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Introduction. If £ is a group with a normal subgroup K one may 
form the quotient group E/K^M. Conversely, for preassigned 
groups K, M, there is the extension problem: to determine (in some 
sense) all groups E with K as normal subgroup such that E/K^M. 
Much progress has been made on this problem, particularly through 
the work of Baer [l, 2, 3]1 and the cohomology theory of Eilenberg 
and MacLane [l, 2, 3]. The latter authors make it clear that insight 
is gained by relinquishing part of the associative law; specifically, by 
requiring that E be merely a loop such that the associative law 
(̂ 1̂ 2)̂ 3 = 1̂(̂ 2̂ 3) holds if at least one of the e% belongs to a distinguished 
subgroup of K. We take this to be K itself. It then becomes evident 
that the subclass of loops E consisting of the groups is not the only 
one of interest; one may consider, for example, the Moufang loops, in 
which case it seems natural to allow M also to be Moufang. Thus we 
approach the extension problem actually studied in the paper: M is 
a given loop, K is a group (not given, but with given centre G) and 
E is to be any loop with l a s a normal subloop contained in the 
"associator" of E, such that E/K=M. This problem is more typical 
of group theory than of loop theory but is, nevertheless, a natural 
and significant special topic in the theory of loops. 

For the sake of brevity no examples or applications are given and 
references to the bibliography are kept to a minimum. The Eilenberg-
MacLane kernels, important for constructions, have been ignored. I 
may signal out as new: the inverse of a (noncentral) extension (§1), 
the specific results on central Moufang extensions (§6)2 and the all-
pervading functions F which generalize (even for M a group) the 
Eilenberg-MacLane cocycles. As indicated by Theorem 8 (§4), addi­
tional information about the functions F would probably increase our 
knowledge of cohomology groups. 

1. Extensions. A loop M is a system with a multiplication such 

An address delivered before the Chicago Meeting of the Society on November 25, 
1949, by invitation of the Committee to Select Hour Speakers for Midwestern Sec­
tional Meetings; received by the editors February 28, 1950. 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 Slightly weaker results on central Moufang extensions were obtained in 1946-

1947 with the support of a Guggenheim Fellowship supplemented by a grant from 
the Wisconsin Alumni Research Foundation. (See Bull. Amer. Math. Soc. Abstract 
53-1-11.) 
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tha t : (a) in xy*=z, any two of x, y, z uniquely determine the third; 
(b) M has a unit 1. The associator A =A(M) is the subset of M such 
that (xy)z~x(yz) if at least one of xt y% z is in A ; the associator is an 
associative subloop (and therefore a group). A subloop H of M is 
normal in M if and only if H is the kernel of a homomorphism of M 
into a loop; equivalently, xH=Hx, (xy)H=x(yH), (xH)y=x(Hy), 
(Hx)y = H(xy) for all x, y in Af. The mapping x—*xH of AT set up by 
a normal subloop H is a homomorphism upon a quotient loop M/H. 
(See Bruck [l].) 

If AT is given, we wish to study all loops £ such that (i) £ has a 
homomorphism 0 upon AT; (ii) the kernel K of 0 is a subgroup of 
A(E). Let G = Z(K) be the centre of X. For each e in £ define the 
mapping T(e) of K by 

(1) ft* = e(kT(e)), kGK. 

Applying 0 to both sides of (1) we see that kT(e) is in K. And to each 
k' in K corresponds a unique k in K such that kT(e) = k'. Fur­
thermore, e((^ife) TX^)) = (kik^e = ki(k2e) = &i(e • k2T(e)) = &ie • k{T{e) 
= (e'kiT(e))-k2T(e)=e(kiT(e)'k2T(e)). Thus T(e) is an automor­
phism of i£: (kik2)T(e)=kiT(e)-k2T(e). In particular, T(l) is the 
identity automorphism. Moreover, (6162) • kT^exez) = £(̂ 102) — (^1)^2 
= (ei• kT(e!))e2 = * ( * r ( * ) • 02) = * ( * • * r ( * ) T(e2)) = (**) • kTfa) T(e2), 
or kT(eie2)=kT(ei)T(e2). In other words, /&e mapping e—>T(e) is a 
homomorphism of E upon a group of automorphisms of K. 

For our purposes a pair (G, AT) shall consist of an abelian group G, 
a loop M and a single-valued product gx from GAT to G such that 
gl=g> (gg')# = (g*)(g:'aO and (gx)y = g(xy) for all g, g' in G and x, y 
in Af, where 1 is the unit of Af. From (1), T(e) is an inner auto­
morphism if e is in K. Thus, for arbitrary g in G = Z(K), kin K, e in £ , 
we have gT(ke)=gT(k)T(e)=gT(e). However, e'd — eB if and only if 
e' — ke for k in K; thus gr(e) depends only on g and x = ed. Hence if 
we set gx = gT(e), G and M become a pair (G, AT). I t is a mere matter 
of bookkeeping (which turns out to be useful) to pursue the study in 
terms of a fixed pair (G, AT). This leads to the basic definition: 

DEFINITION 1. Let (G, Af) be a pair. A (G, AT) extension (£ , 0) con­
sists of a loop £ and a homomorphism 0 of £ upon AT such that (i) 
K=10~l is in A{E)\ (ii) Z(J£) = G; (iii) ge = e(gx) for g in G, e i n £ , 
x = e0. 

I t will be convenient to list here other fundamental definitions con­
cerning extensions. 

DEFINITION 2. (£ , 0) is central if 10-1 = G. 
DEFINITION 3. (£1, 0i) is equivalent to (£2, 02) if there exists an iso-
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morphism IT of E\ upon E2 such that (i) 0i=7r02; (ii) £7r = g for g in G. 
(Notation: EX~E2.) 

Equivalence is reflexive, symmetric, transitive; it will serve as 
equality. Equivalence should be contrasted with inverse equivalence: 

DEFINITION 4. (Eu 0i) is inverse equivalent to (£2, #2) if there exists 
an isomorphism w of E\ upon £ 2 such that (i) 0i=7r02î (ii) git^g"1 for 
g in G. (Notation: E^^E*.) 

Inverse equivalence is symmetric, not always reflexive. Transitiv­
ity has three substitutes, one being: E~-lE\y Ei~E2 imply E~~1E2. 
Therefore, since equivalence is to serve as equality, we may define 
the inverse (E, 0)""1 as any extension inverse equivalent to (£, 0). The 
inverse of (E, 0) may be constructed as follows. Let u(x) be any 
normalized system of representatives of M in E ; thus u(x)0 = x, u(\) 
= 1. If K = 10~1, every e in E has a unique representation e — u(x)k 
with x = ed, k in K; define ir by eTr~u(x)k~l. Define a new operation 
(0) on the elements of E by eoe' = (eT-efir)Tr; it is easy to see that 
this turns E into a loop E"1 . I claim that (Erl

f 0) is the desired in­
verse. Indeed, 7r is an isomorphism of E upon E~~l

t and gir = g~l for g 
in G. Also 0 = ^ 0 . Certainly 0 is a homomorphism of E~l upon M, the 
kernel being the group Kw anti-isomorphic to K, with centre Gir = G. 
If a t least one of eu 02, e% is in Kw, (eioe^oe^^^eiT-e^-e^w 
= (eiT'(e2/n"ezT))T = eio(e2oez); thus Kw is in A (E*1). For g in G, e in 
E - 1 , x = e0, we have goe = (g"1 • er)T = (OT • Qr*1^))71" = 00(g#). This com­
pletes the proof. 

DEFINITION 5. The product (Eh 0i) ® (£2, 02) = (£, 0) of two exten­
sions (£y, dj) is defined as follows: (i) The elements of £ are the pairs 
(eu 02) with ej in £y and £i0i = 0202. (ii) («1, £2) = (0/ , 02' ) if and only if 
el =eig, el = e2g~1 for some g in G. (iii) (eh 02X01, e{) = (e1el1 e2el). 
(iv) (eh e2)0 = 0i0i = 0202. (v) (g, l ) = g for g in G. (Notation: EX®E2 

= £.) 
For a more detailed discussion of the product see Eilenberg and 

MacLane [2, 3 ] . Straightforward but tedious calculation shows that 
E i® £2 is a (G, M) extension such that 
(2) If Ei ~ £ƒ (j = 1, 2), Et® E2~ El ® El, 

(3) Ei ® £2 ~ E2 ® Ei, 

(4) (Ei ® E2) ® E3 ~ Ei ® (£2 ® £3). 

Therefore the set S of all (G, M) extensions, with equivalence as equal­
ity, and with multiplication as in Definition 5, is a commutative semi­
group. I t may also be shown that S has a unit (E0, 0O) : 

DEFINITION 6. The unit extension (E0) 0o) is defined as follows: 
E0 is the set of all pairs (x, g), x in M, g in G, such that (i) (x, g) 
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= (y, g') if and only if x=y, g~g'; (ii) (*, g)(y, g') = (xy, (gy)gf); 
(iii) (1, g) = g. And 0O is given by (iv) (x, g)0<, = x. 

It is essentially known (Baer [l] , Eilenberg-MacLane [l]) that 
the subset S' of S, consisting of the central extensions, is an abelian 
group with unit (E0, 0O). For (£, 0) central, our inverse (E, 0)~l is the 
inverse of (E, 0) in Sf. Details are deferred until §6 (see Theorem 10) 
but the facts are assumed in §4. 

2. The functions F. For any positive integer n let Ln be the free 
loop (Bates [l]) with (free) generators X\, • • • , -XT„. Thus Ln is a 
loop containing the Xj, such that any mapping JSTi—>Ci, • • • , Xn—»en 

into elements ej of a loop E may be extended uniquely to a homo­
morphism p of Ln into JE. By a (nonassociative) word Wn we mean 
any element of Ln. The image Wnp is denoted by Wn(ei, • • • , en) î 
this turns TFn into a function defined on every loop £ (with values in 
E). The following fact is worth noting: if also a* is a homomorphism 
of E into a loop L, Wn(ei, • • • , en)o-—Wn(eicr, • • • > w ) , since the 
homomorphism pe of Ln maps Xj upon ^r . 

DEFINITION 7. A word Wn is purely nonassociative (p.n.a.) if it "van­
ishes" on every group: If e%, • • • , en are group elements, 

Wn(eu • • • , en) « 1. 

As an important example of a p.n.a. word, consider At, defined by 
(X1X2)Xi^(X1(X2Xz))Az(Xlt X2, Xt). If £ is a loop, the set of all 
elements Wn(ei, • • • , en) (n arbitrary, Wn p.n.a., the ej in E) gener­
ates a normal subloop Epna which may be characterized as follows: 
a necessary and sufficient condition that E/F be associative (for a 
normal subloop F of E) is that F contain Epna. 

THEOREM 1. Let (E, 0) be a (G, M) extension, Wn, a p.n.a. word, 
eu • • • , en, elements of E. Write efi—Xj, e0=Wn(ei, • • • , « » ) • Then 
(i) e0k = ke0for k in the kernel K; (ii) Wn(xi, • • • , xn) = l if and only 
if e0 is in G; (iii) e0 depends only on the Xj: 

(5) ««, = Wn(eu • • • , en) « F(TTn, E; *i, • • • , *»)• 

PROOF, (i) If T is defined by (1), the mapping e—>T(e) is a homo­
morphism of E upon a group of automorphisms of K. Thus T(e0) 
= Wn(T(ei), • • • , r(en)) = l, the identity automorphism. 

(ii) efi^Wnipci, • • • » #n), so (i) implies (ii). 
(iii) For fixed n, and for every word An (not necessarily p.n.a.), 

define a function JETC4»; 0, &) ~H(An; eh - - - , en; fa, • • - , kn) by 

(6) An(eifa, • • • , *n£n) = ^n(elf • • • , en)H(An; e, k). 
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Here the ej are assigned fixed values in E and the kj vary over K. 
Applying 0 to (6) we find that H takes values in K. Also from (6), 
direct computation, along with the fact that (AnBn)(eu • • • , en) 
=An(ei, • • , en)Bn(ei9 • • • , en), gives 

(7) H(AnBn; e, k) « H(An; e, k)T(Bn(eh • • , en)'H(Bn; e, k). 

Moreover, by specializing An in (6) to the "unit" word 1 and the 
words Xj, 

(8) ff(l; e, k) = 1; H(X,; e, k) « k,- (j - 1, 2, • - • , »). 

In addition, if j B n C n 5 ^ ^ J9n#n, we may derive from (7) formulas in­
volving only An and Cn or An and £>n. Hence, since Ln is free, the re-
currence formula (7) awd the initial conditions (8) define a unique func­
tion H. 

Next construct the holomorph $ of K. This group is the set of all 
pairs (5, k), k in K, S an automorphism of K, under the product 
(5, k)(U, k') = (SU, hU-V). The n elements fj = (T(fi,)9 kj) yield 
An(Ju • - • , /n) = (7X^4n(ei, • • • , en)), •ff'C^nï e, *)) where J5T' satis­
fies both (7) and (8). Therefore H=H'. Since St is a group, H'(Wn; 
e, k) = 1 for every p.n.a. word TTW. Thus, by (6), Wn(e{ku • • • , «Jk») 
= Wn(ei, • • • , en)=e0, showing that e0 depends only on the images 
Xj = efl = (ejkj)d. This completes the proof of Theorem 1. 

DEFINITION 8. An ordered set *vj,, * * * j •£ft of elements of M is called 
a s£0j for a p.n.a. word Wn if PPn(#i, • • • ,xn) — l. 

THEOREM 2. At each spot for a p.n.a. word Wn, the functions F (of 
Theorem 1) form a multiplicative abelian group: (i) Ei~E2 implies 
F(Wn, Ei) = F(Wn, E2) ; (ii) E1^^E2implies F(Wn, -Ei) = F(Wn, E2)~

l; 
(iii) F(Wn, Ex)F{Wn, E2) = F(Wn, EX®E2). 

PROOF. Let xi, • • • , xn be a spot for Wn, and write F(PTn, E) 
) for any extension (£, 0). By Theorem 1 (ii), 

F(Wnf E) is in G. Let 7r be an isomorphism of (JEi, 0i) upon (E2, 62) 
satisfying (i) of Definitions 3, 4, and let e$ in E\ satisfy e fix 
= xy C/ = l, 2, • • • , w). Then ey7r is in E2i and e/irS^efli — Xj. Hence 
F(Wn, EJw^Wnieu • • • , en)T=Wn(enrt • • • , wr) = W * , &). Ac­
cording as 7T satisfies (ii) of Definition 3 or 4, we get (i) or (ii) of Theo­
rem 2. To prove (iii), choose eu in E%9 e2j- in E2 such that eijOi = 02A=xj, 
and set ey = (eiy, e2y), (i=l> 2, • • • , n). If g< — F(TF», E<)» Definition 
5 gives F(Wn, Ex®E2) = Wn(eh • • , en) = (gi, g2) = (gig2, l)=gig2 

= W M , £ i ) 7 W , £ 2 ) . 

3. Strongly grouplike and C extensions. An extension (£, 0) is 
strongly grouplike (s.g.) if E inherits all relations between elements 
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(implied by the associative law) which hold for the images in M. This 
means: if Wnisp.n.a., and if Wn(ei, • • • , e»)0 = l, thenWn(ei, • • • ,ew) 
= 1. In particular, if -M" is a group, the s.g. extensions are precisely 
the associative extensions. The following theorem is an immediate 
consequence of Theorem 2. 

THEOREM 3. (i) For any (G, M) extension E, E®E~l is s.g. (ii) If 
E is s.g., and if Ei~E or Ei~~lE, then Ex is s.g. (iii) If Ei®E2 = Ez, 
and if two of the Ej are s.g., so is the third. 

Next let C be any set of p.n.a. words. Assume that if Wn is in C 
then Wn(xi, • • • , xn) = 1 for all x$ in M. Then a (G, M) extension 
(E, B) is "C" if Wn(eh • • • , en) = 1 for each Wn in C and all ej in E. 
We get at once the following theorem. 

THEOREM 4. Every s.g. extension is C, and Theorem 3 remains true 
with "s.g." replaced by "C". 

The following examples are of interest: (1) C consists of Az, intro­
duced after Definition 7. M is a group and the C-extensions are the 
associative ones. (2) C consists of Bz, defined by XiX2-XzXi 
^(X1(X2Xd'X1))Bz(X1, X2, Xz). M is a Moufang loop (Bruck [l]), 
characterized by the identity 

(9) xy-zx = x(yz-x), 

and the C-extensions are the Moufang ones. 

4. Groups of extensions. First let S be any commutative semi­
group. A subset N is a nucleus of S if there exists a homomorphism p 
of S, with kernel N, upon a group. Equivalently: (i) if aia2=a3 for ay 
in 5, and if two of the aj are in N, so is the third ; (ii) to each a in S 
corresponds an a""1 in 5 such that aa~~lÇzN. The necessity of (i), (ii) 
is obvious. As for sufficiency, define a s J mod iVif an\ — bn<i for nj in 
N, and let ap be the equivalence class of a mod N; then p is a homo­
morphism, with kernel N, of S upon the quotient group Sp~S/N. 
If the nucleus iV7 contains the nucleus iV, one may establish the iso­
morphism S/N'9É(S/N)/(N'/N). Furthermore, if 5 has a unit con­
tained in a subgroup S' of S, then iVS' is a nucleus and one may 
establish the isomorphism (NS')/N^S'/(Sr\N). These remarks lead 
to the following (restricted) definition. 

DEFINITION 9. A subset N of the semigroup 5 of (G, M) extensions 
(or of the group S' of central extensions) is a nucleus of S (or S') pro­
vided (i) if Ex®E2 — Ez for (central) extensions Ej, and if two of the 
Ej are in N, so is the third; (ii) for every (central) extension E, 
E®E~X is in N, where E~* denotes the inverse extension. 
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The following are nuclei of S: (i) the set N8g of s.g. extensions 
(Theorem 3); (ii) the set Nc of C-extensions (Theorem 4); (iii) 
S'®N80; (iv) S'®NC. As nuclei of S' we have the subgroups N'3g 

=*ST\N90, N'c = S'r\Nc. We define abelian groups 3 , 33, $ by 

(10) S = S/N,g, 93 = (S' ® N8g)/N8g 9É S"/tf'.„ § = 3/33. 

Similar definitions hold for £c, 33c #<?• I*1 v*ew of Theorem 2, these 
groups are isomorphic to certain groups of functions F. A character­
ization of the latter would be highly enlightening. So far, however, 
not much is known. At the one end of the scale we have the following 
theorem. 

THEOREM 5. If the loop M is free, 3» 33» and § are groups of order 1. 

PROOF. Let (E, 0) be a (G, M) extension. In particular, 0 is a homo-
morphism of E upon M. Since M is free, there exists (Bates [l, 
Theorem 3.5]) an isomorphism p of M into E such that xpd = x for 
each x in M. Let Wn be any p.n.a. word, xh • • • , xn any spot for TF«. 
Then F(Wn, E; xh • • -,*») = JFw(xiP, • • • , xwp) = Wn(xh • • , xw)p 
= l p = l . Therefore S = N80, which implies Theorem S. 

A similar result holds for C-extensions. Define a loop I to be a 
C-loop if Wn(yu - * * , yn) = 1 for every Wn in C and all yu • • • , yn 

in L. By previous agreement, If is a C-loop, and £ is a C-loop for 
every C-extension (E, 0). The notion of a free C-loop may be defined 
as in Bates [l, Appendix]. Restricting attention to C-extensions, the 
proof of Theorem 5 may be paralleled exactly to give the following 
theorem. 

THEOREM 6. If M is a free C-loop, Nc^Nsg. In words: the C-ex­
tensions coincide with the strongly grouplike extensions. 

At the other end of the scale, take i f to be a group. For » è 0 , a 
(normalized) n-cochain fn is (Eilenberg and MacLane [l, 2, 3]) a 
single-valued function from M to C, with values jf*(xi, • • • , xn), 
taking the value 1 if at least one of the xj is 1. These w-cochains form 
the w-cochain group (Sn under the product (fnhn) (x1} • • • , xn) = 
fn(xi, • • • > Xn)hn(xi, • • • , xn). We define the (n + l)-coboundary bfn 

of fn as the normalized cochain 

(àfn)(xh • • • , ffn+l) = (fn(Xl, ' * , *n)*n+l) *fn(%2, • • • , #n+ l ) c ( 0 ) 

(11) n 

where c(/) = ( — l)n+1+^ for i = 0, 1, • • • , n. For n>0 , S8„ is the group 
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of the n-coboundaries; 33o consists of the 0-cochain l o ^ l . An n-co-
cycle is an w-cochain fn such that 8/n = ln+i (the identity of Sn+i) and 
<3„ is the group of the w-cocycles. As a consequence of the associativ­
ity of M, one may verify that S2 = 0, in the sense that 8(8/n) = ln+2; 
hence 33n is a subgroup of £n. The nth cohomology group §w is de­
fined by §» = <8n/33n- The next theorem is due to Eilenberg and Mac-
Lane [2, 3] : 

THEOREM 7. If M is a group, the homomorphism (£, 0)—>F(Az, E) 
induces the isomorphism -̂— p̂a. 

A partial sketch of the proof will be useful. For any (G, M) exten­
sion (£, 0), define (see §3) ƒ« and fm by 

(12) fa(x, y, z) - F{AZ, E\ x, yt *); fm(x, y, z) - F(BS, E; x, y, z). 

Choose e$ in E such that efi—xj for j = 1, 2, 3, 4. Then 

(13) (eie2)ez = ei(e2ez)fa(xu x2, xz); 6i62-686i =* 6i(6263-ei)fm(xh x2, x3), 

showing that f^ f m are normalized 3-cochains. If (£, 0) is central and 
if u(x) is a normalized system of representatives of M in E, then 
u(x)u(y) =*u(xy)h(x, y) for a normalized 2-cochain h. Setting ej = u(Xj) 
in (13) we find fa — Sh. In any case, by (13), (6162-63)64 = (6162 -6364) 
•fa(xix2, Xzi x4) ~ (ei(e2-eze4))fa(xi, x2, xzx4)fa(xix2, xz, x4) and also 

(eierez)e4 = ((eve2ez)fa(xh x2, xz))e4 = (ei>e2ez)et(fa(xh x2, xd)x4) 

= ei(e2ez'ei)fa(xu x2xz, x4)(fa(xu x2, x3)x4) 

= (ei(e2-eze4))fa(x2, xz, x4)fa{xi, x2xZl x4)(Ja(xi, x2f xz)x4), 

whence comparison gives 8/0=l4. Thus fa is a 3-cocycle. It can be 
shown conversely that every 3-cocycle (3-coboundary) is an F(Azt E) 
(an F(Az, E) for E central). 

Again, 6162-6361 = 61(62 •686i)/a(#i, x2, x^c%) and 61(6263-61) = 61(62*6361) 
fa(xu x2, xz), whence, by (13), 

(14) fm(x, y, z) = fa(x, y, zx)fa(y, z, x)~K 

The homomorphism p of «3s into (£3, defined by (fzp) (x, yt z) =fz(x, y, zx) 
-fz(y, 2, 3c)""1» induces a homomorphism of §3 upon a group $sp 
— Szp/^zP' I n view of (14) we may state the following theorem. 

THEOREM 8. If Misa group, let C-extensions be Moufang extensions. 
Then the homomorphism (E, 0)—>F(BZ, E) induces an isomorphism 

Theorems 5-8 have analogues for central extensions, for example 
(Baer [ l] , Eilenberg and MacLane [l]) : if M is a group, the group of 
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central group extensions is isomorphic to the second cohomology group 

5. Grouplike extensions. Conjugate extensions. A (G, M) extension 
(E, 0) is grouplike if, for every subgroup (== associative subloop) H 
of M, HO"1 is a subgroup of E. Thus (E, 0) is grouplike if and only 
if F(A*t E; xf y, z) = 1 for all triples x, y, z which generate a subgroup 
of M. Note that s.g. extensions are grouplike. 

If E is any loop, define for each p in E permutations Rp, Lv by 
eRp~ep, eLp~pe, all e in E. Choosing fixed ƒ>, g in E, we may define a 
new operation (o) on £ by 

(15) eioe2 « (ei-R« Xê Lp ). 

The elements of E form a loop £<> under (o) ; the unit is pq. E0 is (Al­
bert [l]) a {principal) isotope of £. If, further, (£, 0) is a (G, M) ex­
tension, write pO = u, qO=v. Then, if M0 is the principal isotope of M 
defined by 

(16) xoy = {xRl )(yLZ ), 

we find from (IS), (16), with efi^x^ that (eioe2)9 — XiOx2. 
For each a in the associator A(M), and for each (G, M) extension 

(E, 0), define a loop E° as follows: Choose p in £ so that pO^a"1, 
and g in £ so that pq—l* Then £° is the loop E0 given by (IS). We 
define (E, 0)« = (£*, 0) to be a conjugate of (E, 0). 

THEOREM 9. Let (E, 0) ie a (G, Af) extension, and let a, & fa i» .4(ilf). 
Then: (i) £ a w independent of the choice of p in its definition] (ii) 
(Ea, 0) is a (G, Jlf) extension-, (iii) £i~£2implies E%~E%; (iv) E i ^ - ^ 
iw^Kes E î ^ - 1 ^ ; (v) (Ea)b~Eab; (vi) (£i®£2)a~£?®£2. 

PROOF, (i) In (15), £<z=l. Clearly we can construct a word PPs, 
independent of the loop £, so that (15) becomes e\oe2 = e\e2 • Ws î» 02, ƒ>)• 
If £ is a group, (15) yields eioe%=*(ei<rl)(P~le*) — eipp-le2~eie2\ thus 
TFs is p.n.a. Since, in (16), w=/>0=a~1, v = q6=a, with a in ^4(Jkf), we 
have xoy=xa~l-(a~1)~1y—x(a~1-ay)~xy. Hence Wz(fiit e2t p)0 
= W%(xu x2, a"1) = 1. By Theorem 1, Wz(eit e2, p) lies in G and depends 
only on x%9 x2, a. 

(ii) Since xoy=xy, 0 is a homomorphism of £ a upon M. The kernel 
of 0 (in Ec) is the subloop K0 consisting of K under (0). Since £g = l 
is the unit of £«, T^8(l, e, p) = 1 = TF8(e, 1, p) for all e in Ea. Hence, 
for fc in JST, eo&^e&Wifo fe, />)=eJfeW78(̂ , 1, p)=iek and (eioe2)ok 
— (e\oe2)h—e\e2W*{eu e2t p)k—eie2kWz(eu e2f p)—eio(fi2k)—e\o(e2ok). 
Similarly (fiiok)oe2—ei(koe2)9 (koei)oe2~ko(eioe%)9 so that K0 is in 
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A (Ea). The element c of K0 is in Z(K0) if and only if cok = koct ck « kc, 
c is in G-Z(K). If gi, g2 are in G, gi0g2 = gig2; thus G = Z(2£<>). Finally, 
for g in G, e in 22, # = e0, g0e=sge = e(g#)=e0(g#). This completes the 
proof that (£a, 0) is a (G, Jkf) extension. 

(v) Assume Ea=*E0 is defined by (15), with £0 = a- \ £g = l. Then 
(£<*)* = £j must be defined, with operation (*), by ei*e2 = (eiT)o(e2S) 
= (etTR^faSL;1), where eS-1 = *<?e = (s iOC^J 1)» eT"1 = eo* 
= (ei?71)(^1) for 5, / i n £ such that 50 = J-1, l = ^ = ( ^ 1 ) ( / i ; 1 ) . 
The elements ƒ=s2?i"\ h~tL~x satisfy fO=*b~la~l, fh = 1. Moreover, 
5LJ l s=L7 l a n c l TR^ — Rn1. Therefore ei*e2 = (ei2ÎA ^(^I*/1)» showing 
that (£a)6 = £a6. The proofs of (iii), (iv), (vi) offer no difficulty, hence 
are omitted. 

6. Central and central Moufang extensions. For any pair (G, M) 
we may define the groups 6n, $Bn of (normalized) w-cochains and n-
coboundaries. By (11), the w-coboundaries for w = 2, 3 are given by 

(17) (*/0(*, y) « (fi(x)y)My)fi(*y)-1, 
(18) («ƒ,)(*, y, z) - (ƒ,(*, y)«)/i(yf z)-xf%(xy, *)/t(*f yi)"1. 

If Af is not associative we lose the important property ô2 = 0; in par­
ticular, 

(19) («Vi)(*. % *) - ƒ!(*• yz)fx(xyz)-K 

DEFINITION 10. Let/, & be normalized 2-cochains of (G, ilf). Then 
ƒ is equivalent to h iif=hdc for some (normalized) 1-cochain c. (No­
tation : f~h.) 

DEFINITION 11. If ƒ is a normalized 2-cochain of (G, M), then 
(G, M, ƒ) is the central (G, ilf) extension (£, 0) defined as follows: 
(i) The elements of E are the pairs (x, g), x in M, g in G. (ii) (#, g) 
= (?, g') if and only if x=*y9 g^g'. (iii) (*, g)(y, g') = (xy, f(x, y) 
•(©0«'). (iv) (x, g)8=x. (v) (1, g)=g. 

By Definition 6, the unit extension (£<>, 60) may be identified with 
(G, M, 1) where 1 is the identity 2-cochain 12. 

THEOREM 10. (i) Each central (G, M) extension is equivalent to at 
least one extension (G, M% ƒ). (ii) (G, M, f)~(G, My h) if and only 
iff~h. (iii) (G, M,f)~r-l(G, M, h) if and only iff~h~\ (iv) (G, M,f) 
®(G, M, h)~(G> My fh). (v) (G, ilf, ƒ) is grouplike if and only if 
(Ôf) (Xy y y z) = 1 for all xf yf z which generate a subgroup of M. (vi) For 
a in A(M)y (G, M,f)a~(G, Mtf

a) where 

(20) fa(Xy y) - ƒ(*, y) • («ƒ)(*-*, a, y) • ((*ƒ)( * r * , a, y))~K 

COROLLARY. The set 5 ' of central (G, Af) extensions is an abelian 
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group with unit (E0i 90) and inverse (£, d)~l. 

PROOF, (i) Let (£, 0) be a central extension, u(x) a normalized sys­
tem of representatives of M in G. Since (u(x)u(y))d = xy = u(xy)0, 
u(x)u(y) =u(xy)f(x, y) îorf(xt y) in G. Since u(l) = 1, ƒ is a normalized 
2-cochain. Every e'm E has a unique representation e = u(x)g with g 
in Gy x = eO. Moreover u(x)g-u(y)g' = u(x)u(y)(gy)g' = u(xy)f(Xy y) 
' (gy)g'- Hence the mapping u(x)g—»(x, g) gives the equivalence of 
(E, 0)and(G, M,f). 

(v) In the notation of (i), consider the equality u(x)u(y) • u(z) 
= u(x)-u(y)u(z). 

(vi) In view of Theorem 9, Ea may be defined by exoe^—{e\R^1) 
-(e2Lp1) where p~u(a~l) and q=zu{a)f{arly a)"1. Write u(x)ou(y) 
= u(xy)h(Xy y)y so that h=fa. Let P = (u(xa~1)q)o(pu(ay)). On the 
one hand, P = {u{xa"~l)RqR^l){u{ay)LPLp1) ~u(xa~l)u(ay) = u{xa~l 

-ay)f(xa"1y ay) = u(xy)f(xa"1
f ay). On the other hand, since u(xa~~l)q 

=zu{xa-l)*u(a)f(arly a)"1^=u(x)f(xa"1y a)f(a"1
t a)~\ pu(ay)~u(a~1) 

'u(ay)=u(y)f(a-1y ay) and (u(x)g)o(u(y)g')=*u{xy)h{Xy y){gy)gfy 
P = u(xy)h(Xy y){f(xa"l

f a)y)(f(a~l
t a)y)~lf(a~~1

f ay). Comparison 
of the two expressions for P gives h(xt y)=f(xa~ly ay)(f(a~~1> a)y) 
-(fixa"1, a)y)~1f(a~1y ay)'1. However, substitution from (18) in the 
right-hand side of (20) yields precisely this expression for h =fa. 

(ii), (iii), (iv). For j = 1,2, denote the elements of (Ey, 0}) = (G, M, ƒ,•) 
by (Xy g)jy where (Xy g)fij — x. Set uj(x) = (#, 1)/. If w is an isomorphism 
of Ei upon £2 such that 7r02=0i, then necessarily UI(X)T = U2(X)C(X) 

= (Xy c(x))2 for a normalized 1-cochain c; and (xf g)iT = (Xy (gTr)c(x))2» 
Also gTrx = gxw. Conversely, if 7r is any automorphism of G (such that 
girx — gXTr) and c any normalized 1-cochain, the definition (x, g)iir 
= (Xy (g/?r)c(x))2 extends TT to an isomorphism of Ei upon E2 such that 
7T02 = 0i. Direct calculation gives/i(x, y)ir=f2(xy y)'(àc)(x, y); (ii), 
(iii) come by assuming gir = gy gw — g*1 respectively. For Ei®£2 take 
the representatives u(x)~(ui(x)y U2{x))\ Definition 5 gives u(x)u(y) 
= (ui(xy)fi(Xy y)y u2(xy)f2(Xy y))=u(xy)fi(xy y)J\{xy y)} proving (iv). 
The corollary should be obvious. 

Note that if cis a 1-cochain and if a is in A(M), (19) gives 
(ô2c)(tfa-1, a, y)=zc(xa~l-ay)c(xy)~"l~\. Thus it is evident from (20) 
that the cochain faf^x is invariant under replacement o f f by an equiva­
lent cochain. We now turn to Moufang loops. 

THEOREM 11. Let M be a Moufang loop. Then: (i) xy-zx = x(yz-x) 
for all Xy y y z in M. (ii) x(y-xz) = (xy-x)zfor all xt yt z in M. (iii) Every 
loop M0 isotopic to M is Moufang. (iv) The subloop generated by any 
two elements x,y of M is a group, (v) If the three elements x, y} z satisfy 



22 R. H. BRUCK [January 

xyz~x-yz, they generate an associative subloop. (vi) The central ex­
tension (G, My ƒ) is Moufang if and only if f satisfies one of the {equiva­
lent) conditions f or a Moufang cochain: 

(21a) f(xyt zx)(f(xt y)zx)f(z, x) « f(x, yz-x)f{yz} x)(J(y, z)x); 

(21b) f(xt yzx)- (*/)(*, y, zx) « f(x> yz>x)- (Sf)(y, z, x). 

(vii) The central Moufang (G, M) extensions form a subgroup of the 
group of central extensions, (viii) If f is a Moufang cochain, (20) simpli­
fies to 

(22) ƒ»(*, y)f(xf y)-1 - (»/)(*ari, a, y)-*; 

iw particulart for each a of A(M), the 2-cochain defined by the right side 
of (22) is Moufang. 

PROOF. Items (i)-(v) are included for reference. For a proof that 
(i) and (ii) are equivalent, and for (iii), see Bruck [l, Chapter II] . 
Items (iv), (v) are due to Moufang [ l ] ; see also Bruck [2]. As for 
(vi), the extension £ = (G, M, ƒ) is Moufang if and only if the word 
Bz of §3 vanishes on E. Assuming u(x)u(y) ~u(xy)f(x, y), the con­
dition Bz{u{x)j u(y), u(z)) = l gives precisely (21a), which, by (18), 
is equivalent to (21b). (vii) follows from (21) and Theorem 10. As 
for (viii), the elements u(x), u(y) of the Moufang loop E generate 
a group, by (iv). Since u(x)-l = u(x~~l)g for some g in G, the condition 
u(x)^1u(x)'u(y)=u(x)^1-u(x)u(y) reduces to (ô/Xar1, x, y) = l. In 
particular, (20) becomes (22). Since Ea®j&"1~(G> M, faf~l), (iii), 
(vii) imply the concluding statement of (viii). 

THEOREM 12. Let M be a finite Moufang loop of order m. Let the 
least common multiple of the orders of the elements of M be n. For any 
a in A(M), and f or any central Moufang (G, M) extension (J5, 6): 
(i) Ea is Moufang. (ii) Emn~E0. (iii) (Ea®£-X)2m is grouplike, (iv) If 
M is commutative, E2m is grouplike, (v) If n is odd, the exponent 1m 
in (iii), (iv) may be replaced by m. (vi) If gx=gfor all g in G, x in M, 
Em~E0. 

PROOF, (i) reflects Theorem 11 (iii) and was used for (viii). For 
the proof of (ii)-(vi), take (£, 0) = (G, M, ƒ) where ƒ satisfies (21). 
Define the following (normalized) cochains: 

(23) c(x) - I I ƒ(*, y), d(x) - I I ƒ(* *), 
V V 

where the products are taken over the m elements y of M, and 

(24) h(x, y) = (c(«)y)c(*)-». 
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From (24), 

(25) h(x, yz) = (h(x, y)z)h(xf z). 

This implies 

(26) h(w, xy-z) =» h(w, x-yz), 

since both sides reduce to (h(w, x)yz)(h(w, y)z)h(w, z). If /i(#, y) 
~}i(y, xy)~l, we take products in (21a) over all y, use (23), (24) and 
find ƒ(z, x)m = (8d)(z, x)-fi(z, x), or 

(27) fm~fu fi(x, y) « *(y, xy)-\ 

If gx~g for all g, x, h = 1 by (24) a n d / m ~ l by (27), proving Theorem 
12 (vi). 

Since 1 =/i(l , y) =h(y, y ) - \ or h(y, y) = 1, (25) implies 

(28) h(x, x) = 1, h(x, xy) — h(xy y), h(x, yx) = h(xt y)x. 

Since (21a) applies to/i, set 2 = 1 and get fi{xyt x)(fi(x, y)x) =/i(#, yx) 
-My, x). By (27), (28), fx(xy9 x)=h(x, xyx)~l = h(x, yx)"1 =My, x)9 

leaving fi(x, y)x—fi(x, yx)—h(yx, xyx)~l~(h(yxt x)yx)~1, or fi(x, y) 
-(hiyx, x)y)"1. Thus h(yx% x)y-fi(xt y)"x-h(y, xy)=h(yi x)yt 

h(yx} x)=h(y, x)} or 

(29) h(xy, y) = *(*, y). 

Returning to (21a), take products over all z, getting 

(30) I I (ƒ(*> y)«) - (c(y)x)c(x)c(xy)-* » *(y, x)c(x)c(y)c(xy)~\ 
z 

The left-hand element of (30) remains fixed when we operate with 
w. Thus, by (24), (h(y, x)w)h(y, x)~lh(x, w)h(y, w)h(xy, w)~x = l; 
whence, by (25), 

(31) h(y, xw)h(xf w) — h(y, x)h(xy} w). 

Set w=y in (31) and use (29). Thus h(y, xy)h(x, y)—h(y, x)h(xy, y) 
— h(y, x)h(x, y), h(y, xy)=h(y, x), and 

(32) h(x, yx) = h(x, y). 

In view of (28.3), (32), h(x, y)x==h(x, y). Hence, by (29), h(x, y)y 
— h(x, y)xy — h(xy, y)xy = h(xyt y)~h(x, y). Therefore 

(33) h(x, y)x = h(x, y)y = h(x, y). 

From (29) with y replaced by x~ly, h(y, x"~ly)—h(x, x~~ly). By (32) 
and (28.2), this implies h(y, xrl)=*h(x, y). Then, by (33), (25), 
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h(x, y)h(y, x)~h(y, x~l)h(y, x)~(h(y, x~l)x)h(y, x)~h(y, x^x) 
= h(y, l) = l ,or 

(34) h(y, *)-* - h(x, y). 

Hence (32), (34) give fi(x, y)=sh(y, xy)~-l~h(y, x)"l = h(x, y)f so 

(35) ft « h. 

Since h(x, y)y — h(x, y), a simple induction using (25) gives h(x, yj) 
— h(x, y)K Combining this with (34), 

(36) h(x\ yf) « h(x, y)li 

for all integers i,j. In particular,fi(x, y)n~h(x, y)n — h(x, yn) ==&(#, 1) 
= 1, and so / w n ~ /? = 1. This proves Theorem 12 (ii). 

If p = 5/i = 8h, (18) and (25) combine to give 

(37) h(xy, z) = h(x, z)h(y, z)p(x, y, z), p = oh. 

Since h satisfies (21b), (26), 

(38) p(x, y, zx) = p(y, z, x). 

Operating on (37) by w, and using (25), we find 

(39) p(x, yt zw) = (p(x, y% z)w)p(x, y, w). 

Again, since h(x, z)z = h(x, z), (37) gives p(x, y, z)z=p(x, y, z). Hence, 
by (38), p(x, y, zx)x=p(y, z, x) =p(x, y, zx), or p(x, y, z)x=p(x, y, z). 
Thus, finally, p(x, y, zx)y=p(y, z, x)y—p(y, z, x)=p(x, yt zx), and 

(40) p(x, y,z)w = p(x, y,z), w « x, y, z. 

Since h(xy, x)=h(x, xy)~l — h(xt y)~~l=::h(y, x) and h(x, #) = 1, (37) 
with z = x gives p(x, yt x) = 1. Therefore, by (38), (39), (40), p(x, y, zx) 
= (p(x, y, z)x)p(x, y, x)=p(xy y, z), so that (38) becomes 

(41) p(x, y, z) = p(y, z, x). 

By (37), (24), and (25), p(x, yt *)=*(*, x)h(z, y)h(z} xy)~l = h(z, x) 
•(*(*, x)y)-K Therefore, by (41), (34), 

(42) p(x, y, z) = h(x, y)(h(x, y)z)~l = p(y, x, a)-1. 

By this and (37), 

(43) h(xy, z)h(yx, z)"1 = p(x, y, z)2. 

Hence, if M is commutative, (43) gives ((ôh) (x, y, z))2 = 1 for all x, y, z. 
In view of (19), the best we can say for k —f2™ is that (ôk) (x, y, z) = 1 
for all x, y, z such that xy-z = x-yz. By Theorems ll(v), 10(v), this is 
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precisely the condition that E2m be grouplike. We have proved 
Theorem 12(iv). 

Since fm~h and p*=ôh, we see from Theorem ll(viii) that 
(Ea®E-1)2m^(Gt M, q) where 

(44) q(x, y) « p(xar\ a, y)~*. 

Define the (normalized) 4-cochain r by 

(45) r(w, x, y, z) = (p(w, x, y)z)p(w, x, y)~l. 

By (45), r has the skew-symmetry (41), (42) of p on its first three 
arguments. By (39), 

(46) p(w, x, yz) = p(w, x, y)p(w, x, z)r(w, x, y, z). 

By (34), (26), h(wx-y, z) = h(W'xy, s). Expand each side of this last 
equation by (38), in the form h(w, z)h(x, z)h(y, z). Equate, and use 
(46) to get r(y, z, w, x) —r{z, w, x, y), whence r(z, w, y, x) ~r(z, w, x, y) 
or 

(47) r(w, x, y, z) = r(w, x, z, y). 

By (47) and skew-symmetry, r(w, x, y, z) = r(w, x, z, y) =r(#, 2, w, y) 
~r(x> z, y, w) ~r(y, x, z, w) =r(y, x, w, z) =r(w, xt y, 2)""1, or 

(48) r(w, xf y, z)2 = 1. 

From (44), (46), (48), q(x, y^^Pia, y, xa-*)2=p{a, y, x)2p(a, y, a"1)2. 
Since g(l, y) = 1, the second factor is 1, and, by (42), 

(49) q(x, y)-1 « p(x, y} a)2 = h(x, y)2(h(x, y)a)~2. 

Therefore, since p — hh, (ôq)(x, y, z)~l~p(x, y, z)2(p(x, y, z)a)~2. 
Hence, by (45), (48), (8q)(x, y, s) = l for all xy y, z. This proves 
Theorem 12 (iii). 

As for (v), since hn = 1, (37) gives £w = 1 and then (45) gives rw = 1. 
However, r2 = 1, by (48). Hence, if n is odd, r = 1 and (iii) holds with 
2m replaced by m. A similar remark is true of (iv). This completes 
the proof of Theorem 12. 

Theorem 12 should be compared with the simpler result for groups 
(Marshall Hall [l]): If Misa group of order m and if (E, 0) is a central 
associative (G, M) extension^ Em~E0. 
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