aa's form t h e adjoint group; the corresponding "infini­
tesimal" homomorphism maps £ into ad£, where ad£ is the linear map 
of L into itself defined by ad£(^) = [£, rj]; it follows easily that "ideal 
in L" is identical with "subspace of L, invariant under the adjoint 
group." 

The commutator ideal V is the ideal generated by all elements of 
the form [£, rj]; it corresponds to the usual commutator subgroup. A 
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Lie algebra is solvable if the sequence L, L', L" = (Z/)', • • • ends 
with 0; every Lie algebra has a unique maximal solvable ideal, the 
radical ; a Lie algebra is semi-simple if its radical is 0—it is then direct 
sum of nonabelian simple Lie algebras. A Lie algebra is simple if it 
has no nontrivial ideals; frequently the (one-dimensional, abelian, 
non-semi-simple) Lie algebra of the real line is considered not simple 
ex definitione. The important Levi-Whitehead theorem [135] says 
that any Lie algebra has a semi-simple subalgebra which maps iso-
morphically on the factor algebra modulo the radical, so that 
one has a split extension. There are of course always the correspond­
ing definitions and facts for the groups [21; 96]. 

5. Classification. A fact of very great importance is that all simple 
Lie algebras and groups are known (the construction of a general Lie 
group is reduced thereby to an—in general nontrivial—extension 
problem). One knows since Killing and Cartan [13 (2)] that of con­
nected compact simple groups there are exactly the following (up to 
local isomorphism) [28; 124; 138]: The classical groups, namely the 
orthogonal groups 0+(n) for all n>l (except that 0+(4) is not 
simple), the groups SU(n) of unitary unimodular matrices (M* = M~l, 
det M=l) of degree n, and the symplectic groups Sp(n) consisting 
of the unitary unimodular matrices of degree 2w, which leave a given 
nondegenerate skew-symmetric bilinear form invariant; and five so-
called exceptional groups G2, F^ E&1 £7, -Es (of resp. dimension 14, 
52, 78, 133, 248). (One often uses the notation An = SU(n+l), 
Bn = 0+(2n+l)y Cn = Sp(n), Dn = 0+(2n).) They are all semi-simple 
except for Dlt 

For noncompact semi-simple groups there is a theorem of Cartan 
[13 (3, 14); 39; 130], which associates each such group uniquely 
with a compact group in such a way that the Lie algebras of the two 
groups become identical if one admits complex scalars; as an example 
one might cite the Lorentz group and 0+(4)—with complex co­
ordinates they become identical, since then the distinction between 
a definite and an indefinite quadratic form disappears. 

We note here a remark of Car tan's on the development of our sub­
ject (and the theory of Lie groups in general) : The early discovery of 
the classification has had the effect that frequently general facts 
about Lie groups were first so to speak "verified" for the individual 
simple groups, and that only later a general reason was found. 

6. First topological facts. At this point topology of Lie groups 
proper begins, namely the study of the topological structure of the 
spaces which appear as manifolds of the various Lie groups. The 
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interest in this question is due, besides to H. Weyl, above all to É. 
Cartan, who in a long series of papers [13; 14] came back to the sub­
ject again and again, pointed out its importance, made a thorough 
study of many special cases and went on from there to prove or pre­
dict many general results. 

We begin with some elementary statements about the space of our 
Lie group G (cf. [13]): 

The manifold is orientable. To show this we note that, for any 
fixed #£G, the transformation sending x into ax, the left translation 
la by a, is an analytic homeomorphism of G with itself, mapping the 
unit element e into a; we choose now an orientation at e, and trans­
plant it to a by the left translation la; this orients G coherently. The 
proof really shows more, namely that there exist vector fields without 
singularities on G, and that in fact G can be "parallelized," i.e., 
there exist n everywhere independent vector fields on G ; we simply 
take n independent vectors at e, and transplant them to the arbitrary 
point a by /a. It follows from topological principles [116] that all the 
Stief el-Whitney characteristic classes vanish, and in particular that 
the Euler-Poincaré characteristic x(G) (the alternating sum of the 
Betti numbers, which equals the alternating sum of the numbers of 
cells of the various dimensions if G is divided up into a complex 
(cf. [2])) is 0. 

The fundamental or Poincaré group 7Ti(G) [109; 116], whose ele­
ments are the homotopy or deformation classes of closed paths, 
starting and ending at e, is abelian: If two such paths, a and /3, are 
represented by maps ƒ and g of the circle S1 into G, we form the torus 
T2=*S1XS1, and map it into G by sending the point (x, y) into 
f(x)-g(y). Under the induced homomorphism the generators of the 
fundamental group of the torus, represented by SxXp and pXS1 

(p is a suitable point of 51), map into a and /3 respectively; from 
the elementary fact that these two generators commute one con­
cludes that also «j8=j8ce. 

7. Noncompact groups. We turn next to noncompact groups. Ex­
amples indicate that the noncompactness is of a trivial character: 
In GL(n)y e.g., every matrix can be expressed (through the Gram-
Schmidt orthogonalization process) as product of an orthogonal 
matrix and a triangular matrix (ty = 0 for i <j) with positive diagonal 
elements. This means that GL(n) is homeomorphic with the Cartesian 
product of the compact group 0(n) and a Euclidean space of dimen­
sion n(n + l)/2 (the elements of the triangular matrices below the 
diagonal range through the whole real axis, those on the diagonal 
through the positive half of the real axis). Similarly, for the Lorentz 
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group: any matrix can be written as product of an orthogonal and a 
positive definite symmetric matrix; for a matrix in the Lorentz 
group one shows that the two factors separately belong to the Lorentz 
group. That means that the Lorentz group is homeomorphic to the 
Cartesian product of its subgroup of orthogonal matrices and the 
subset of positive definite symmetric matrices; and the latter set is 
easily shown to be homeomorphic with Euclidean £8. The general 
theorem behind this (known for simply-connected groups to Cartan 
[13]) is due to Malcev [80] and Iwasawa [52] (cf. also Mostow 
[92]): Any connected group is homeomorphic to the Cartesian prod­
uct of a maximal compact subgroup K (which is connected) and a 
subset H, which is homeomorphic with a Euclidean space; the theo­
rem says more, namely, that there exist 1-parameter subgroups 
hi, • • • , hr, isomorphic to the real line R, such that H can be written 
uniquely as hi hr (i.e., each element hoî H has a unique repre­
sentation h = gi gr with giGhi) and that G can be written 
uniquely as KH. Moreover all maximal compact subgroups are 
conjugate. The main step in the proof is to establish the theorem for 
the adjoint group of a semi-simple group; this is done by full use of 
the Lie algebra: one extends the scalars of the Lie algebra L to 
complex numbers; in this complex Lie algebra one finds the Lie 
algebra Lc of the corresponding compact Lie group (a theorem of 
Cartan-Weyl-Mostow [13 (14); 130; 92]); the intersection LGC\L de­
termines a compact subgroup K of G, which turns out to be maximal, 
and by a careful analysis one finds a complementary subalgebra, 
which generates a subgroup H made up of triangular matrices; K 
and H have then the required properties. For the general result, one 
makes use of the theorem that the decomposition is valid for a group 
if it is valid for a normal subgroup and the corresponding factor 
group; this makes possible an induction over the dimension. Prac­
tically all significant topological properties of G are therefore those of 
a maximal compact subgroup. 

8. Solvable groups. Some properties of subgroups. The special 
case of solvable groups is worth considering directly. Solvability is 
equivalent to the existence of a composition series with each factor 
group isomorphic with either R or Sl. One proves now [52]: when­
ever one has a factor group G/N, with N solvable and G/N = R or 51, 
then G has a 1-parameter subgroup projecting isomorphically on 
G/N. Going through the composition series, one gets n 1-parameter 
subgroups fti, • • • , hn, isomorphic with either R or S1, such that G 
is uniquely represented as h\ fen. It follows that G is homeo­
morphic with the Cartesian product of a torus and a Euclidean space; 
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this is a theorem of Chevalley [22; 23]. In particular, if G is simply-
connected, it is homeomorphic with Euclidean w-space; this was 
known to Cartan long ago. 

A question of Pontryagin's can be solved on the basis of the 
Malcev-Iwasawa theorem: If G is simply-connected, and N is a 
closed normal subgroup, is N simply connected? An affirmative 
answer is obtained by reduction to compact groups where the result 
was known [52; 74]. Let G^KH, then N and G/N (the factor 
group) decompose according to KC\NHf and KN/N-H" (KC\N 
and KN/N are maximal compact in N and G/N). G is simply con­
nected if and only if K is; this in turn is so (as can be proved easily 
on the basis of the developments in §10) if and only if KC\N and 
K/KC\N ( = KN/N) are simply connected; and this in turn is 
equivalent to N and G/N being simply connected. 

A last question, which goes somewhat in this direction, is the fol­
lowing: as mentioned, every subalgebra of L determines a subgroup 
of G. When is this subgroup closed? Malcev has given invariants of 
the algebra, which decide the answer [75; 77; 79; 80; 81 ]; the in­
variants involve subspaces of L with rational coefficients—the 
rationals enter the problem through the fact that one has to consider 
closed 1-parameter subgroups, and such groups on a torus cor­
respond to straight lines through rational points in the Euclidean 
space which is the simply connected covering group of the torus. A 
useful result is that a subgroup is closed exactly if it contains the 
closure in G of each one of its 1-parameter subgroups. Similar results 
have been obtained by Goto [40 ]. The problem is really somewhat 
more complicated, because the character of the subgroup gener­
ated by a subalgebra of the Lie algebra depends also on which one 
in its class of locally isomorphic groups the group G is. A consequence 
of these considerations, as shown by Mostow [93], is the fact that 
a semi-simple subalgebra of L generates a closed subgroup if G is 
simply connected. He also showed, under the same hypothesis on G, 
that the subgroup, generated by the subalgebra My is closed if dim L 
— dim M<5; for larger differences this is not always so. 

9. Compact groups. We come now to compact groups. Compact­
ness makes it possible to find in L a positive definite quadratic form 
which is invariant under all transformations of the adjoint group: One 
takes any positive definite form and averages or integrates (with an 
easily defined invariant integration process [13 (16); 21; 131 ]) its 
transforms under the adjoint transformations over the group. In other 
words, the adjoint group can be assumed to consist of orthogonal 
matrices. It follows that the Lie algebra of a compact group is com-
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pletely reducible in the sense that to every ideal ( = subspace in­
variant under the adjoint group) there exists a complementary ideal. 
As a consequence, if N is a closed normal subgroup, then G is locally 
isomorphic with the direct product of N and the factor group G/N. 
This means that all extensions of one compact group by another are 
locally isomorphic, and so they all have the same universal covering 
group; they are distinguished by the different discrete normal sub­
groups by which one has to divide. It is possible to give a complete 
description of the situation [110; 11; 12]; one can make the set of 
extensions of a group N by a group H into a group, and one has the 
theorem of Shapiro [llO] that this group of extensions is isomorphic 
to the group of homomorphisms of the fundamental group of H 
(considered as a discrete subgroup of the simply connected covering 
group H of H) into the center of N, modulo those homomorphisms 
wrhich can be extended to all of Ë. 

If one pursues the above reasoning somewhat further, one arrives 
at the fact that any compact group is locally isomorphic with the 
direct product of a finite number of simple groups, and more pre­
cisely is obtained from the direct product of the simply connected 
covering groups of these simple groups by dividing by a discrete 
normal subgroup. 

10. WeyPs theorem. The last statement is given more precision 
by an important theorem of H. Weyl, saying that the fundamental 
group of a compact semi-simple group is finite (or that the first Betti 
number is zero), in other words, that the universal covering group is 
still compact. There are several proofs for this theorem [129; 13; 25; 
43; 105]; a geometrical proof, which gives us occasion to introduce 
some useful concepts, goes along the following lines [105]: In a 
compact group there exists always an invariant Riemannian metric— 
invariant under left and right translations. The invariant quadratic 
form in Z,(cf. §9) defines the line element, the ds2, at e; for any other 
point one gets the ds2 by left translation; the formula x-a = a-a~lxa 
shows that invariance under left translations and under the adjoint 
group implies invariance under right translations [13 (16); l ] . It 
turns out that the geodesies are the 1-parameter subgroups and 
their cosets. Now if the universal covering group (into which the 
metric can be lifted) is not compact, then one can find in it a straight 
line, i.e., a geodesic which furnishes the shortest connection between 
any two of its points, through e. By considering the relative position 
of this line to the kernel of the projection one can show that it must 
lie in the center, so that one gets a center of positive dimension which 
makes the group not semi-simple. A noteworthy fact about Weyl's 
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theorem is that compactness for semi-simple groups appears as a 
property of the Lie algebra; this is of course not so for other types of 
groups, as the groups S1 and R show. Using Weyl's theorem it fol­
lows then easily that any compact group can actually be obtained as 
product of (a finite number of) compact, simply connected, simple, 
semi-simple groups and a torus group, modulo a finite normal sub­
group [13; 96]. 

11. The Betti numbers. The most obvious topological problem that 
arises now is the determination of the topological invariants, in par­
ticular of the Betti numbers. The results indicated in §§9 and 10 
mean that it is sufficient to consider the simple groups of the classi­
fication given in §5 (cf. a remark in §16). (We shall use the language 
of homology or cohomology, whichever is convenient; we assume 
some familiarity with the concepts of algebraic topology [2; SO; 
61; 109].) 

The problem has been approached in various manners, some of 
which we shall describe briefly. The first method, Pontryagin's, 
amounts to a direct geometric construction of the cycles, for the 
classical groups [99]. Consider, e.g., in the unitary group An the 
subgroup A n_i, obtained by putting an+i,n+i=l; the (left) cosets of 
4„-i are all analytic submanifolds of An, homeomorphic with each 
other; they fill up An in a very regular manner, as a matter of fact, 
they define a fibre decomposition [116] of Any i.e., a neighborhood of 
each coset can be mapped homeomorphically onto the Cartesian 
product C2n+1XAn^i (C2n+1 is an open (2w+l)-cell) in such a 
fashion that the sets p X-4w-i correspond to cosets of An-i. Pon try agin 
constructed now a cycle, given by a closed surface Vn of dimension 
2n+l, which intersects each coset in exactly one point (except the 
coset farthest away from An-i). The smoothness and regularity with 
which An-i and Vn intersect imply that their intersection number, 
in the sense of topology, is + 1 , and that therefore, by Poincaré 
duality, both are not homologous to zero in An and so define nonzero 
elements of the homology groups of An (with integral or rational 
coefficients). The same construction is now repeated in An-i, giving 
rise to a Fn~i, and so on down to Vi (of dimension 3). These cycles 
are now combined by an operation utilizing the group property, the 
Pontryagin multiplication, which with two cycles C, D associates 
the cycle C o D, where intuitively speaking C o D is traced out by 
the point p • q, Up runs through C and q runs through D. (The strict 
definition: C o D is the image of CXD under the map (#, y)—>xy 
of GXG—»G). Pontryagin showed now that, in the sense of homology, 
the Vi are anticommutative, and generate the whole Betti group in 
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such a way that the products Vit o • • • o Vik, i\< • • • < 4 , and 
the zero-cycle, given by a point, form a basis for the group. This 
can be expressed geometrically by saying that Ani as far as the cycles 
go, behaves as if it were the product S*XSbX • • • X52n+1 (where Sn 

denotes the w-sphere {%: #£E n + 1 , | |x | |=l}), or algebraically by 
saying that the Pontryagin ring (homology group with Pontryagin 
multiplication) is a Grassmann algebra with a unit and generators 
of dimension 3, 5, • • • , 2n+l. The intersection behavior also fol­
lows a very simple pattern, namely that given by the analogy with 
the sphere-product. Similar results were obtained for the other classi­
cal groups. We describe the results by introducing the Poincaré-
polynomial of a space, the polynomial in which tk has for coefficient 
the &th Betti number. We have then 

PAn = (1 + *3)(1 + P) • • • (1 + /2«+i), 

PBn = (1 + /3)(1 + t?) • • • (1 + *«-i)f 

Pcn = (1 + /3)(1 + * 7 ) " - (1 + *4*-1), 

PDH = (1 + *3)(1 + *7) • • • (1 + *4"-fi)-(l + ***-*)-

12. Differential forms. The second approach to the Betti num­
bers, initiated by Cartan and completed by R. Brauer, is algebraic 
in character [9; 13]. It starts from a different interpretation of the 
Betti numbers: By the famous theorem of de Rham [102] (which was 
inspired by just these questions) the pth Betti number is equal to the 
number of linearly independent ^-dimensional closed exterior dif­
ferential forms defined over G modulo those forms which are deriva­
tives of (p — 1) -forms. (The value or expression of such a form at 
any point is a skew-symmetric covariant tensor with p indices or, in 
another description, a skew-symmetric function o>(£i, • • • , £p) of p 
arbitrary tangent vectors of the point, linear in each variable; the 
derivative referred to is the exterior derivative of the form or the 
alternating derivative of the tensor; closed means with derivative 0; 
cf. [21; 50] and ref. 64 in [14]; we use the symbol d for derivation.) 
Now one can reduce the £-forms by integrating or averaging over the 
group to bi-invariant forms, i.e., to forms which are invariant under 
left and right translations. (Incidentally, the bi-invariant forms turn 
out to be identical with the harmonic forms, relative to the invariant 
metric of the group, and can be treated from this point of view [SO].) 
A theorem of Cartan's [13 (IS); 25] (an easy consequence of the 
Maurer-Cartan equations, which state that for left-invariant 1-forms 
the relation dœ (£, rj) = — co([£, rj]) holds at e) says that a bi-invariant 
form is automatically closed; and this means that the £th Betti 
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number is equal to the number of linearly independent bi-invariant 
forms (modulo nothing). A bi-invariant form is determined by its 
expression at e (the expression at any other point is obtained by left 
translation), and there it has to be invariant under the adjoint group 
(cf. the case of the metric in §10). The pth Betti number is therefore 
equal to the number of linearly independent skew-symmetric tensors 
with p indices, at e, invariant under the adjoint group; and the prob­
lem of finding the Betti numbers is translated into a problem in repre­
sentation theory. (One sees by the way that the pth Betti number 
can be at most Cn,p, this being the maximum number of independent 
skew ^-tensors over a linear space of dimension n.) By use of the 
first main theorem of invariant theory, Brauer was able to construct, 
for each classical group, explicitly a certain number of invariants, 
which from other considerations could be shown to exhaust all 
possible invariants (cf. also [130; 131 ]). The result corresponded 
completely to Pontryagin's, i.e., certain basic forms coi, co2, • • • were 
found, such that the products co4l-co»2 o)ik w i t h i i < i 2 < • • • < 4 
and the scalars constitute a basis for the group of invariant forms. 
The whole method of invariant differential forms is due to Cartan; 
he had, before Brauer gave the complete result, obtained certain 
facts about the Betti numbers, enough to make him state as a con­
jecture what then turned out to be the correct result [13 (IS)]. 

13. Hopfs theorem. The next approach, due to Hopf, differs 
from the first two by establishing a general theorem instead of con­
sidering each group separately [45; 46]. The method is topological 
and starts from the map # of GXG into G, given by </>(x, y)~x-y. The 
existence of the unit element e means that every cycle of GXG, 
which "lies in one of the two factors," i.e., which is of the form 
zXe or eXz with some cycle z of G, is mapped by <f> into z; for the 
associated or adjoint map 0*, which maps the cocycles (or differ­
ential forms, if one prefers) of G into those of GXGf this means that 
c6*(a) is of the form aXl + lXa+R, where 1 is the unit cocycle 
and R consists only of "mixed terms" cXd} where both factors have 
positive dimensions. Now one draws algebraic conclusions. To illus­
trate, we show that a sphere of even dimension cannot be a Lie 
group (of course this follows also from the characteristic). If tn is 
the basic w-cocycle of 5 n , then one would have <f>*(tn) = / n X l + l X / n 

(since there are no "in between" terms in the ring of 5n). (tn)2 is 0, 
for dimension reasons. 0* being a homomorphism, the square of 
/ n X l + lX / w has to vanish; under the sign-rules in a Cartesian 
product, remembering that n is even, one obtains 2tnXtn for the 
square, which is not 0, and thus has a contradiction. Refining this 
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argument considerably one obtains the theorem: The cohomology 
ring of a Lie group contains certain "primitive" elements ah • • • , a% 
(of odd dimension and therefore anticommutative), such that the 
products a^ d{k, ix< • • • <ik, and the unit 1 form a basis 
for the cohomology group; the ring is isomorphic with the Grassmann 
algebra over the linear space spanned by the #*. Any such set of 
elements a* is called a set of generators of the ring (strictly speaking 
one would have to add the unit to this set). The number / of elements 
ai has a group theoretical meaning, which we discuss in §20. One 
can show in addition that the homology group, with Pontryagin 
multiplication, is also a Grassmann algebra, and that these two 
Grassmann algebras are duals of each other [59; 62; 104], While 
thus the theorem gives a reason for the specific structure of the co­
homology rings of the classical groups as found by Pontryagin and 
Brauer, it does not of course determine them explicitly; for the clas­
sical groups, e.g., one can couple Hopfs theorem with a theorem 
about transitive transformation groups of spheres (to which we shall 
come later) to arrive at the Betti numbers. 

14. Cohomology theory of Lie algebras. The fourth method works 
with the Lie algebra. By the integration process mentioned above, 
one reduces the differential forms (cf. §12) to forms which are in­
variant under left translations (invariance under right translations, 
as in §12, is not required here); such forms are determined by their 
expression at e; moreover the process of taking the exterior deriva­
tive can be translated into a simple algebraic operation in the Lie 
algebra (the Maurer-Cartan equations, §12, show how this transla­
tion goes for 1-forms; the complete formula, which follows easily 
from this, is one of a series of algebraic "coboundary formulae," 
which recently have become popular, and reads dco(£i, • • • , £„+i) 

- E « / ( - D w « ( f e . fcl. & . • • • , ? * • • • • h, • • • k+i) ; the «roofs» 
mean that the vectors are to be omitted). The whole cohomology 
theory of differential forms is so expressible by simple algebraic opera­
tions in the Lie algebra, and the problem arises, to prove topological 
facts about groups on this basis [25]. Koszul proved Hopfs theorem 
and more in this manner [59]. The development naturally parallels 
somewhat that in Hopfs theory. Instead of the product GXG there 
appear algebraic constructions like LXL, the direct product of the Lie 
algebra with itself; instead of the natural map of GXG into G there 
appears the natural map of L onto the diagonal of LXL; instead of 
the forms or cochains there appears the Grassmann algebra A over L. 
Hopfs theorem becomes the statement that the cohomology ring 
of a Lie algebra is a Grassmann algebra generated by certain "primi-
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tive" elements. It is formulated and proved for any field of character­
istic 0 as coefficient domain, under assumptions on L which replace 
the condition of compactness on G. 

15. The exceptional groups. Symmetric forms. The five excep­
tional groups have resisted much longer (or rather four of them; G2 

was known for some time [13 (15)]). Recently Yen determined their 
Betti numbers [139], using methods which involve knowledge of 
the representations of the groups (somewhat in the spirit of §12) 
and many additional pieces of information, in particular a conjec­
tured formula of G. Hirsch about fibre bundles, when bundle and fibre 
have the homology structure of products of spheres (as Lie groups 
do, by Hopfs theorem). The dimensions of the primitive cocycles for 
the five groups are: (3, 11), (3, 11, 15, 23), (3, 9, 11, 15, 17, 23), 
(3, 11, 15, 19, 23, 27, 35), (3, 15, 23, 27, 35, 39, 47, 59). In the mean­
time Chevalley and Weil [26] have found a totally different approach 
to the whole problem, which made the computations for all groups 
much simpler. The leading idea is the introduction of symmetric, 
invariant (under the adjoint group) forms in L instead of skew-sym­
metric ones; by a process which involves substitution of commu­
tators [£, rj] for the elements in a symmetric form, one can associate 
with each symmetric p-îorm a skew form (of degree 2p — l) (a spe­
cial case is familiar: from the symmetric bilinear form, introduced 
by Cartan, cr(£, 77) ( = tr(ad £ ad 77)), one obtains in <r(£, [77, f ]) a skew 
3-form ^(£, 77, f)). A crucial theorem states that the primitive ele­
ments of the cohomology ring can be so obtained. The invariant 
symmetric forms are closely related to the generalized Casimir 
operators of Racah [lOl]; in particular the degrees of these operators 
for the exceptional groups, as given by him, turn into the dimensions 
of the primitive cocycles upon replacing p by 2£ —1. 

16. Torsion. Besides the Betti numbers there are also the torsion 
coefficients to determine, or in other words, the elements of finite 
order in the cohomology group with integral coefficients. It is well 
known here that the fundamental group of the rotation group of 
3-space is of order two; actually this is so for all orthogonal groups 
0+(n), n>2 [116]. Pontryagin has shown in his explicit construction 
[99] that the unitary and symplectic group have no torsion at all, 
and that all the torsion elements of the orthogonal group are of order 
two. The Poincaré polynomial mod 2 of 0+(n) is given by (1+/) 
• (1 +t2) (1+tn~1). It has recently been shown by A. S. Shapiro 
and A. Borel, using the topological theory of sphere-bundles (in 
particular the theory of the characteristic cocycle) and Leray's homol-
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ogy theory that the simply connected covering groups of the orthog­
onal groups also have torsion (from some n on). A general study of 
the problem of torsion in groups and also in homogeneous spaces (cf. 
§17), based on the theories of H. Cartan, Koszul, Leray, Weil 
(cf. §22), has been made by A. Borel [9]. Among other things, he has 
determined completely the torsion of the universal coverings of the 
orthogonal groups, and of some of the exceptional groups. The co-
homology mod 2 for the orthogonal group and related spaces has 
been investigated by C. E. Miller [86]. (That the Betti numbers of 
a compact group and any compact covering group are the same is 
easily proved by interpreting the Betti numbers via bi-invariant 
forms: both groups have the same adjoint group. The same device 
shows that for a compact group G and connected normal subgroup 
N the "Künneth relation" Po(t)=PN(t)'P0/N(t) holds between the 
Poincaré polynomials.) As special facts we mention that for a com­
pact semi-simple group the second Betti number is always zero and 
that the third is always positive [13 (IS)] (the invariant form 
*K£> *?> f) mentioned in §15 is nonzero on such groups; incidentally 
this proves that of the spheres Sn only S1 and 53 are groups [103 ]). 
Koszul recently proved from the Lie algebra, making use of the con­
nection between symmetric 2-forms and skew 3-forms mentioned in 
§15, that for a simple Lie group (except the 1-dimensional Dx) the 
third Betti number is always one [54; 59]; this checks of course with 
the explicit results. We also note an isolated fact about noncompact 
simple groups: as shown by Cartan, the first Betti number is 0 or 1 
[13; 13 (16)]. The distinction between the two cases is related to the 
question of the existence of a faithful representation [13 ] ; this 
question has been investigated by Goto [40; 41 ] and Malcev [78] 
(cf. also [3; 4; 42; 43; 83]). 

17. Klein spaces. Closely related to Lie groups is another class of 
spaces, the Klein spaces. There are two equivalent definitions: as 
coset spaces and as homogeneous spaces [141 ]. If H is a closed sub­
group of the Lie group G, then the left cosets of H can be considered 
as the points of a new space, the coset space G/H, with the customary 
decomposition topology [2, p. 63] (if H is normal, this is the factor 
group) ; the Lie property of G and H imply that G/H is an analytic 
manifold, whose dimension is the difference of those of G and H; 
the natural map p of G into G/H, which sends g into the coset gH, 
the projection, is analytic. A homogeneous space is a space (which 
we assume to be a manifold) Wf on which G acts transitively as a 
transformation-group, i.e. each g £ G determines a homeomorphism 
TQ of W with itself, such that Tgi-Tg^Tgigv that Tg(x), or in short 
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g(x), depends continuously on g and x1 and that for any x and y in 
W there is a g in G with T0(x) =y . 

The connection between the two concepts is as follows: If G acts 
on W, let xo be a point of W, and consider the closed subgroup H 
— GXQ, consisting of those elements of G which leave x0 fixed (it is 
called the isotropy or stability group at x0). Each left coset of Gxo is 
identical with the set of elements of G which send x0 into one and 
the same point xf and conversely for each point x the set of elements 
which map XQ into x is a left coset of H; one has thus a 1:1 correspond­
ence between Wand G/H, which turns out to be a homeomorphism. 
(The concepts make sense for any topological group; but in general 
one can assert only that the map from G/H to W is continuous.) In 
particular, W can be made into an analytic manifold, and G acts 
analytically on it. As an example, the group 0+(n + l) acts transi­
tively on the unit sphere Sn in En+1; the isotropy group is simply 
0+(w). Other examples of Klein spaces are the groups themselves 
(with H= {e}), the projective spaces, the complex projective spaces 
K (one can take SU(n+l) as group G), the Grassmann-manifolds 
Mns$k, formed by all planes of dimension k through the origin of En, 
with the orthogonal group 0(n) as G. There arises the problem of 
the relations between the topological properties of G} H, and G/H. 
Actually G is a fibre bundle over G/H (with G/H as base space), 
with fibre H; i.e., the cosets xH fill out G in such a regular arrange­
ment that each coset has a neighborhood which is homeomorphic 
with CXH (where C is a cell of dimension equal to that of G/H) in 
such a fashion that the sets pXH correspond to the cosets of H 
(cf. §11)—G is "locally a Cartesian product"; one should add that 
the structure group of the bundle is H [116]. This fact is quite 
important; a good part of our knowledge of coset spaces was obtained 
by the application of fibre bundle methods. (Conversely the homol­
ogy theory of Lie groups has recently found applications to the 
theory of fibre bundles and the related field of differential geometry 
[20]; even knowledge of the explicit form of the cohomology ring of, 
e.g., the orthogonal group, has proved useful.) 

A slight generalization of the above is worthwhile : if H and K are 
two subgroups with HQK, then G/H is a fibre bundle over G/K 
with fibre K/H; the projection or fibre map is the natural one, which 
sends each coset of H into the coset of K containing it. If, e.g., H 
is Koy the component of e in K, then K/K0 is discrete, and G/Ko is 
simply a covering space of G/K, with the number of sheets equal to 
the number of components of K. This has some consequences for the 
fundamental group of a Klein space: If K is connected, then TTI(G/K) 
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is easily seen to be a factor group of TTI(G) and therefore abelian ; in 
the general case it has iri(G/Ko) as abelian normal subgroup, with in­
dex equal to the cardinality of K/K0 (cf. [109]). 

As to orientability, one can show by an argument similar to one 
used for groups in §6 that a Klein space is orientable if and only if 
all the transformations of the isotropy group at a point x are orienta­
tion preserving at x (i.e., of index + 1 or of positive Jacobian at x). 

18. Compact Klein spaces. Characteristic. A first result, only 
recently established by Montgomery [91 ], is the following: If a 
Klein space, with connected isotropy group, is compact, then it is 
coset space of a compact group. One begins by representing G and H 
as EK and E' -K' from the Malcev-Iwasawa theorem (§7), where 
E and E' are homeomorphic with Euclidean spaces, and K and K' 
are maximal compact subgroups (the interchange of the factors 
against §7 is of course possible; we use this order now, because we 
use left cosets). One can assume K'QK. It is possible then to write 
G/H = (G/K')/(H/K') =E'(KIK')IE' with an (it is hoped) obvious 
symbolism (cf. §17). Now if the fibre is contractible to a point (as E' 
is), it is known [116] that there exists a cross section, i.e., a map/ : 
W—Œ-K/K', where/followed by the projection is the identity. Since 
E is also contractible, one can deform ƒ into ƒ', where ƒ' maps W into 
K/K' (into the "slice" of E K/K' at e, parallel to the second factor). 
The identity of W being an essential map (W is a compact mani­
fold), it follows that the composition of ƒ with the projection still 
maps onto W, and that therefore the projection maps K/K' onto 
W, which means that K is transitive over W, q.e.d. 

We consider now compact Klein spaces, with compact group. As 
noted in §6, the characteristic of the group is zero; this came from 
the—trivial—existence of a vector field, and the—nontrivial—rela­
tion between vector fields and characteristic. For Klein spaces there 
is the theorem (with a vaguely parallel proof) that the characteristic 
is non-negative [49; 129]. The distinction between 0 and >0 is 
group theoretical, as follows: an abelian subgroup of maximal dimen­
sion of the group is known to be a torus of a certain dimension 1(G), 
called the rank of G (all maximal toral subgroups are conjugate to 
each other); the characteristic of G/H is positive exactly if 1(G) 
= l(H). The basis of the proof is the consideration of G/T, where T is 
a maximal toral subgroup (all other cases can be reduced to this). It 
is relatively easy to show (the trivial part) that there are elements 
of G which transform G/T with only a finite number of fixed points, 
each of index ( — l)m (where m = dim G/T); and then one reads off 
from the Lefschetz fixed point formula (the nontrivial part) [2 ] that 
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the characteristic equals the number of fixed points and is therefore 
non-negative. As an example, consider the sphere S2; any rotation 
with a finite number of fixed points has exactly two of them, and 
the characteristic is well known to be two. Actually, all the trans­
formations of G/H are isometries with respect to a suitable Rie-
mannian geometry; and the theorem should have a connection with 
the generalized Gauss-Bonnet formula, which expresses the char­
acteristic as integral of an w-dimensional curvature (cf. [18] and the 
references there), in other words, one should be able to show that for 
Klein spaces this curvature is non-negative. To illustrate the meaning 
of the theorem, consider Riemann surfaces of genus p>l, i.e., of 
negative characteristic. I t is known that they do not admit 1-param-
eter groups of conformai mappings, and also that the periods of their 
periodic homeomorphisms are bounded [115], so that they are about 
as far from being Klein spaces as one can wish. 

19. The diagram. We digress at this point to describe a construc­
tion, which goes back to Car tan and Weyl, which is of fundamental 
importance for the problem of classifying the simple Lie groups and 
without which no report on Lie groups would be complete. If, as 
above, Tl denotes a maximal toral subgroup of the compact Lie 
group G, then one sees easily that the normalizer NT consists of a 
finite number of cosets of Tl (the reason for the finiteness is the fact 
that the automorphisms of a torus form a discrete group, and that 
therefore any element of iW, which is close enough to e, commutes 
elementwise with Tl> and so belongs to it). Conjugation of Tl with 
elements of NT determines then a finite group $ of automorphisms 
of Tl. A basic fact, which we shall naturally not prove here, is that 
this group, as transformation group of the torus Ty determines the Lie 
algebra of G [ l 2 l ] . The group $ is easier to see if one considers the 
universal covering Euclidean space El of Tl; there * turns into a 
discontinuous group T of orthogonal transformations (rigid mo­
tions) by adding to the rotations given by <E> the covering transforma­
tions (deck transformations) of El over Tl (which are translations of 

The group T is generated by reflections in certain (infinitely many 
of course) planes; the planes form the so-called diagram of the group 
[ l 2 l ] . The fundamental domains of T are convex polyhedra, which 
are all congruent to each other, and cover El without overlapping; the 
angles between two faces of a polyhedron are of the type r/k, k 
integral and not less than 2. If the group is simple, the polyhedron is 
a simplex, and the determination of the simple groups is reduced to 
the discussion of simplices satisfying the arithmetical condition on 
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the angles. The relation of this polyhedron to the group might be 
better understood if one remembers that all maximal toral subgroups 
are conjugate to each other, that therefore each element of G has a 
conjugate on Tl

f and that two elements of Tl are conjugate in G if 
an operation of $ maps one into the other; finally, therefore, the poly­
hedron in El plays the role of a fundamental domain of G with re­
spect to conjugation. The elements corresponding to points on the 
faces of the polyhedron, and their conjugates, have normalizers of 
dimension greater than /, actually even greater than or equal to 1+2; 
such elements are called singular. The singular elements form a set 
of dimension a t most n — 3 (transforms of an (/—l)-dimensional set 
with at most (n— (/+2))-dimensional orbits). One can conclude from 
this construction that , if G is simply connected, the set of nonsingular 
(regular) elements can be contracted over itself into the point e> 
along 1-parameter subgroups [13 (10, 11); 121; 122; 130; 131]. A 
new application of these ideas has been given by Stiefel : He has de­
vised an approach, based on the diagram of G, to the problem of find­
ing the Betti numbers, which yields, e.g., once more the Betti numbers 
of the classical groups [123]. 

20. The rank. The maximal toral group T also plays a role for 
the group-theoretical interpretation of the number / of generators of 
the cohomology-ring of G (cf. §13); the simple result is that / equals 
the dimension of T ( = the rank of G). The proof employs the "power" 
map pk, which sends xÇzG into its &th power xk for integral k 5*1. 
From the homology properties of G, as described in §13, one can 
show that the (homology-) degree of pk is kl (if we denote by G also 
the basic w-cycle on the w-manifold G, then we have pk(G) —kl-G). 
On the other hand, if one takes a "general" element a of T (i.e., 
one whose coordinates are independent mod 1, so that its powers are 
dense in JP), one can see by an elementary consideration that there 
are exactly kl(0) elements on T which map into a under pk, and that 
no other elements of G can map into a. In addition, one can show that 
the functional-determinant of pk (with respect to a given orientation 
of G) is always non-negative, and for the elements under considera­
tion even positive; this means that the index of pk of all the elements 
which map into a is + 1 , and that the degree of pk a t a is kH0). Apply­
ing now the theorem that the homology degree of a map equals its 
degree at any point [2], one finds kl — kl(>G), and so I = 1(G) [47]. 

21. The subgroup as a cycle. We return now to the discussion of a 
Klein space G/H. The submanifold H of G can be considered as a 
cycle, in the sense of topology, in G. As such it either bounds or it 
doesn't bound; this turns out to be an important distinction. The 
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case of H not bounding is by far the simpler (incidentally, no cycle 
of H can then bound in G, unless it bounds already in H—a very 
special behavior [104]), and one has there a very precise result on 
G/H: G behaves homologically (over the rationals) as if it were the 
Cartesian product of H and G/H (in general it does not actually 
factor) ; the cohomology ring of G/H is also a Grassmann algebra, with 
generators of odd dimensions, and the ring of G is isomorphic with 
the tensor product of the rings of G/H and H. These two facts com­
pletely determine the ring of G/H in terms of those of G and H: if 
from the generators of the ring of G one drops those which cor­
respond to generators of H, then the remaining ones generate a 
ring isomorphic with that of G/H. This has been proved by the 
topological and algebraic methods discussed in §§13 and 14, suitably 
extended to the case of Klein spaces [59; 104]. For the topological 
proof one considers the natural map of G onto G/H. The principal 
fact in the proof is that the assumption on H implies that the Betti 
groups of G are mapped onto those of G/H; the remainder of the 
proof consists in a discussion of the behavior of the projection with 
respect to Pontryagin multiplication and the connection with the 
induced cohomology map. A particular case where this applies is 
the case where G/H is a sphere of odd dimension ; this is one of the 
theorems needed for the determination of the Betti numbers of the 
classical groups as mentioned in §13 (the classical groups appear in a 
natural way as transitive transformation groups of spheres; the 
isotropy groups are again classical, and an induction becomes possible). 
Of course, one has to prove first that in this case H is not homol­
ogous to zero; but that is easy, with a construction to be described 
in a moment. The remaining case of a subgroup H, which is ~0 in 
G, is not completely understood, and much remains to be done. A 
special case of interest in connection with the problem just men­
tioned is known, namely when G/H is a sphere Sm of even dimen­
sion ; the result is that one of the primitive generators of the ring of 
H has dimension m — 1, and that the ring of G is obtained by replac­
ing this generator by one of dimension 2m — 1 . The topological proof 
employs again the map p from G to G/H-Sm. The principal fact 
(for odd and even m) is that Sm can be lifted back into G "with one 
singularity"; more precisely one can find an m-cell Cm in G, such 
that the boundary of O lies in H and the projection p maps the in­
terior of O topologically on the sphere Sm minus the point which is 
represented by the coset H itself (p maps the whole boundary of O 
into this point). One can show now that the boundary of O , which 
is an 5m~*1 lying in H, is ~ 0 in H for odd mf from which it follows 
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easily that then H is not ~ 0 in G (by a consideration involving Poin­
caré duality as in §11; one starts by completing Cm to a cycle by 
means of a chain in H) ; for even m this Sm~l is not ~ 0 in Ü, and as a 
matter of fact it is a primitive (m —1) -cycle in H (which is ~ 0 in G, 
since it bounds the cell Cm) [104]. 

22. Algebraic methods, A recent result of Koszul generalizing a 
result of §21 can be described roughly as follows: For every primitive 
p-cyc\e of H which bounds in G, there exists a (p + 1)-dimensional 
generator in the cohomology ring of G/H. I t gives thus a first indica­
tion of what the structure of the ring of G/H might be in the general 
case. Koszul's methods [59], which operate with the Lie algebra of 
G and a subalgebra corresponding to H (the "relative case" of §14), 
are inspired by the concepts of ring of a map and of spectral ring of 
a filtered differential algebra, which Leray has recently introduced 
into topology and which have found an increasing number of applica­
tions in the recent past; it is impossible to indicate definitions or 
proofs here. We only mention a concept which also plays a role else­
where, that of transgression; in terms of differential forms, it is de­
fined as follows: If co is a closed form in G/H whose image p*co 
(under the map p* associated with the map p of G into G/H) is 
homologous to zero in G, i.e., p*o)=da, then a induces on the sub-
manifold H of G a closed form, which is said to be transgressive. 
This process can be considered as the dual of the process of finding 
cycles in G/H which are ^-images of chains of G, whose boundaries 
are not necessarily 0, but are collapsed into 0 by p (a special case 
occurred in §21). A main result of the theory is that just the primitive 
elements are transgressive. Leray himself has announced a number of 
applications of his ideas [62-73]. He has determined, for the classical 
groups, the ring of G/T, where T is a maximal toral subgroup of G, 
and more generally the ring of G/H, when H has the same rank as G, 
i.e., when it contains T. The results [69] are best stated in terms of 
the Poincaré polynomials: If G and H have respectively the poly­
nomials n( l+/ 2 wx~ 1) , II(l-W2wx-i), then G/H has the polynomial 
11(1 ~/2 mx)/(l -*2»x). That this formula holds if, instead of the group-
subgroup structure, one has only a fibre bundle is Hirsch's conjecture 
(§15); the case where G and H are spheres, so that the products 
contain only one factor, is one of Gysin's results (cf. réf. 38 in [116]). 

Another result in this direction was given by Koszul [56] for the 
case where H is a circle group 51 , where therefore G is fibred into 
circles; it states that the Poincaré polynomial of G/H is obtained 
from that of G by replacing a factor 1+ / 3 by a factor 1+/ 2 . A trivial 



22 HANS SAMELSON [January 

example for this is the group SU"(2), which is homeomorphic with S8, 
and for which G/Sl is homeomorphic with S2; the interest of the re­
sult comes of course from all cases but this one. 

Considerable advances along these lines have been made recently 
by H. Cartan [16; 17], Koszul [60 ], and Leray [71 ]. The introduction 
of symmetric forms ( = symmetric multilinear functions on the Lie 
algebra, cf. §15) has proved very fruitful. To mention one of the main 
results, let Is(G) (IA(G)) denote the algebra of invariant (under the 
adjoint group) symmetric (skew-symmetric) forms of the group G. 
For a subgroup H of G the Lie algebra of H is contained in that of G; 
one has therefore a natural map of Is(G) into/#(/?) , by restriction of 
the arguments of the forms. This mapping completely determines the 
cohomology ring of G/H; the ring is constructed by suitable defini­
tion of a boundary operator in the tensor product IA{G) ®IS(H). AS a 
more specific result it has been found that a formula of the Hirsch 
type holds not only in the case where G and H have equal rank (cf. 
above), but also for symmetric spaces G/H (cf. §24) ; in this case the 
denominator polynomial can contain fewer factors than the nom­
inator. A concept that has evolved in these developments is that of 
the Weil algebra W(L) of a group G (or rather of the Lie algebra L 
of G) ; it is the tensor product of the Grassmann algebra A (L) of skew 
forms on L and the algebra S(L) of symmetric forms on L. The Weil 
algebra turns out to be the algebraic equivalent of a classifying space 
(for arbitrary dimension) for principal fibre bundles with fibre G 
(cf. §30). What corresponds to the cohomology ring of the base space 
is just Ia{L) (with all degrees doubled). The notion of infinitesimal 
connection, after being given a very algebraic formulation, makes it 
possible to define, for a principal fibre bundle with fibre G and base 
space By a homomorphism of Is(L) into the cohomology ring of B 
[the image is the so-called characteristic ring of the bundle (cf. §30) ] ; 
and one can give an algebraic construction for the full ring of the 
bundle from the connection. 

Many of these and many other results, in particular for fields of 
arbitrary characteristic as coefficients (i.e., roughly speaking for the 
torsion group, cf. §16), have been obtained by A. Borel [9; 9a-9e], 
utilizing Leray's theory. 

23. Grassmann manifolds. We come now to what can be called 
special results, namely results on explicit spaces or classes of spaces. 
The first results here are due to Ehresmann [32-37], on the Grass­
mann manifolds (cf. §17) and related spaces. The procedure is very 
direct; the space is decomposed into cells, and from the cell structure 
the invariants are calculated. The cells in question are of course not 
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arbitrary, but related to the algebraic-geometric properties of the 
space. For the Grassmann manifolds, e.g., the cells are defined by 
the so-called Schubert varieties [34; 35]: In Euclidean w-space En 

we consider a fixed increasing sequence £ 1 C-E 2 C • • * (ZEn~lC.En of 
subspaces (through the origin of En). Given now a sequence of 
integers au i = l, • • • , k, such that 0 ^ # i < • • • <ak?*n — k} we de­
note by [ait #2, • • • , dk\ the set consisting of all ^-dimensional sub-
spaces L (through the origin) of En which have the property that 
dim LC\Eai+i }>i, for i = l , • • • , &. This set is a (pseudo-) manifold 
of dimension ]T)î ai; it is a generalized cell in the sense that it is ob­
tainable from a Euclidean cell of the same dimension by making cer­
tain identifications on the boundary. All the cells so defined form a 
(generalized) cell decomposition of the Grassmann manifold A/»,*. 
The boundary relations (in the sense of combinatorial topology) have 
been determined by Ehresmann; the Betti numbers and torsion co­
efficients can then be computed. Going further in this direction, 
Chern [19] has determined the cohomology ring structure of Mn,k 

(with coefficients mod 2) ; the interest in this ring is due to the fact 
that it is a universal antecedent of the so-called characteristic ring 
of any sphere bundle (cf. §30). (See also [lOOa; 100b] in this con­
nection.) 

Similar methods have been used to determine the homology in­
variants of the quadrics (real, complex, quaternion, hermitian) and 
similar spaces [32-37; 95; 118]. 

A different cell decomposition, related to one used by J. H, C. White­
head [136], has been employed by C. E. Miller [86] to investigate in 
detail the cohomology ring mod 2 of the orthogonal group and of 
several of its coset spaces, e.g. the Stiefel manifolds (cf. §30). The 
cells here are essentially products of projective spaces. It turns out 
that, while the Pontryagin ring mod 2 is still a Grassmann algebra 
(in particular the squares of the generators vanish) this is not so for 
the cohomology ring mod 2 ; the defining relations state that certain 
higher powers of the generators vanish. (In the simplest case, 0+(3), 
which is projective 3-space, one has one generator x and the relation 
x4 = 0.) In addition, the Steenrod squares (operations in the cohomol­
ogy ring, recently introduced by Steenrod) are determined for these 
spaces, with an application to the problem of vector fields on the 
w-sphere (cf. §30 and [119]). 

24. Symmetric spaces. A second method, also initiated by Ehres­
mann [32] and perfected by Iwamoto [5l] applies to the symmetric 
Riemannian spaces; these are spaces which have the property that 
for each point the symmetry, i.e. the transformation which reverses 
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all geodesies through the point, is an isometry. Obvious examples are 
Euclidean spaces and spheres. Cartan has shown [13 (16)] that the 
symmetric spaces are exactly the coset spaces G/H, where G has an 
automorphism of order two, which leaves just the elements of H (or 
rather of the component of e in H) fixed, and where H is compact. 
As a non trivial example let G = SU(n) and let the automorphism be 
complex conjugation; H = 0+(n) consists then of the orthogonal 
matrices, and G/H is the space of symmetric unimodular unitary 
matrices. We consider now the cohomology of an arbitrary Klein 
space of a compact group in terms of differential forms; by an averag­
ing process (as in §§12 and 14) one can reduce all forms to invariant 
forms, where invariant means invariant under the action of the group. 
An invariant form is determined by its expression at any point Xo 
(this leads at once to an inequality for the Betti numbers analogous 
to that of §12). Let us call adjoint group of the space the group of 
linear transformations in the tangent space at x0, induced by the ele­
ments of Gy which leave x0 fixed (i.e. GXQ, cf. §17); the value at x0 of 
an invariant form is then invariant under the adjoint group. The 
symmetric spaces now have the special property that, by a theorem 
of Cartan [13 (IS); 25], invariant forms are automatically closed. 
This means that the pth Betti number is equal to the number of 
independent invariant ^-forms (modulo nothing), and, upon consider­
ing the values of the forms at #0, that it equals the number of inde­
pendent skew-symmetric tensors with p indices, invariant under the 
adjoint group; in more sophisticated language, one has to determine 
how often the trivial representation occurs in the pth. exterior power 
of the adjoint group (cf. §12). As an example for the procedure, con­
sider again the Grassmann manifold ilf»,*» the manifold of ^-planes 
in w-space, under the orthogonal group 0(n). The isotropy group is 
the direct product 0(k)XO(n — k) (to keep a fe-plane in itself, one 
can rotate in the plane, and also in the perpendicular (n — k)-plane). 
The adjoint group can be considered as operating on the vector space 
of all kX(n — k) matrices M; the element (T&, TV-*.) (where (7fc£0(&), 
Tn-kÇE.O(n — k)) maps M into TkMT^. One considers now the rep­
resentation of GL(k)XGL(n — k), given by the same formula. The 
complete reduction of the pth. exterior power of this representation 
has been given by Ehresmann [34] ; one has to make use of the known 
theory of the representations of GL(n)y in particular the Young dia­
grams and the weights. For each irreducible constituent obtained, 
Iwamoto [51 ], using the known theory of representations of the 
orthogonal groups, determined what happens when one now restricts 
oneself to the orthogonal groups. One arrives at a fairly simple rule 
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for the appearance of trivial representations or linear invariants, 
expressing the pth Betti number in terms of partitions of p. The 
procedure and the results are similar for all other symmetric spaces; 
Iwamoto treated also the classical groups themselves in this way. 
That the algebraic methods of §22 can be applied successfully to 
symmetric spaces has been mentioned already. Among other things 
this has led to an explicit formula for the Poincaré polynomials of the 
Grassmann manifolds. 

25. Subgroups of maximum rank. Another class of (compact) 
coset spaces which was already mentioned in §18, and §22, consists 
of those spaces for which the isotropy groups are of maximum rank; 
according to §18 they are just the coset spaces of positive character­
istic. I t is easy to see that any such space is topological product of 
coset spaces of the same type of simple Lie groups, thus reducing 
the problem of classifying these spaces considerably. Wang [125; 126] 
and Borel and de Siebenthal [5; 6] have given a complete list of the 
subgroups of maximal rank of the classical groups, and (Borel and 
de Siebenthal) of the maximal subgroups of maximal rank of the ex­
ceptional groups. Naturally this analysis makes very explicit use of 
what one knows about the Lie algebras of the simple groups. (In the 
treatment of Borel and de Siebenthal a characterization of connected 
subgroups of maximal rank is taken as the starting point of the classi­
fication: such groups are the components of e of the normalizers of 
their own center.) As an example of the results: for the unitary uni-
modular group SU(n) the subgroups in question are obtained by 
stringing groups of the type U(k) (== group of unitary matrices of 
degree k) with properly chosen ^-values along the diagonal and re­
quiring the matrices so obtained to be unimodular. Out of the classi­
fication of these Klein spaces, with the help of the theory of a group 
modulo a maximal abelian subgroup (§18), one gets the character­
istic; the Betti numbers and the ring structure are not obtained here. 
By the way, subgroups of maximum rank are automatically closed, 
due to a theorem of Malcev of §8. 

Along these lines it has been shown: If a (simply connected) Klein 
space has characeristic 1, it is a single point [127]; if it has char­
acteristic 2, it is a sphere; if it has characteristic a pr ime>2, it is 
one of a small list of spaces [7; 127]. 

26. Two-dimensional Klein spaces. Local groups of transforma­
tions. A very natural problem arising here is that of determining all 
two-dimensional Klein spaces. Completing earlier results in which 
the Klein bottle had been overlooked, Mostow [93] showed that 
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exactly the following surfaces appear (noncompact groups allowed) : 
plane, cylinder, torus, sphere, (open) Möbius strip, projective plane, 
Klein bottle. He arrived at this result by showing that for a coset 
space G/H with dim G— dim H=2 the fundamental group has to be 
of a certain restricted type, which, by the classification of surfaces, 
admitted only the surfaces listed, and then showing explicitly that 
they actually are Klein spaces. His results include more, namely a 
complete classification (up to isomorphism) of all transitive Lie 
groups of transformations of surfaces. 

The results mentioned in §8 on the closedness of subgroups also 
have a significance for Klein spaces: they relate to the problem of 
extending a local transformation group to a (global) transformation 
group. "Local transformation group" means roughly that in the defi­
nition of homogeneous space of §17, the Tg are defined only for the 
elements g in a neighborhood of e, and that they act only on some 
open subset of W; transitivity has to be defined properly. In an ex­
tension G and W may have to be replaced by locally equivalent 
objects. Starting from the simple observation that for a Klein space 
the isotropy group is always closed, it is shown [38; 93] that the 
extension problem amounts to determining which subalgebras of the 
Lie algebra of G (or which "local subgroups") give rise to closed sub­
groups in the simply connected form ö. In particular, all transitive 
local groups on an open set in Ek, k<5, can be extended to a group, 
acting transitively on some manifold Mk. 

27. A converse problem. A problem which goes so to speak in the 
reverse direction is the following: Given a Klein space W, which 
groups (besides the one which defines W) can act transitively on Wl 
(We assume the group to be effective, i.e., only the unit e gives the 
identity transformation of W, and compact.) It is possible to answer 
this question completely when W is a sphere [7; 8; 89]. To state 
the result: Except for three cases only those groups can act transi­
tively on a sphere which are well known to do so, namely for even 
dimensions only the orthogonal group (plus G2, which has 56 as Klein 
space), for dimension 4w+l the orthogonal, the unimodular unitary, 
and the unitary group, for dimension 4n— 1 also the symplectic 
group and the full quaternion-unitary group (plus 516 = B4/B3 and 
57 = S3/G2). The proofs depend on the general theorems on groups 
acting transitively on spheres (cf. §21), plus the knowledge of the 
Betti numbers of the classical groups. To indicate a simple case: A 
symplectic group can not act transitively on 54n+1 since otherwise, by 
the theorem of §21, it would have a primitive cocycle of dimension 
4w+l, which it doesn't by the results of §11. The same problem has 
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been treated by Matsushima [84] under the weaker assumption that 
W is a homology sphere, i.e., that its Betti numbers equal those of 
a sphere, of odd dimension. The results can be described by saying 
that, up to a small, finite number of cases, which remain undecided, 
any such space is either actually a sphere or—and this is the only 
new case—the space of unit tangent vectors to a sphere of even 
dimension ( = 0(2n+l)/0(2n — l); with the notation of §30 we can 
write it as ^+1,2), and that the groups act in standard fashion. The 
methods are similar to those indicated above; much stronger use is 
made of the Lie algebras of the groups involved. An important role is 
played by a theorem of Kudo which says that under the stated as­
sumption on W the isotropy group H is not ~ 0 in G ; this is also con­
tained in Koszul's results (§22). 

For spheres of even dimension another approach has been given by 
A. Borel [7]: the sphere has characteristic two, and two is a prime 
number; this implies easily that the isotropy group must be a maximal 
subgroup of maximal rank, and now one can make use of the com­
plete list of such groups in §25. 

A similar result is that any group acting transitively and effec­
tively on the torus Tn is actually Tn itself [7; 90 ]. For one of the 
proofs one shows that because of the size of the Betti numbers of Tn, 
i.e., because of the large number of invariant differential forms, the 
isotropy group has to reduce to the unit element (or at any rate be 
finite); this implies that the group is homeomorphic with Tn, and 
therefore, using the known structure of compact groups (§10), is iso­
morphic with Tn. 

28. Two-point homogeneous spaces. A recent result of H. C. Wang 
[128] belongs to this group of problems. The question was to de­
termine all compact (connected) metric spaces, which are two-point 
homogeneous in the sense that, for any four points a, &, c, d with 
p(a, b) =p(c, d), there exists an isometry sending a into c and b into 
d. Wang showed by a simple ingenious argument that the group of 
isometries cannot have arbitrarily small normal subgroups, and 
therefore must be a (compact) Lie group, and the space is therefore a 
Klein space (of finite dimension, say n). The two-point condition 
implies that the isotropy group must be transitive on the directions 
issuing from a point, or in other words, that it is transitive over the 
(n — l)-sphere, and one can then apply the results described in §27. 
One obtains a complete determination of all possibilities; the spaces 
occurring are: for odd n only the spheres and projective spaces, for 
even n there are in addition complex projective spaces, quaternion 
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projective spaces, and the (16-dimensional) projective plane over the 
Cayley numbers. 

29. Noncompact Klein spaces. Not too much is to be said about 
noncompact Klein spaces. Cartan showed [13 (15)] that the sym­
metric Riemannian spaces, whose groups of isometries are noncom­
pact simple Lie groups, are all homeomorphic to En. He showed 
actually that in the group there exists a set of elements, called 
transvections (which behave somewhat like translations in Eu­
clidean space), which set is homeomorphic with Ew, and whose ele­
ments are in 1:1 correspondence with the points of the symmetric 
space (under the natural projection). Incidentally, all these spaces 
have negative or zero Riemannian curvature (whereas closed sym­
metric spaces have non-negative curvature). 

The analogue of the Malcev-Iwasawa theorem does not hold in 
general ; there are spaces which are not Cartesian product of a compact 
space and an En. An example is given by one of the two sets comple­
mentary to a hyperquadric in (real or complex) projective space. 
Factorization does hold in the special case of a Klein space of a 
nilpotent Lie group [82; 85] (a Lie algebra L and its group are nil-
potent if the sequence L, Li= [L, L], L2= [L, Li], • • • ends with 0). 
For the proof one can start from the fact that the (simply connected) 
group is homeomorphic with En (§8), and that it is possible to give 
a description of the discrete subgroups (each such subgroup has the 
geometric structure of a lattice in En, but is in general noncommuta-
tive). Chevalley has shown (not yet published) that factorization 
(into a torus and a Euclidean space) holds for Klein spaces of solvable 
groups, provided the isotropy group is connected. Some new results 
have recently been announced by Mostow [94]. 

Nilpotent groups also provide some examples of compact Klein 
spaces, whose group is noncompact (the isotropy group, which by §18 
must be nonconnected, is here even discrete) [85]. The results ob­
tained concern the first and second rational cohomology group; in 
particular the first Betti number is found to equal dim L — dim L', 
generalizing the fact that for the torus Tn the first Betti number 
equals w. 

30. Homotopy properties. As a last class of topological properties 
we should like to mention briefly the homotopy properties; this 
means principally the question of the homotopy groups [the feth 
homotopy group irk(G) is the group of continuous maps of a ^-sphere 
Sk into G, or rather of classes of maps which can be deformed con­
tinuously into each other, under a certain addition, generalizing the 
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elements and the operation of the fundamental group Ti(G)] (cf. 
[ l l ó ] for this whole section). 

Tha t the fundamental group of a group is always abelian and 
that it is finite for compact semi-simple groups was mentioned earlier. 
I t was also known long ago [13 ] that the second homotopy group 
TT2(G) of a Lie group G is always zero, which means that every con­
tinuous map of an S2 into the group can be deformed into a single 
point (this follows from the construction at the end of §19, since the 
image of a 2-sphere can always be so deformed as to not meet the 
(n — 3)-dimensional set of singular elements). For coset spaces the 
situation is different, as the space S2 itself shows. This sheds some 
light on the theorem of Malcev and Iwasawa (§8) on the simple con­
nectedness of a normal subgroup N of a simply connected group G: 
We consider the exact homotopy sequence of G and N and the fibre 
space isomorphism of Tr2(G/N) with the relative group T2(G; N) [116]. 
Since wi(G) and 7r2(G) vanish, it follows that 7ri(iV) is isomorphic 
with TT2(G/N), even if N is not normal; if N is normal, then v^G/N) 
is zero, and so is then wi(N). The results on higher homotopy 
groups are far from complete; what is known is in very close con­
nection to what is known about the homotopy groups of spheres; 
the reason for this is that most of the existing results are obtained 
for groups acting transitively on spheres, by fibre space relations 
[29; 30; 126; 133; 134; 136; 116]. A special result of Pontryagin's 
[lOO] says that 7r4(^4n) = 0 , for n<£ 2 ; this is of interest because it shows 
that An is not Cartesian product of S3 with another space, whereas 
the homology properties would allow it. 

Homotopy properties of Lie groups also play a role for the theory 
of fibre bundles. One particular problem relates to the so-called 
classifying or universal bundles. For a group C, a (principal) fibre 
bundle B with fibre G is called ^-classifying or ^-universal if it is 
arcwise connected and the homotopy groups Wi(B) vanish for l^i<n. 
(The bundles, which have G as transformation group of their fibre, 
and which have a polyhedron X of dimension < w a s base space, are 
then in 1:1 correspondence with the homotopy classes of maps of X 
into the base space of B, whence the term classifying [116; 137].) 
Now, if G is a compact Lie group, it is easy to construct such a 
bundle for any n: G can be considered as subgroup of some orthog­
onal group 0(k) (since it has a faithful representation). We form 
now 0(n+k)/0(n)Xlk (where 0(n)Xlk means the elements of 
0(n+k) whose last k diagonal elements are 1); this is a fibre bundle 
over 0(n+k)/0(n)XG, with fibre 0(n)XG/0(n)Xh = G (cf. §17). 
Moreover its homotopy groups Ti vanish for l^i<n; for fc = l this 
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follows from the fact that 0(n+l)/0(n)Xli is nothing else but the 
sphere Sn; for larger k it follows similarly, by considering the chain 
0(n+k), 0(n+k — l), • • • , 0(n). An interesting example is obtained 
for G — 0(k), the case of sphere bundles, where the fibre is a (k — 1)-
sphere; the base space 0(n+k)/0(n)XO(k) of the universal bundle 
can then be identified with the space of (k — 1)-spheres ona(n+fe — l) -
sphere considered by Whitney [137], or equivalently with the Grass-
mann manifold Mn+k,k of fe-planes in (n+k) -space. Knowledge of the 
homology properties of Mn+k,k is then of obvious importance, since 
for sphere bundles, by the classification theorem above, one has to 
consider maps of a space X into Mn+k,k] such a map induces a homo-
morphism of the cohomology ring of Mn+k,k into that of X, which 
depends only on the bundle corresponding to ƒ ; the image ring is 
called the characteristic ring of the bundle. (An algebraic counterpart 
has been mentioned in §22.) 

The manifold 0(m)/0(m — k)Xlkf which appeared here, can also 
be described as the space, each point of which is a system of k 
mutually orthogonal unit vectors at the origin in Euclidean m-space 
(a &-frame) ; it is called the Stiefel manifold Vm,h. The Vm,k were intro­
duced by Stiefel [120] in connection with the problem of constructing 
over a manifold Mm a system of k vector fields, mutually orthogonal 
a t each point of Mm. One is led, in obstruction theory [116], to a char­
acteristic cocycle, which measures the degree of impossibility of the 
construction of the vector fields. The dimension of the cocycle is the 
first dimension for which the homotopy groups of Fw,& are not zero 
plus one and the coefficients are taken exactly from this group. As in­
dicated above, the critical dimension for Vm,k ism — k; the correspond­
ing groups TTm-h{Vm,h) are known [116]. To quote the result: they are 
infinite cyclic if m — k is even or k = 1, of order two if m — k is odd and 
* > 1 . 

One special, but important, case is the following: We have seen 
that the sphere Sn is the coset space of the orthogonal group 0(n+l) 
by the subgroup 0(n). Does there exist a map ƒ of Sn into 0(n+l), 
such that ƒ followed by the projection of 0(n+l) onto 0(n) is the 
identity? Phrased differently: does there exist a continuous family 
of rotations, simply transitive over the sphere; or again, does the 
decomposition of 0 ( ^ + 1 ) into cosets of 0(n) admit a cross section, 
Le., a surface, which meets each coset of 0{n) in exactly one point? 
If a cross section existed, then, as one sees easily, 0(n+l) would be 
the Cartesian product of 0(n) and 5 n , and, more interesting, there 
would exist n everywhere independent vector fields, tangent to 5W, 
i.e. in the language of topology, Sn would admit a parallelism. The 
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obvious approach to this is to construct a cross section by starting a t 
an arbitrary point of 0(w + l ) , expanding it gradually and studying 
the singularity or obstruction, into which one runs after a while 
[ l l ó ] . We only state some results: I t is an old story that spheres 
of even dimension do not admit a single (nonzero) vector field. B. 
Eckmann and G. W. Whitehead have shown that spheres of dimen­
sion 4w + l admit only one independent vector field [29; 133]; for 
spheres of dimension 4w—l there exist more than one field, con­
structed e.g. with quaternions and Cayley numbers. Recently Steen-
rod and J. H. C. Whitehead [119] have shown, with the help of new 
homology invariants, that at most the spheres of dimension 2k— 1 
admit a parallelism (the only cases where a parallelism is known are 
S1, Ss, and 57 , corresponding to complex numbers, quaternions, and 
Cayley numbers (cf. also [86])). 
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