AN EXTENSION THEORY FOR A CERTAIN
CLASS OF LOOPS

R. H. BRUCK

Introduction. If E is a group with a normal subgroup K one may
form the quotient group E/K=M. Conversely, for preassigned
groups K, M, there is the extension problem: to determine (in some
sense) all groups E with K as normal subgroup such that E/K=M.
Much progress has been made on this problem, particularly through
the work of Baer [1, 2, 3]* and the cohomology theory of Eilenberg
and MacLane [1, 2, 3]. The latter authors make it clear that insight
is gained by relinquishing part of the associative law; specifically, by
requiring that E be merely a loop such that the associative law
(e1e2) e3 = e1(ese3) holds if at least one of the e; belongs to a distinguished
subgroup of K. We take this to be K itself. It then becomes evident
that the subclass of loops E consisting of the groups is not the only
one of interest; one may consider, for example, the Moufang loops, in
which case it seems natural to allow M also to be Moufang. Thus we
approach the extension problem actually studied in the paper: M is
a given loop, K is a group (not given, but with given centre G) and
E is to be any loop with K as a normal subloop contained in the
“associator” of E, such that E/K=2M. This problem is more typical
of group theory than of loop theory but is, nevertheless, a natural
and significant special topic in the theory of loops.

For the sake of brevity no examples or applications are given and
references to the bibliography are kept to a minimum. The Eilenberg-
MacLane kernels, important for constructions, have been ignored. 1
may signal out as new: the inverse of a (noncentral) extension (§1),
the specific results on central Moufang extensions (§6)2 and the all-
pervading functions F which generalize (even for M a group) the
Eilenberg-MacLane cocycles. As indicated by Theorem 8 (§4), addi-
tional information about the functions F would probably increase our
knowledge of cohomology groups.

1. Extensions. A loop M is a system with a multiplication such
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that: (a) in xy=32, any two of x, ¥, 2 uniquely determine the third;
(b) M has a unit 1. The assoctator A =A (M) is the subset of M such
that (xy)z=x(y2) if at least one of x, v, 21is in 4; the associator is an
associative subloop (and therefore a group). A subloop H of M is
normal in M if and only if H is the kernel of a homomorphism of M
into a loop; equivalently, xH=Hx, (xy)H=x(yH), (xH)y=x(Hy),
(Hx)y=H(xy) for all x, ¥ in M. The mapping x—xH of M set up by
a normal subloop H is a homomorphism upon a guotient loop M/H.
(See Bruck [1].)

If M is given, we wish to study all loops E such that (i) E has a
homomorphism 8 upon M; (ii) the kernel K of 6 is a subgroup of
A(E). Let G=Z(K) be the centre of K. For each ¢ in E define the
mapping T'(e) of K by

1) ke = e(kT(e)), EEK.

Applying 0 to both sides of (1) we see that kT '(e) is in K. And to each
k' in K corresponds a unique k in K such that kT(e)=*k’'. Fur-
thermore, e((kik2) T(e)) = (kiks)e = ki(kse) = ki(e-kaT (e)) = kie- k2T (e)
=(e- k1T (e)) k2T (e) =e(k1T(e) - k2T (e)). Thus T(e) is an automor-
phism of K: (kiks)T(e) =k1T(e) k2T (e). In particular, T(1) is the
identity automorphism. Moreover, (eies) kT (eie2) = k(eie2) = (ker)es
= (81' kT(el))e2=e1(kT(e1) . 82) =e1(62 . kT(e1) T(ez)) = (6162) . kT(el) T(ez),
or kT (eies) =kT (e1)T(ez). In other words, the mapping e—T(e) s a
homomorphism of E upon a group of automorphisms of K.

For our purposes a pair (G, M) shall consist of an abelian group G,
a loop M and a single-valued product gx from GM to G such that
gl=g, (gg")x=(gx)(g’x) and (gx)y=g(xy) for all g, g’ in G and %, ¥y
in M, where 1 is the unit of M. From (1), T(e) is an inner auto-
morphism if eis in K. Thus, for arbitrary gin G=Z(K), kin K, ein E,
we have gT'(ke) =gT (k)T (e) =gT(¢). However, e’0 =6 if and only if
e’ =ke for k in K; thus gT(e) depends only on g and x =ef. Hence if
we set gx=gT(¢), G and M become a pair (G, M). It is a mere matter
of bookkeeping (which turns out to be useful) to pursue the study in
terms of a fixed pair (G, M). This leads to the basic definition:

DEeFINITION 1. Let (G, M) be a pair. A (G, M) extension (E, ) con-
sists of a loop E and a homomorphism 8 of E upon M such that (i)
K=10"1is in A(E); (ii) Z(K)=G; (iii) ge=e(gx) for g in G, e in E,
x=el.

It will be convenient to list here other fundamental definitions con-
cerning extensions.

DEFINITION 2. (E, 0) is central if 16—1=G.

DEFINITION 3. (E,, 61) is equivalent to (E., 0) if there exists an iso-
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morphism 7 of E; upon E; such that (i) 6,==0:; (ii) gr=g for g in G.
(Notation: Ey~E,.)

Equivalence is reflexive, symmetric, transitive; it will serve as
equality. Equivalence should be contrasted with inverse equivalence:

DEFINITION 4. (B, 0,) is tnverse equivalent to (Es, 0,) if there exists
an isomorphism 7 of E; upon E; such that (i) 6, =m0.; (ii) gr =g for
g in G. (Notation: Ey~—1E,.)

Inverse equivalence is symmetric, not always reflexive. Transitiv-
ity has three substitutes, one being: E~—1E;, Ey~E; imply E~~1E,.
Therefore, since equivalence is to serve as equality, we may define
the inverse (E, 6)~! as any extension inverse equivalent to (E, 6). The
inverse of (E, ) may be constructed as follows. Let u(x) be any
normalized system of representatives of M in E; thus u(x)0=x, u(1)
=1. If K=16"1, every ¢ in E has a unique representation e=u(x)k
with x=e¢f, k in K; define m by er =u(x)k~'. Define a new operation
(o) on the elements of E by eoe’ =(emw-e'w)w; it is easy to sece that
this turns E into a loop E-L I claim that (E-, 8) is the desired in-
verse. Indeed, 7 is an isomorphism of E upon E-}, and gr=g"! for g
in G. Also 6 =70. Certainly 6 is a homomorphism of E~! upon M, the
kernel being the group K anti-isomorphic to K, with centre Gr=G.
If at least one of e, e;, e; is in Km, (ei0e2)oes= ((erm-esm) - esmw)m
= (eym - (e - ezm))w = €10(e20€3) ; thus Ko is in A(EY). For g in G, e in
E~!, x=efl, we have goe= (g~!-em)w = (er- (g~ 2x))m =eo(gx). This com-
pletes the proof.

DEFINITION 5. The product (Ei, 61) ® (Es, 02) = (E, 0) of two exten-
sions (E;, ;) is defined as follows: (i) The elements of E are the pairs
(e1, €2) with e; in E; and esfh=e,. (ii) (e1, €;) =(ef, ¢f ) if and only if
el =eig, ef =eg~! for some g in G. (iii) (e, e2)(el, ed) = (ere!, esed ).
@iv) (e1, es)0=edr=eds. (v) (g, 1)=¢g for g in G. (Notation: E;Q E,
=E.)

For a more detailed discussion of the product see Eilenberg and
MacLane [2, 3]. Straightforward but tedious calculation shows that
E\®E, is a (G, M) extension such that

@) I Bj~E! (j=1,2), E® Ey~E{ ® Ef,
3 E, ® E;~ E; @ E;,
4) (E1® E;3) @ Es~ E; ® (E; ® Egs).

Therefore the set S of all (G, M) extensions, with equivalence as equal-
ity, and with multiplication as in Definition S, is a commutative semi-
group. It may also be shown that S has a unit (E,, 0,):

DEFINITION 6. The unit extension (E,, 0,) is defined as follows:
E, is the set of all pairs (x, g), ¥ in M, g in G, such that (i) (x, g)
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=(y, g’) if and only if x=y, g=g¢'; (ii) (x, &)(3, g')=(xy, (&0)g');
(iii) (1, g) =g. And 6, is given by (iv) (x, g)0,=x.

It is essentially known (Baer [1], Eilenberg-MacLane [1]) that
the subset S’ of S, consisting of the central extenstions, is an abelian
group with unit (E,, 0,). For (E, 0) central, our inverse (E, 0)~! is the
inverse of (E, 0) in S’. Details are deferred until §6 (see Theorem 10)
but the facts are assumed in §4.

2. The functions F. For any positive integer # let L, be the free
loop (Bates [1]) with (free) generators X, - + -, X, Thus L, is a
loop containing the X, such that any mapping X1—ey, - - - , X,—e,
into elements ¢; of a loop E may be extended uniquely to a homo-
morphism p of L, into E. By a (nonassociative) word W, we mean
any element of L,. The image W,p is denoted by W,(ey, - - -, €n);
this turns W, into a function defined on every loop E (with values in
E). The following fact is worth noting: if also ¢ is a homomorphism
of E into a loop L, Wi(ey, - - -, en)o=W,(ew, - - -, es0), since the
homomorphism po of L, maps X; upon ejo.

DEFINITION 7. A word W, is purely nonassociative (p.n.a.) if it “van-
ishes” on every group: If e;, - - -, e, are group elements,

Wa(es, -+, e) = 1.

As an important example of a p.n.a. word, consider 43, defined by
(X1 X2) X3= (X1(X2X3))As(X1, X3, X3). If E is a loop, the set of all
elements W,(ey, - - -, es) (# arbitrary, W, p.n.a., the ¢; in E) gener-
ates a normal subloop E,., which may be characterized as follows:
a necessary and sufficient condition that E/F be associative (for a
normal subloop F of E) is that F contain Ep,.

THEOREM 1. Let (E, 0) be a (G, M) extension, Wa, a p.n.a. word,
ey, - - -, e, elements of E. Write ef=x;, e,=Wy(e1, + - -, en). Then
(i) esk=rFke, for k in the kernel K; (ii) W,(x1, - - -, %) =1 if and only
if e, is in G; (iii) e, depends only on the x;:

(5) € = Wn(ely t en) = F(Wm E; X1 * xn)-

Proor. (i) If T is defined by (1), the mapping e—T(e¢) is a homo-
morphism of E upon a group of automorphisms of K. Thus T'(e,)
=Wa(T(er), - - -, T(es)) =1, the identity automorphism.

(ii) ef=W,.(xy, - - -, xa), so (i) implies (ii).

(iii) For fixed », and for every word A, (not necessarily p.n.a.),
define a function H(A4,.; e, ¥)=H(A.;e1, - - -, en; b1, - - -, k,) by

(6) An(elkly Sty enkn) = An(elp Ct en)H(An; e, k)
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Here the e; are assigned fixed values in E and the k; vary over K.
Applying 0 to (6) we find that H takes values in K. Also from (6),
direct computation, along with the fact that (4,B,)(e1, : + +, €a)
=An(31) C oty en)Bn(el, LR 31.), gives

(7) H(AnBn;e, k) = H(A,; e, ©)T(Ba(er,  * * o n)- H(Bn; e, k).

Moreover, by specializing 4, in (6) to the “unit” word 1 and the
words X,

(8) H(l;e’ k)= 1; H(Xi; ¢, k) = kj (J= 1, 2:"':")°

In addition, if B,C,=A4,=D,B,, we may derive from (7) formulas in-
volving only 4, and C, or 4, and D,. Hence, since L, is free, the re-
currence formula (7) and the initial conditions (8) define a unique func-
tion H.

Next construct the holomorph & of K. This group is the set of all
pairs (S, k), k in K, S an automorphism of K, under the product
(S, B)(U, k')=(SU, kU-k'). The n elements fi=(T(e;), k;) yield
Au(fr, - - -y fa)=(T(4uler, - - -, €n)), H' (An; e, k)) where H' satis-
fies both (7) and (8). Therefore H=H’. Since f is a group, H'(W,;
e, k) =1 for every p.n.a. word W,. Thus, by (6), Wa(eik, - + , €nkn)
=Wha(e, - - -, ea) =6, showing that e, depends only on the images
x;=e;0 = (e;k;)0. This completes the proof of Theorem 1.

DEFINITION 8. An ordered set x1, - - - , x, of elements of M is called
a spot for a p.n.a. word W, if W,(xy, + - -, xs)=1.

THEOREM 2. At each spot for a p.n.a. word W, the functions F (of
Theorem 1) form a multiplicative abelian group: (i) Ei~E, implies
F(Wa, E1) = F(Wa, E2); (ii) Ex~~1Esimplies F(Wa, Ei) = F(W,, E2)~!;
(iii) F(Wa, E)) F(W,, E;) =F(W,, E:QE)).

Proor. Let %3, - - -, x, be a spot for W,, and write F(W,, E)
=F(W,, E; %1, - - -, x,) for any extension (E, §). By Theorem 1 (ii),
F(W., E) is in G. Let = be an isomorphism of (E;, 6,) upon (E,, 6;)
satisfying (i) of Definitions 3, 4, and let e; in E; satisfy ef:
=x; (j=1, 2, - - -, n). Then e;r is in E,, and emf:=e8,=x;. Hence
F(W,, E))m=Wy(ey, * - -, ex)m=Wylemr, - - -, exmw) =F(W,, E:). Ac-
cording as  satisfies (ii) of Definition 3 or 4, we get (i) or (ii) of Theo-
rem 2. To prove (iii), choose e;; in E;, es;in E; such that e, 0, =ez0:=x;,
and set e;=(ey, €3), (j=1, 2, - - -, n). If gg=F(W,, E;), Definition
5 gives F(Wa, E:QEs)=Wa(es, - -+, en)=(g1, 22)=(21g2, 1)=gge
=F(Wa, E1)F(Wa, E,).

3. Strongly grouplike and C extensions. An extension (E, 6) is
strongly grouplike (s.g.) if E inherits all relations between elements
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(implied by the associative law) which hold for the images in M. This
means:if W,is p.n.a.,and if W,(es, - -+, e,)0=1, then Wy(es, - - -, €n)
=1. In particular, if M is a group, the s.g. extensions are precisely
the associative extensions. The following theorem is an immediate
consequence of Theorem 2.

TuEOREM 3. (i) For any (G, M) extension E, EQE~! is s.g. (ii) If
E is s.g., and if Ey~E or E;~7'E, then E, is s.g. (iii) If E,@ E;=E;,
and if two of the E; are s.g., so is the third.

Next let C be any set of p.n.a. words. Assume that if W, is in C
then W.(x1, - - -, x2) =1 for all x; in M. Then a (G, M) extension
(E, 0) is “C” if Wa(es, - - -, €s) =1 for each W, in C and all ¢; in E.
We get at once the following theorem.

THEOREM 4. Every s.g. extension is C, and Theorem 3 remains true
with “s.g.” replaced by “C”.

The following examples are of interest: (1) C consists of 43, intro-
duced after Definition 7. M is a group and the C-extensions are the
associative ones. (2) C consists of Bj;, defined by XX, XX
= (X1(X:X;s X1))Bs(X1, X3, X3). M is a Moufang loop (Bruck [1]),
characterized by the identity

) xy-28 = x(yz- %),
and the C-extensions are the Moufang ones.

4. Groups of extensions. First let S be any commutative semi-
group. A subset N is a nucleus of S if there exists a homomorphism p
of S, with kernel N, upon a group. Equivalently: (i) if aia;=a; for a;
in .S, and if two of the a; are in N, so is the third; (ii) to each ¢ in S
corresponds an a¢~! in S such that aa~'& N. The necessity of (i), (ii)
is obvious. As for sufficiency, define a=5b mod N if an;=bn, for n; in
N, and let ap be the equivalence class of @ mod N; then p is a homo-
morphism, with kernel N, of S upon the guotient group Sp=.S/N.
If the nucleus N’ contains the nucleus IV, one may establish the iso-
morphism S/N’=(S/N)/(N’/N). Furthermore, if S has a unit con-
tained in a subgroup S’ of S, then NS’ is a nucleus and one may
establish the isomorphism (NS')/N==S’/(SN\N). These remarks lead
to the following (restricted) definition.

DEFINITION 9. A subset IV of the semigroup .S of (G, M) extensions
(or of the group S’ of central extensions) is a nucleus of S (or S’) pro-
vided (i) if E,® E:= E; for (central) extensions E;, and if two of the
E; are in N, so is the third; (ii) for every (central) extension E,
E®E-1is in N, where E~! denotes the inverse extension,
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The following are nuclei of S: (i) the set N,, of s.g. extensions
(Theorem 3); (ii) the set N¢ of C-extensions (Theorem 4); (iii)
S’'®Ny; (iv) S’®Ng. As nuclei of S’ we have the subgroups N,
=S'MNN,;, N¢=S'"\N¢. We define abelian groups 3, 8, § by

(10) B = S/N,,, B = (5" ® Nug)/Neg = S'/N'sy, o = 3/8.

Similar definitions hold for 3¢, B¢, Ye¢. In view of Theorem 2, these
groups are isomorphic to certain groups of functions F. A character-
ization of the latter would be highly enlightening. So far, however,
not much is known. At the one end of the scale we have the following
theorem.

THEOREM 5. If the loop M is free, 3, B, and O are groups of order 1.

Proor. Let (E, 0) be a (G, M) extension. In particular, 6 is a homo-
morphism of E upon M. Since M is free, there exists (Bates [1,
Theorem 3.5]) an isomorphism p of M into E such that xpf=x for
each x in M. Let W, be any p.n.a. word, %y, - - -, x, any spot for W,.
Then F(Wa, E; %1, + + +, %) =Wa(x10, + + +, %np) =Wa(x1, + - -, Xn)p
=1p=1. Therefore S= N,,; which implies Theorem 5.

A similar result holds for C-extensions. Define a loop L to be a
C-loop if Wa(yy, -+ +, yn)=1 for every Wy in Cand all 5, - - -, v,
in L. By previous agreement, M is a C-loop, and E is a C-loop for
every C-extension (E, 0). The notion of a free C-loop may be defined
as in Bates [1, Appendix]. Restricting attention to C-extensions, the
proof of Theorem 5 may be paralleled exactly to give the following
theorem.

THEOREM 6. If M is a free C-loop, N¢=N,. In words: the C-ex-
tenstons coincide with the strongly grouplike extensions.

At the other end of the scale, take M to be a group. For #=0, a
(normalized) n-cochain f, is (Eilenberg and MacLane [1, 2, 3]) a

single-valued function from M to G, with values fu(x1, - - -, %),
taking the value 1 if at least one of the x; is 1. These n-cochains form
the m-cochain group €, under the product (fahn)(x1, « - -, %)=
fa(xs, + + + ) Xa)ha(x1, + - -, %a). We define the (n4-1)-coboundary 8f,
of f, as the normalized cochain
(6fn)(xh Tty xn+1) = (f"(x]-’ R xn)xn+1)'fn(ny Ct xn-*—l)c(o)
11 n )
( ) ¢ Hf"(xlv crty Xisly Xik%iq1y Xigey c 0 xn+l)c(.):
i1

where ¢(j) =(—1)*+i for j=0,1, - - ., n. For n>0, B, is the group
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of the n-coboundaries; By consists of the 0-cochain 1o=1. An #n-co-
cycle is an n-cochain f, such that §f, =1, (the identity of €,41) and
B is the group of the n#-cocycles. As a consequence of the associativ-
ity of M, one may verify that =0, in the sense that §(8fs) =1.42;
hence B, is a subgroup of 3,. The nth cohomology group 9, is de-
fined by .= 3./Ba. The next theorem is due to Eilenberg and Mac-
Lane [2, 3]:

THEOREM 7. If M is a group, the homomorphism (E, 0)—F(4,;, E)
tnduces the isomorphism H=2Ps.

A partial sketch of the proof will be useful. For any (G, M) exten-
sion (E, 0), define (see §3) f, and fa by

(12)  fu(x, ¥, 2) = F(4s, E; , y, 2); fu(%, ¥, 3) = F(Bs, E; %, y, 3).
Choose ¢; in E such that ef=x; for j=1, 2, 3, 4. Then
(13) (ere2)es = ex(ezes)fa(1, %2, %3); €162 €361 = €x(e2e3: €1) fm(%1, %2, x3),

showing that f,, fm are normalized 3-cochains. If (E, 6) is central and
if u(x) is a normalized system of representatives of M in E, then
u(x)u(y) =u(xy)h(x, v) for a normalized 2-cochain %. Setting e; =u(x;)
in (13) we find f,=0k. In any case, by (13), (eie2:es)es=(e1e2-ese4)
fa(x1%2, %3, %4) = (e1(e2-e€ses))fa(x1, %2, Xaxs)fa(x1%2, %3, ¥4) and also
(e1e2-€3)es = ((ex'ezea)fa(xl, %3, ¥3))es = (31'0283)34(fa(x1y %3, %3)%s)

= e1(ezes- €s)fa( %1, %23, x4)(fa(x1’ X3, X3)%s)

= (61(62'6364))fa(x2, X3, x4)fa(x1, X2X3, x4)(fa(x1. X2, xs)x4),
whence comparison gives 8f,=14 Thus f, is a 3-cocycle. It can be
shown conversely that every 3-cocycle (3-coboundary) is an F(4;, E)
(an F(43, E) for E central).

Again, ejeq-ezer=-e1(e2- ese1)fa(%1, %2, x3%1) and ej(eses-e1) =es(er- eser)
Ja(x1, %2, x3), whence, by (13),

(14) (%, 3, 3) = fo(®, 3, 2%)fa(y, 2, £)7

The homomorphism p of 8; into s, defined by (fsp) (x, ¥, 3) =f3(x, ¥, 2x)
-fs(y, 2, x)~1, induces a homomorphism of $; upon a group Dsp
= B30/Bsp. In view of (14) we may state the following theorem.

THEOREM 8. If M is a group, let C-extensions be Moufang extensions.
Then the homomorphism (E, 0)—F(Bs, E) induces an isomorphism

D= Dsp.

Theorems 5-8 have analogues for central extensions, for example
(Baer [1], Eilenberg and MacLane [1]): if M is a group, the group of
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ceniral group extensions is isomorphic to the second cohomology group

.

5. Grouplike extensions. Conjugate extensions. A (G, M) extension
(E, 0) is grouplike if, for every subgroup (=associative subloop) H
of M, H0! is a subgroup of E. Thus (E, 0) is grouplike if and only
if F(4s, E; x, v, 3) =1 for all triples x, y, 3 which generate a subgroup
of M. Note that s.g. extensions are grouplike.

If E is any loop, define for each p in E permutations R,, L, by
eR,=ep, eL,=pe, all ¢ in E. Choosing fixed p, ¢ in E, we may define a
new operation (o) on E by

(15) e10e; = (e;Rzl)(eg,L;l).

The elements of E form a loop E, under (0); the unit is pg. E, is (Al-
bert [1]) a (principal) isotope of E. If, further, (E, 0) is a (G, M) ex-
tension, write pf=wu, gd=v. Then, if M, is the principal isotope of M
defined by

(16) oy = (xRy )(yL3),

we find from (15), (16), with ef# =x;, that (ei0€5)0 = x,0%..

For each a in the associator A(M), and for each (G, M) extension
(E, 0), define a loop E* as follows: Choose p in E so that pf=a"!,
and ¢ in E so that pg=1. Then E¢° is the loop E, given by (15). We
define (E, 0)2=(E®, 0) to be a conjugate of (E, 0).

THEOREM 9. Let (E, 0) be a (G, M) extension, and let a, b be in A(M).
Then: (i) E° is independent of the choice of p in its definition; (ii)
(E=, 0) is a (G, M) extension; (iii) Eyx~E;implies E{~Ej; (iv) E;~—1E,
implies Ei~—1E3; (v) (E°)*~E®; (vi) (E1® E;)*~E!QE;.

Proor. (i) In (15), pg=1. Clearly we can construct a word W,
independent of the loop E, so that (15) becomes ej0e; = e1e2- Wi(ey, €3, ).
If E is a group, (15) yields ej0es=(e1g™?) (p~1e2) = erpp—les=ese2; thus
W3 is p.n.a. Since, in (16), u=p0 =a~}, v=gf =a, with ¢ in 4(M), we
have xoy=xa—!-(a~Y)~ly=x(a"'-ay)=xy. Hence Ws(e:, es )0
= Ws(x1, %2, a~1) =1. By Theorem 1, W;(e,, es, p) lies in G and depends
only on x;, x2, a.

(ii) Since xoy=xy, 0 is a homomorphism of E* upon M. The kernel
of 8 (in E°) is the subloop K, consisting of K under (o). Since pg=1
is the unit of Es, Wi(1, e, p) =1=W;(e, 1, p) for all e in Es. Hence,
for £ in K, eok=ekWs(e, k, p)=ekWi(e, 1, p) =ek and (ei0es)ok
= (e10e2)k =e1e2Ws(e1, ez, p)k=eieskWs(es, es, D) =e10(e2k) =e10(eq0k).
Similarly (ejok)oes=ei(koes), (koei)oes=Fko(e0es), so that K, is in
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A(E%). The element ¢ of K, is in Z(K,) if and only if cok =koc, ck=kc,
cisin G=Z(K). If g, gs are in G, g10g:=g1gs; thus G=Z(K,). Finally,
for gin G, e in E, x=ef, goe=ge=e(gx) =eo(gx). This completes the
proof that (E¢, 0) is a (G, M) extension.

(v) Assume E*=E, is defined by (15), with p8d=a"1, pg=1. Then
(E¢)*=E} must be defined, with operation (%), by ei*es=(e1T)0(e2S)
= (esTR; ") (e2SL; "), where eS—!=s0e=(sR;")(eL;"), eT—!= eot
=(eR;")(tL;") for s, ¢t in E such that s0 =51, 1=sot=(sR;")(tL;").
The elements f=sR;*, k=tL;" satisfy f0=>b"1a"!, fh=1. Moreover,
SL,'=L;"and TR;'=R;". Therefore e;*e;=(e1R;")(e2L; "), showing
that (E2)®*= E®, The proofs of (iii), (iv), (vi) offer no difficulty, hence
are omitted.

6. Central and central Moufang extensions. For any pair (G, M)
we may define the groups €,, 8B, of (normalized) n-cochains and #-
coboundaries. By (11), the n-coboundaries for =2, 3 are given by

(17) @f) (%, 9) = (@97,
(18)  @f (=, 3, 2) = (fo(w, M2 fa(y, 27 falwy, 2)fa(x, y2)~.

If M is not associative we lose the important property §2=0; in par-
ticular,

(19) @O*f)(%, 3, 2) = fu(x- y2)fr(xy-2)7"

DEeFINITION 10. Let f, & be normalized 2-cochains of (G, M). Then
f is equivalent to & if f="Fh-éc for some (normalized) 1-cochain ¢. (No-
tation: f~ah.)

DeriNiTION 11. If f is a normalized 2-cochain of (G, M), then
(G, M, f) is the central (G, M) extension (E, 0) defined as follows:
(i) The elements of E are the pairs (x, g), x in M, g in G. (ii) (x, g)
=(y, g’) if and only if x=y, g=g'. (iii) (x, &)y, g')=(xy, f(x, ¥)
(g»)g"). (iv) (x, g)0=x. (v) (1, g) =¢.

By Definition 6, the unit extension (E,, 0,) may be identified with
(G, M, 1) where 1 is the identity 2-cochain 1,.

THEOREM 10. (i) Each central (G, M) extension is equivalent to at
least one extension (G, M, f). (ii) (G, M, f)~(G, M, k) if and only
if f~h. (iii) (G, M, f)~"YG, M, k) if and only if f~h=1. (iv) (G, M, f)
®(G, M, b)y~(G, M, fh). (v) (G, M, f) is grouplike if and only if
(8f) (x, ¥, 2) =1 for all x, y, s which generate a subgroup of M. (vi) For
ain A(M), (G, M, f)*~(G, M, f*) where

(20) 1%, y) = f(x, 9)- )@, a, y)-(¢f) (a7, g, y))7".

CoROLLARY. The set S’ of central (G, M) extensions ¢s an abelian
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group with unit (E,, 0,) and inverse (E, 0)~*.

Proor. (i) Let (E, 6) be a central extension, #(x) a normalized sys-
tem of representatives of M in G. Since (u(x)u(y))0@=xy=u(xy)0,
u(x)u(y) =u(xy)f(x, v) for f(x, ¥) in G. Since »(1) =1, f is a normalized
2-cochain. Every e in E has a unique representation e=u(x)g with g
in G, x=ef. Moreover u(x)g-u(y)g' =u(x)u(y)(gy)g' =u(xy)f(x, )
-(gy)g’. Hence the mapping u(x)g—(x, g) gives the equivalence of
(E, 6) and (G, M, f).

(v) In the notation of (i), consider the equality u(x)u(y)- u(2)
=u(x) u(y)u(s).

(vi) In view of Theorem 9, E* may be defined by e0e.= (e1R;")
-(e2L; ") where p=u(a~?) and g=u(a)f(a"?, a)~!. Write u(x)ou(y)
=u(xy)h(x, v), so that h=f2 Let P=(u(xa')q)o(pu(ay)). On the
one hand, P=(u(xa")RR;")(u(ay)L,L;")=u(xa"Yu(ay) =u(xa™!
-ay)f(xa=1, ay) =u(xy)f(xa=1, ay). On the other hand, since u(xa—')g
=u(xa~?) -u(a)f(a?, @) '=u(x)f(xa™?, a)f(a™?, a)7?, pulay)=u(a™)
u(ay) =u(¥)f(a?, ay) and (u(x)g)o(u(y)g’)=ulxy)h(x, ¥)(gy)g',
P=u(xy)h(x, y)(f(xa=?, a)y)(f(e™?, a)y)~*f(a~?, ay). Comparison
of the two expressions for P gives k(x, y) =f(xa™!, ay)(f(ea™%, a)y)
-(f(xa™1, a)y)~Yf(a"!, ay)~t. However, substitution from (18) in the
right-hand side of (20) yields precisely this expression for & =f2,

(ii), (iii), (iv). For j=1, 2, denote the elements of (E;, 0,) = (G, M, f;)
by (x, g)j, where (x, g) 8;=x. Set u;(x) = (x, 1);. If = is an isomorphism
of E; upon E, such that wf,=0,, then necessarily u;(x)m=u2(x)c(x)
= (x, ¢(x))z for a normalized 1-cochain ¢; and (x, g)im = (x, (gm)c(x))2.
Also gmrx =gxm. Conversely, if 7 is any automorphism of G (such that
grx=gxm) and ¢ any normalized 1-cochain, the definition (x, g)r
= (x, (gm)c(x))2 extends 7 to an isomorphism of E; upon E: such that
mf;=0;. Direct calculation gives fi(x, y)m=fa(x, ) (8c)(x, v); (i),
(iii) come by assuming gr =g, gr =g! respectively. For E, ® E, take
the representatives %(x) = (u1(x), #2(x)); Definition 5 gives % (x)u(y)
= (m(xy)fi(x, ¥), u(xy)falx, ) =ulxy)fi(x, y)f2(x, ), proving (iv).
The corollary should be obvious.

Note that if cis a 1-cochain and if e is in A(M), (19) gives
(6%c)(xa~Y, a, ¥) =c(xa~1-ay)c(xy)~t=1. Thus it is evident from (20)
that the cochain fof—1 is invariant under replacement of f by an equiva-
lent cochain. We now turn to Moufang loops.

THEOREM 11. Let M be a Moufang loop. Then: (i) xy-2x=x(y2-x)
forall x, v, z2in M. (ii) x(y-x2) = (xy-x)3 for all x, v, 2 in M. (iii) Every
loop M, isotopic to M is Moufang. (iv) The subloop generated by any
two elements x, y of M is a group. (v) If the three elements x, v, 3 satisfy
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xy-2=x-93, they generate an associative subloop. (vi) The central ex-
tension (G, M, f) is Moufang if and only if f satisfies one of the (equiva-
lent) conditions for a Moufang cochatn:

(21a)  f(xy, 22)(f(x, y)22)f(2, ) = f(=, y2- 2)f(yz, ) (f(3, 2)%);
(21b)  f(x, y-2x)- () (%, ¥, 3%) = f(=, yz-%)- (3f) (9, %, %).

(vii) The central Moufang (G, M) extensions form a subgroup of the
group of central extenstions. (viii) If f is a Moufang cochain, (20) simpli-
Jies to

(22) o=, Mf(x, 3)7 = () (a7, @, y)7Y;

in particular, for each a of A(M), the 2-cochain defined by the right side
of (22) 1s Moufang.

Proor. Items (i)—(v) are included for reference. For a proof that
(i) and (ii) are equivalent, and for (iii), see Bruck [1, Chapter II].
Items (iv), (v) are due to Moufang [1]; see also Bruck [2]. As for
(vi), the extension E=(G, M, f) is Moufang if and only if the word
B; of §3 vanishes on E. Assuming u(x)u(y) =u(xy)f(x, y), the con-
dition By(u(x), u(y), u(2)) =1 gives precisely (21a), which, by (18),
is equivalent to (21b). (vii) follows from (21) and Theorem 10. As
for (viii), the elements #(x), #(y) of the Moufang loop E generate
a group, by (iv). Since #(x)~1=u(x"1)g for some g in G, the condition
wu(x)"u(x) - u(y) =u(x)"'-u(x)u(y) reduces to (§f)(x™1, x, y)=1. In
particular, (20) becomes (22). Since E*Q@E-1~(G, M, f4f1), (iii),
(vii) imply the concluding statement of (viii).

THEOREM 12. Let M be a finite Moufang loop of order m. Let the
least common multiple of the orders of the elements of M be n. For any
a in A(M), and for any central Moufang (G, M) extension (E, 6):
(i) E¢ is Moufang. (ii) E™*~E,. (iii) (E*Q E~Y)*" is grouplike. (iv) If
M is commutative, E*™ is grouplike. (v) If n is odd, the exponent 2m
in (iii), (iv) may be replaced by m. (vi) If gx=g for all g in G, x in M,
E»~E,.

ProoF. (i) reflects Theorem 11 (iii) and was used for (viii). For
the proof of (ii)—(vi), take (E, 0) =(G, M, f) where f satisfies (21).
Define the following (normalized) cochains:

(23) o(x) = I1f(% 9,  a® = 1115 =),

where the products are taken over the m elements y of M, and
(24) h(x, y) = (c(%)y)c(x)".
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From (24),

(25) h(x, y2) = (k(z, y)2)k(x, 2).
This implies

(26) h(w, zy-2) = h(w, x-y3),

since both sides reduce to (h(w, x)yz)(h(w, ¥)2)h(w, 2). If fi(x, )
=h(y, xy)~1, we take products in (21a) over all y, use (23), (24) and
find f(zv x)m___. (5d) (zr x) 'fl(z! x)’ or

(27) meflv fl(x’ y) = h(yv xy)—l-

If gx=g for all g, x, k=1 by (24) and f»~1 by (27), proving Theorem
12 (vi).

Since 1 =f1(11 y) =h(y! y)—lv or h‘(yv 3’) =1, (25) implies
(28) h(z, x) = 1, h(x, xy) = h(x, y), h(x, yx) = h(x, v)=.
Since (21a) applies to fi, set 2=1 and get fi(xy, x) (fr(x, ¥)x) =fi(x, yx)
fi(y, x). By (27), (28), fi(xy, ) =h(x, xyx)~'=h(x, yx)~! =fi(y, %),
leaving fi(x, y)x=fi(x, yx) =h(yx, xyx)~'=(h(yx, x)yx)~?, or fi(x, y)

=(h(yx, x)y)~'. Thus h(yx, x)y=fi(x, )" =k(y, xy)=h(y, x)y,
k(yx, x) =h(y, %), or

(29) k(xy, y) = h(x, y).
Returning to (21a), take products over all 3, getting
(30)  II (F(% 9)2) = (c(y)®)e(®)e(x3) = h(y, 2)e(x)c(y)c(xy)~™

The left-hand element of (30) remains fixed when we operate with
w. Thus, by (24), (h(y, x)w)h(y, x)~'h(x, w)k(y, wh(xy, w)~'=1;
whence, by (25),

(31) h(y, xw)h(x, w) = h(y, x)h(xy, w).

Set w=y in (31) and use (29). Thus k(y, xy)k(x, y) =k(y, x)k(xy, ¥)
=h(y, ®)h(x, ), b(y, xy) =h(y, x), and

(32) h(x, yx) = h(x, y).

In view of (28.3), (32), h(x, y)x=h(x, y). Hence, by (29), k(x, y)y
=h(x, y)xy="h(xy, y)xy=h(xy, y) =h(x, y). Therefore

(33) h(zx, y)x = h(x, y)y = h(x, y).

From (29) with y replaced by x~'y, k(y, x~y) =h(x, x~'y). By (32)
and (28.2), this implies &(y, x~Y) =h(x, y). Then, by (33), (29),
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h(x, iy, x)=h(y, xDVh(y, %)=k, xHx)h(y, x)=h(y, x~'%)
=h(y, 1) =1, or

(34) h(y, )7t = h(%, y).
Hence (32), (34) give fi(x, ¥) =h(y, xy)'=h(y, x)"'=h(x, ), so
(35) fi=h

Since h(x, y)y=h(x, ¥), a simple induction using (25) gives k(x, )
=h(x, ¥)!. Combining this with (34),

(36) W, ) = h(, 9)¥

for all integers ¢, j. In particular, fi(x, ¥)*=h(x, y)"=h(x, y*) =hk(x, 1)
=1, and so fm*~f}=1. This proves Theorem 12 (ii).
If p =08f1=20h, (18) and (25) combine to give

(37) h(xy, 2) = h(x, 2)h(y, )p(%, ¥, 2), 4
Since % satisfies (21b), (26),

(38) p(%, 9, 22) = p(y, 2 %).

Operating on (37) by w, and using (25), we find

(39) p(x, y, sw) = (p(x, 3, 2)w)p(, y, w).

Again, since k(x, 2)z2="h(x, 2), (37) gives p(x, ¥, 2)2=p(x, ¥, 2). Hence,
by (38), p(x, 3, sx)x=p(y, 3, x) =p(x, ¥, 2x), or p(x, ¥, 2)x=p(x, ¥, 3).
Thus, finally, p(x, 3, 2x)y=p(, 2, x)y=p(y, 3, x) =p(x, ¥, 2x), and
(40) (%, 3, 2w = p(x, ¥, 2), w = x, Y, 2.

Since h(xy, x) =h(x, xy)~1=h(x, y)"'=h(y, x) and h(x, x)=1, (37)
with z=x gives p(x, ¥, x) =1. Therefore, by (38), (39), (40), p(x, ¥, 2x)
=(p(x, y, 2)x)p(x, y, x) =p(, ¥, %), so that (38) becomes

(41) p(x, 3, 2) = p(y, 2, %).

By (37), (24), and (25), p(x, v, 2) =h(3, 2)k(z, y)k(z, xy)~1=h(z, x)
- (h(z, x)¥)~1. Therefore, by (41), (34),

oh.

(42) p(%, 3, 2) = h(x, ¥)(h(x, ¥)2)~t = p(y, %, 2)~%.
By this and (37),
(43) k(xy, 2)h(yx, 2)7' = p(x, y, 2)%

Hence, if M is commutative, (43) gives ((8k)(x, v, 2))?=1 for all x, ¥, 3.
In view of (19), the best we can say for k=f2"is that (%) (x, v, 3) =1
for all x, v, 2 such that xy-2=x-yz. By Theorems 11(v), 10(v), this is
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precisely the condition that E?" be grouplike. We have proved
Theorem 12(iv).

Since f»~h and p=0k, we see from Theorem 11(viii) that
(E*® E-V)m~(G, M, q) where

(44) q(x, y) = p(xa7?, @, )72
Define the (normalized) 4-cochain 7 by
(45) r(w, %, 3, 2) = (p(w, %, y)2)p(w, x, y)~.

By (45), r has the skew-symmetry (41), (42) of p on its first three
arguments. By (39),

(46) p(w, %, y3) = p(w, %, y)p(w, %, 2)r(w, %, , 2).

By (34), (26), k(wx -y, 3) =h(w-xy, 8). Expand each side of this last
equation by (38), in the form k(w, 3)k(x, 2)k(y, 2). Equate, and use
(46) to get (y, 3, w, x) =7(s, w, x, ¥), whence r(z, w, ¥, x) =r(3, w, x, y)
or

47 r(w, z, v, 2) = r(w, %, 2, ).

By (47) and skew-symmetry, r(w, x, ¥, 2) =r(w, %, 8, ¥) =r(x, 2, w, ¥)
=r(x, 2, y, w) =r(y, x, 3, w)=r(y, x, w, 2) =r(w, x, ¥, 3", or

(48) r(w, x, ¥, 2)2 = 1.

From (44), (46), (48), g(x, y) ' =2(a, 3, xa~")*=p(a, 3, x)*p(a, y, &™)
Since ¢(1, ¥) =1, the second factor is 1, and, by (42),

(49) q(xr y)—l = P(x, Y a)? = h(x, y)z(h(xr y)a)_z-

Therefore, since p=268h, (8¢)(x, ¥, 2)"1=p(x, ¥, 2)X(p(x, ¥, 2)a)2
Hence, by (45), (48), (6¢)(x, v, 2)=1 for all x, y, 2. This proves
Theorem 12 (iii).

As for (v), since A*=1, (37) gives p*=1 and then (45) gives r*=1.
However, r2=1, by (48). Hence, if # is odd, =1 and (iii) holds with
2m replaced by m. A similar remark is true of (iv). This completes
the proof of Theorem 12.

Theorem 12 should be compared with the simpler result for groups
(Marshall Hall [1]): If M is a group of order m and if (E, 0) is a central
assoctative (G, M) extension, E*~E,.
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