
LIE THEORY OF SEMI-GROUPS OF 
LINEAR TRANSFORMATIONS 

EINAR HILLE 

1. Introduction. In the Colloquium Lectures which I had the 
honor of delivering to the Society at the Wellesley meeting in August 
1944, an outline was given of a theory of one-parameter semi-groups 
of linear bounded operators on a complex (B)-space H to itself. The 
problem here is the study of a family of linear bounded transforma­
tions © = {T(a)} , defined for a > 0 , with the product law 

(1.1) T(a)T((3) = r ( a + j8). 

Such families arise in the most varied branches of classical and of 
modern analysis and are interesting for their own sake as well as for 
the many applications. 

An extension to the w-parameter case was presented to the So­
ciety in October 1944 (abstract 51-1-15). Here the parameter 
a = (au ai, • • • , an) is a vector in ^-dimensional real euclidean space 
En, the operators T(a) are denned for non-negative values of the 
components of a, and the product law reads 

(1.2) T(a)T(b) - T(a + b) 

with a + 5 = (ai+j8i, • • • , an+(3n). These operators commute. If 
| |7\a)|j is bounded for small a, if certain unions of range spaces 
T(a) [9£] are dense in the space X, and if T(a) is a strongly measur­
able function of a, then T(a) is actually strongly continuous for all a 
and T(h)x—*x for each x when h—-K). Further T(a) is the direct 
product of n commuting one-parameter semi-groups 

(1.3) T(a) = r i ( a i ) r , ( a a ) • • • Tn(an). 

It turned out later that the analysis could be extended, at least in 
part, to the case in which the parameter set is an open positive cone 
S in a (-B)-space ty. Here S is an open set, if a and b are in S so are 
aa+(3b for 0 gee, 0 g 0 , 0 < a + / 3 . The product law is still given by (1.2). 

These investigations with many extensions and numerous applica­
tions have now appeared in book form ([6] in the References at the 
end of this address). The earliest results on continuity in the one-
parameter case are due to N. Dunford [2] and extensions to the 
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w-parameter case have also been found by N. Dunford and I. E. Segal 
[3]. A number of results referring to the one-parameter case with 
applications to stochastic processes and Brownian motion have been 
found independently by K. Yosida whose work is now in course of 
publication [10, 11, 12]. 

So far only commutative operators have been considered and the 
product law (1.2) is the simplest possible. The non-commutative case 
has resisted numerous attacks in the past and it is only a few months 
ago that any headway was made with this problem. I shall have the 
pleasure of outlining the new theory here; it is a blend of the classical 
theory of Lie groups with the recent theory of one-parameter semi­
groups. 

2. Assumptions. We shall be concerned with an ^-parameter family 
© of linear bounded operators T(a) on a (B)-space 3Ê to itself. These 
operators shall form a semi-group, that is, if T(a) and T(b) are in © 
so are their products T(a)T(b) and T(b)T(a) which ordinarily are 
distinct. 

In a first study of the problem, we are entitled to restrict ourselves 
to comparatively simple situations. Our assumptions will be chosen 
accordingly, but they will be introduced as needed so as to bring out 
what parts of the theory require heavy machinery and what may be 
proved under less restrictive assumptions. No claim is made that the 
assumptions have their definitive form. 

We are dealing with three different spaces, the parameter, the 
operand, and the operator spaces, and a more or less complicated 
product law. Consequently we shall need assumptions of diverse 
nature which may be classified under the following four headings: 

(1) The parameter set, that is, the values of a for which T(a) is 
defined. 

(2) The properties of T(a) for fixed a. 
(3) The properties of T(a) as function of a. 
(4) The product law, that is, the function 

(2.1) c**F(a%b) 

which is defined by the relation 

(2.2) T(c) = T(a)T(b). 

The assumptions relating to (1) and (2) will be kept fixed through­
out the following discussion. They are: 

A1. T(a) is defined for a = (ai, • • • , an) in EJ , that part of En in 
which ay^O, j = l, • • • , n. 
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A2. T(a) is a linear bounded operator on H to itself, T(0) = I, the 
identity operator, and | | r ( a ) | | ^ 1 for a in Ttt. 

The initial assumption under (3) is: 
A?. T(a) is a strongly measurable function of a in E%. 
The product law will require a number of different assumptions; 

we start with the following which will be used in the next section. 
The Euclidean length of the vector b is denoted by | &|. 

A t F(a, b) is a continuous f unction on ZiJxSJ* to Tî$ and 

(2.3) F(a,0) = F(0, a) = a% 

(2.4) F(a,F(b,c)) = F(F(a, b), c). 

A\. TO every R>0 there is a positive ô = ô(R) such that F(a, hi) 
5*F(a, h2) when h\7^h2 provided \a\ <R, \hi\ <5 , \h2\ <ô . 

A3. To every bounded set K whose closure is in En(aj>0, 
7 = 1, • • • , n) there is a positive ô = 8(K) such that for cÇzK, \h\ <ô, 
the equation F(h, b)=c has a unique solution b = \l/(c, h) in Et which is 
a continuous function of (c, h) such that for fixed values of c measurable 
sets correspond to measurable sets. 

Some comments are in order a t this juncture. We are concerned 
with a full semi-group and not with a semi-group germ. Assumption 
A1 is then a natural generalization from one to n dimensions, but it 
should be realized that a parameter set is admissible if and only if it is 
closed under the product operation. Thus A1 implies a restriction on the 
product law and for other choices of F(a, b) we may have to consider 
other configurations in En besides E^. The complex euclidean space 
should also be considered. Actually some portions of the theory ex­
tend without material change to the case in which the parameter set 
is the closure of an open positive cone in an arbitrary complex (B)-
space $ . 

The boundedness assumption in A2 is very convenient for a first 
study of the problem. It is a relict, however, of the days when unitary 
operators in a Hubert space stood in the foreground and it has the 
disadvantage of obscuring the fact that the norm of a semi-group 
operator, while bounded on bounded sets having a positive distance 
from the boundary of the parameter set, may very well become 
unbounded when the parameter approaches the boundary. Such 
questions will have to be relegated to a later study, however. 

Assumption A\ will be discussed in the next section. Condition (2.3) 
expresses that T(a)I = IT(a) = T(a) and (2.4) implies the associative 
law T(a) [T(b)T(c)]= [T(a)T(b)]T(c). Assumption A\ alone does not 
take us anywhere and has to be supplemented by other conditions; 
A2 and A* suffice for questions of continuity but for the existence of 
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one-parameter sub-semi-groups we shall need Lipschitz conditions 
and so on. 

3. Continuity. In the case of a one-parameter semi-group bound-
edness of the norm together with strong measurability of the operator 
function T(a) implies strong continuity of T{a) for a > 0 . 1 I t does not 
imply strong continuity at the origin or continuity in the uniform 
operator topology for a > 0 . This result extends to the present situa­
tion. 

THEOREM 3.1. Under the assumptions of §2, omitting A*, the operator 
T(a) is strongly continuous in E j , that is, for ay>0, ƒ= 1, • • • , n. 

The proof uses the same principles as in the one-dimensional case, 
that is, the product law plus continuity of a definite integral with re­
spect to translations. Let D be a bounded domain the closure of 
which is in E* . By virtue of A3 there exists a positive rj — rj(D) such 
that for each c in D and each a = (ai, • • • , an) with O^o^rgiy, 
i = l, • • • , n} the equation 

(3.1) c ~F(a,b) 

has a unique solution 

(3.2) b=Hc,a) 

which is a continuous function of (c, a) in the product set in question. 
In particular, |^(ci, a) —^(£2, a)\ 'ls small when \c\ — c2\ is small and 
this holds uniformly in a. 

For Ci and c2 in D we have then 

T(a)x - T(c2)x = T(o)[TkKci, a))x - Tty(c* a))x]. 

The right side being independent of a, we may integrate the identity 
with respect to a over the cube C(ry), £77^0^17, 7 = 1, • • • , n, ob­
taining 

(h)n[T{ci)x - T{c2)x] = f r(a)[r(iKci, a))* - ?(*(<*, a ) )4*a 
•J co*) 

whence 

(i*)n||r(ci)* - r(c,)*|| S f U w * , a))* - rw*, a))x\\do. 

1 R. S. Phillips has recently shown that the boundedness assumption is superfluous 
and strong measurability alone is necessary and sufficient for strong continuity. 
[Added in proof March, 1950.] 
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Since T(b) is a strongly measurable function of b and in the cor­
respondence b=*}f/(c, a) measurable ô-sets are the images of measur­
able a-sets, the operator T(^(c, a)) is strongly measurable in a, so 
that the integrand is a bounded Lebesgue measurable function of a. 
From the fact that ^(c2, a)—»^(ci, a) when c2—»£i, the convergence 
being uniform with respect to a in C(rj)t one may infer that the 
integral tends to zero when c2—>£i. I t follows that T(c) is strongly 
continuous at c~ci and hence everywhere in E%. 

Ordinarily we cannot prove continuity in the uniform topology, 
but if we assume uniform measurability a t the outset, then x may be 
suppressed everywhere in the proof and uniform continuity results. 

Assumption A2 is evidently used twice in the proof, but in both 
places it could be replaced by the weaker assumption that ||7XÛO|| is 
bounded in every bounded domain whose closure lies in E£- In the 
case of a separable space 36, weak measurability implies the strong 
kind so that "strongly" could be replaced by "weakly" in A?. In this 
case it is also likely that we may dispense with the boundedness con­
dition on the norm altogether, merely assuming || T(a)\\ to be finite in 
En . This is suggested by the following considerations. 

If 3Ê is separable and T(a) is weakly measurable in E„ , then 
log | | r ( a ) | | is measurable Lebesgue and different from + oo. Further 
it satisfies the inequality 

(3.3) Ac) £ f(o) + f(b), c = F(a,b), 

which is the proper generalization of the subadditive inequality 
(3.4) fia + b)èf(a)+f{b) 

corresponding to the case F(a, b)=a+b. For the latter it is known 
that a solution, defined in E%, which is measurable and different 
from + oo, is bounded above in every bounded interior domain D 
whose closure lies in En (see [6, p. 135 ] for the case n = 1, the extension 
to arbitrary n has been given by R. A. Rosenbaum). In principle the 
method of the proof also extends to (3.3) but the analytical and topo­
logical difficulties are considerable so the discussion of this question 
has to be postponed to another occasion. 

One can get fairly trivial examples indicating that T{a) need not 
be continuous on the boundary of E% under the assumptions of 
Theorem 3.1, not even in the weak sense.2 In particular, continuity is 
apt to fail a t the origin. A common cause of such failure is that the 
union of the range spaces, UaT(a) [X], is not dense in #. In the one-

2 In the one-parameter case it may be shown that weak continuity to the right at 
the origin implies strong continuity. [Added in proof.] 
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parameter case it would be sufficient to add the assumption that 
\JaT(a) [36] is dense in 3Ê in order to obtain right-hand continuity a t 
<x = 0. I t is not clear a t the time of writing this if such a condition 
would suffice as additional assumption to ensure continuity of T(a) 
on the boundary of Ei". On the other hand, if n = 1 the assumption 
that T(a)x—>x for each x when a—»0 suffices for strong continuity in 
Ei" and this result extends to the general case. We assume 

A2. T(a) is strongly continuous at a = 0. 

THEOREM 3.2. If T(a) satisfies A* and the conditions of §2, except 
A\ and A3, then T(a) is strongly continuous in E^. 

If x and e > 0 are given, we can find an rj so small that || T ^ t f ~# | | 
<e for A G 5 ( 0 ) = £ ( | A | <rç, h£~Et). The mapping 

Ta: h->F(a,h)t a G Et 

takes S(0) into a set S (a). If \a0\ <R and rj<ô(R), as we may assume, 
condition Ag asserts that the mapping T^ is one-to-one so that S(a0) 
is an n-cell and Int [S(ao)]5é0. Thus S(a0) contains a sphere of 
center c0 and radius p, say. But F(ay h) is continuous by At so there 
exists a ô0 such that | F(a, h)—F(ao, h0)\ <p if \a—a0\ <S0 , |& —&o| 
< 5 0 where h, h0G.S(0). Here we choose ho so that Co = F(a0y ho). We 
can then be sure that S(a)r^S(ao)9

é0 if \a — a0\ <50 . Hence if 
c= F(a, hi) = F{ao, A2) is a common point of S(a) and S(a0) we have 

\\T(a)x - T(ao)x\\ g \\T(c)x - r (a)* | | + ||r(<0* - r(a0)*| | 

= | | r ( a ) [ r ( * 0 * - * ] | | + \\T(a0)[T(ht)x - x}\\ 

S \\T{hi)x - x\\ + | | r ( * , ) * - «|| g 2e 

where |a-~a 0 | <ô0 . This proves that T(a)x is continuous at a = a0. 
Hence T(a) is strongly continuous in E^. 

4. A functional equation. In the study of one-parameter sub-semi­
groups we encounter the functional equation 

(4.1) g(p + <r) - F[g(p), g(<r)] 

where g(p) is a function on positive numbers to E^*. For this problem 
we need further information concerning F(a, b). 

A\. There exists a fixed positive constant B such that for all points in 
E^ we have 

|F(oi, b) - F{at, b) I ^ [1 + B I b\] I ax - a,\, 

\F(a,b1)-F(a,bi)\ £ [l + B\a\]\h-h\. 
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A5. There exists a positive monotone increasing continuous function 
^(?)> 0 < £ < oo, which tends to zero with £, such that 

F{a,b) = a + b+G{a,b), 

| G(a, &) | Sra>[\a + b\ ], r « min ( | a\t \ b | ), 

I t would be possible to combine these inequalities in such a manner 
that they refer to the behavior of | F(a, bi)—F(af fo) — &1+62I and 
I F(ai, b) — F(a2, b) —ai+a 2 | . Such inequalities are basic in the study 
of analytical group germs in a (£)-space due to G. Birkhoff [ l ] . Our 
conditions seem to be slightly better adapted to the needs of the 
methods used below. They are also closely related to the assump­
tions of P. A. Smith [8, 9] . See further I. E. Segal [7] whose work 
suggests that the Lipschitz condition might be inessential but it is 
not clear to me at the moment how his methods could be brought to 
bear on the present problem. In making comparisons the reader 
should keep in mind that we are dealing with a fixed coordinate 
system, a semi-group rather than a group, and a situation in the large. 
All the results of the present section hold for the case in which En 

is replaced by an arbitrary (B) -space and E£ by the closure of an 
open positive cone. 

With an arbitrary element bCJl£ we also consider its successive 
"powers" defined by 

(4.4) 6<i> = b, &(w) » F(b, b^~^). 

When b and m are bulky expressions we shall write (b; m) for ô(m) 

A basic property of the powers is given in the following 

LEMMA. Let r be defined by co(r) = §. If b(EFït and m is a positive 
integer such that m\b\ ^ | r , then 

(4.5) &<*> = mb + Rm(b), \ jRm(6) | ^ m \ b \ o>(2tn \b\). 

The lemma holds f or m = 2 by A* and is proved by induction using 
the inequality 

I Rm+i(b) I Û 1 Rm(b) \ + \b\œ[(k + 1) I b j + I Rm(b) \l 

We can now state and prove 

THEOREM 4.1. Under the assumptions AÎ, AÎ, and A* the equation 
(4.1) with the initial condition 

(4.6) lim p-ig(p) « a e Et 
p-*0 

has a unique solution g(p) =/(pa) in E„. The solution is an absolutely 
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continuous function of p with bounded derived numbers and for 0^p^<x 

(4.7) | g(r) - g(P) | £ 5 - V ' i - i - «*W]. 

Starting with an arbitrary element & of E% we form a sequence of 
powers (b/v)(,i) = (b/v; p) where p. and v are positive integers. Using 
At and induction on p one shows that 

| (fi/p; p+1)- (b/v; p) | g i — U 1 + —L 

whence we obtain 

(4.8) | (6/v; M) I â JJ-»[eO»/">*i*i - l ] 

for all p, p. 
In the following p = v will be a power of 2 and we shall investi­

gate the convergence of the sequence {(2~>&; 2 ' )} . Here (2""#; 20 is 
obviously the square of (2~>'b; 2i~l). Using this fact, (4.8), and At 
repeatedly, we obtain iorj<k 

A/,*(ft) = | (2-*&; 2*) - (2~'&; 20 | 

g 2Vi»l | (2-*ft;2»-0 - 2-'&|. 

Let j R b e a fixed positive number, arbitrarily large, and restrict b 
to the sphere |&| ^R. Suppose that j is so large that 21~iR£r. We 
can then apply the lemma with b replaced by 2~hb and m by 2h~K 
After some simplification we obtain 

(4.9) A/f*(&) g | 6 | ^ l » l a ) ( 2 w | f t | ) . 

I t follows that the sequence {(2~>&; 20 } converges to a limit and we 
set 

(4.10) ƒ(&) = lim(2-*&;20. 
j—+ 00 

The convergence being uniform with respect to b for | b\ ^Rt we con­
clude that ƒ (J) is a continuous function of 6. 

In particular the limit exists for b = pa, uniformly with respect 
to p for 0^p^R< oo so that f (pa) is a continuous function of p. 

From (4.10) we conclude also that 

(4.11) ƒ(4 ; i») = Hm (2-'i ; w20 

exists and equals the wth power of ƒ(6). But this implies that 

lim (2-%~16; m2') « f(bnrl; m) 

}'• 
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exists. We want to show that the latter limit is actually independent 
of m and consequently equals ƒ(b; 1) ==ƒ(&). For this purpose we 
consider 

à*.m(b,j) - I (2->'k~ib; k2>) - (2-%riJ;«i20 | . 

Here we use the fact that the terms on the right are squares together 
with At and (4.8) to obtain the estimate 

àk.mihj) ^ 2e*»WAk,m(2-% J — 1) SS • • -
S 2V>lA*,w(2->&, 0). 

If 2l"3'\ b\ g r , we can apply the lemma once more and see that 

2>A*,W(2->Z>, 0) < 2«(2H | b | ) -> 0 

when j—» oo. I t follows that 

f(bk-i; k) = f(bnr*; m) - f(b; 1) - f(b) 

as asserted. Hence with b~ka we have f (a; k) =ƒ(&#) for every posi­
tive integer k. 

From this it follows that f (pa) satisfies (4.1), to start with for 
positive integral values of p and a which implies that it also holds for 
rational values and finally, f (pa) being continuous, for all positive 
real values. 

The argument used for the convergence proof also gives the in­
equality 

| (2r*b; 2*) - (2~kc; 2*) | g 2 V W | 2~kb - 2~H \ 

« *\<\\b-c\ 

if \b\ ^\c\. Passing to the limit with k we obtain the Lipschitz con­
dition 

(4.12) \f<fi)-f{c)\*é*M\b-c\, | » | 2 | < ; | . 

I t follows that f (pa) satisfies a Lipschitz condition with respect to p. 
Formula (4.7) is an immediate consequence of (2.3), (4.1), At, and 
the estimate 

(4.13) | / ( J ) | ^ B-*[e*i*l - 1] 

which follows from (4.8). 
In order to verify the initial condition we revert to the lemma once 

more. We have 

(2->>a; 20 = pa + Rj^-'pa) 
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and if 2p\a\ ^ r the norm of the remainder does not exceed 
p |a |co(2p |a | ) . When j tends to infinity, the left member tends to 
f (pa). I t follows that 

(4.14) | ƒ (pa) - pa | ^ p | a | co(2p | a | ) 

for 2p\a\ ^ r so the initial condition is satisfied. 
For the uniqueness proof we shall need only At. Suppose that g(p) 

and h(p) are two solutions of (4.1) and (4.6) in ~E£. We may assume 
that they both satisfy (4.13) with b replaced by pa; if necessary we 
restrict p to a fixed finite interval and replace B by a larger constant. 
We have then by the usual square root argument 

I g(p) - *(P) | = |F[f(ip), f(Jp)] - F[hQp), Kh)} I 
S2e»»'"-iU(ip)-A(ip)|, 

whence by iteration 

| g(p) - Kp) I ^ 2 V I - I | g(2-*P) - * ( 2 - * P ) | 

and this tends to zero when &—»oo by virtue of the common initial 
condition. Hence g(p)^h(p) and our sketch of the proof of Theorem 
4.1 is complete. 

This theorem may be strengthened in a direction which will be 
useful below. 

THEOREM 4.2. If co(£) satisfies the integrability condition 

(4.15) f ï-WQdSK oo, 
•/ o 

#»d # g(p) ^ # solution of (4.1) i^ Ejf w/̂ 'cA te;wfo to serö with p, //^?z 
tóere e m ^ an a in E% such that (4.6) holds. 

Suppose that p0 is so small that 21 g(p) | g r for p âp 0 . Repeated use 
of Ag gives 

g(p) = 2*g(2"V) + RU(P), 

I **G0 | ^ E 2-11 g(2"'p) | «[2 | g(2-"P) | ]. 

On the other hand 

|g(p)| à {1 - i"[2 | g(2-V) [1}2 I g(2-V) | ^ • • • 

( 4 - 1 6 ) ^ U {1 - l«[2 I *(2->P) |]}2'| g(2-p) |. 
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I t follows that 

I R*(P) | £ } | i(p) I Z f l {1 - 1» [2 I f(2-'P) | ]} "»« [2 | g(2-p) | J. 
y = l 2 = 1 

Here the right-hand member tends to a finite limit when fe~-> oo if and 
only if 

£w[2|g(2-'P)|]<i>[(§H 

is convergent where the inequality is a trivial consequence of (4.16). 
But the second series converges by virtue of (4.15). I t follows that 
Rk(p) converges uniformly to a continuous limit for O^gp^po when 
k—» oo and this implies that 

(4.17) lim 2*g(2-*p) s / ( p ) 
lb—»oo 

exists as a continuous function of p. Furthermore, one sees that if 
KP) =pm(p) then m(2p) = ra(p). 

In exactly the same manner one proves that 

lim 3*g(3~V) 

exists and a more detailed analysis shows that it also equals /(p). 
This forces m{p) to have the additional property m(3p)=m(p), and 
log 2 and log 3 being incommensurable, this makes the continuous 
function m(p) equal to a constant, a say. Since g ( p ) G ^ by assump­
tion, a will have the same property. From l(p) = pa, we conclude that 
(4.6) holds. 

Condition (4.15) is not particularly restrictive and it is fully utilized 
in the proof of the theorem, but we have of course no evidence what­
soever that it is a necessary condition. 

5. The one-parameter sub-semi-groups. In view of the discussion 
in §3, it is natural to replace A? by 

A*. T(a) is a strongly continuous function of a in Et-
The basic theorem on sub-semi-groups reads 

THEOREM 5.1. Let the semi-group © = { r ( a ) } satisfy assumptions 
A1, A2, A3, AÎ, A l and A5. If a is any element of E^, then the sequence 
of operators { [T(2~3'a)]21} converges strongly to a limit S (a) ~T[f(a)] 
where f (a) is defined by (4.10). The operators {S(pa)}, 0 < p < <*>, form 
a sub-semi-group ©a of © and <&aa =

 (5a if a>0. If (4.15) also holds; 
then conversely ifX= {S(p)}, 0 < p < 00, is a sub-semi-group of ©, if 
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S(p) = T[g(p)] and limp^0 g(p)SB=0, then there exists an aCzEi" such 
that%==k>a* 

The proof follows directly from Theorem 4.1 and 4.2. Referring 
back to At and the definition of the power (2-fa; 20 one sees tha t 

(5.1) [T(2-ia)Y - T[{2r*a\ 20] . 

By (4.10) we know that (2->a; 20->ƒ(«) when j~>oo and by A3 

(5.2) r[(2->a; 2>')]x~> T[f(a)]x s S(a)* 

for each x. Tha t the operators S(pa)t 0 < p < 00, form a semi-group 
with the product law S(pa)S(<ra) = S((p+a)a) follows from the fact 
that f (pa) satisfies equation (4.1). 

If (4.15) holds, then we can apply Theorem 4.2. If then £ = {S(p)} 
is a one-parameter sub-semi-group of © with the canonical product 
law, we can find a function g(p) satisfying (4.1) such that S(p) 
= jT[g(p)]. By assumption g(p)—*0 with p so there is an a in "E^ such 
that g(p) =f(pa) and, hence, £ = <S0. 

The equation 

(5.3) P~f(pa), 0 < p < o o ' 

defines a path Ta in E^", starting at the origin where it is tangent to 
the vector p = pa. The properties of f (pa) listed in Theorem 4.1 
show that r a has a tangent almost everywhere and every arc of Ta 

corresponding to 0 < p < i ? is rectifiable. If F(p, q) has continuous 
partial derivatives with respect to the components of q, we may show 
tha t f(pa)~ [4>i(p)1 • • • , (t>n(p)] is a solution of the system of first 
order differential equations 

/,- A\ \T~ = ^ BtFi'kfa* " ' * • 0n! 0, • • • , 0), 
(5.4) i dp h^i 1 = 1, • • • , nf 

l*/(0) - 0. 

Here Fj,k is the derivative of the jth. component of F(p, q) with 
respect to the &th component of q and a = (ai, • • • , an) . This system, 
when available, usually offers more convenient determination of Ta 

than the functional equation (4.1) with the initial condition (4.6). 
I t should be observed, however, that the latter define Ta uniquely in 
situations where the uniqueness theorems for differential equations 
do not apply and even the differential equations themselves may fail 
to exist. 

Every path Ta is confined to ~E£ and condition (4.15) may be used to 
show that r o cannot return to the origin when p tends to a finite limit 
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or to infinity. Under the same assumption, Ta is a simple arc. The 
general question of what happens to ƒ (pa) when p—» <*> is very im­
portant. A particularly simple case is that in which f (pa) tends to a 
finite limit p0 for then p0 = F(p0, po) and T(p0) is a projection operator. 

A transformation semi-group, in contrast to a group, may contain 
projections and their parameters are determined by the equation 

(5.5) F(p,p) = ƒ> 

which defines a locus P in E£. P always contains p = 0 and may reduce 
to this point. The origin is an isolated point of P since | F(p, p) —p\ 
> 0 as long as p^O and w(2|/>| ) < 1 as we see from À*. If a path Ta 

has an interior point p0 = f(coa) in common with P , then the operator 
T\j(pa) ] is periodic with period co for p>w. This cannot happen, how­
ever, if condition (4.15) holds and if Int r a €£ n . A path Ta may very 
well have its end point on P and P may be made up of such terminal 
points. This happens in the case of the projective semi-group on 
positive numbers for which all paths Ta are straight line segments 
joining the origin with the surface P which is a portion of a hyper­
bolic paraboloid in £3 . 

The determination of all points p such that p = f (a) for some a ap­
pears to be very difficult. I t is clear that if p=zf(a)1 then we must be 
able to determine a sequence of points {pk} in E£ such that po~p 
and 

(5.6) F(pkf pk) = pk-u k = 1, 2, 3, • • • . 

Since pk = ƒ(2~fca) we must also have 

(5.7) Km 2kpk = a. 

I t is possible to determine conditions under which this process may 
be carried through, but so far the results have been rather disap­
pointing. In our theory it is much easier to determine the paths from 
the origin than to find the path, if any, which joins a given point p 
with the origin. 

Let us observe that if p = ƒ (a) then 

(5.8) T(p)x = lim exp i— [T(f(ôa)) - l]\ x, x G X, 

in the sense of strong convergence. Cf. [6, p. 189]. 

6. The infinitesimal generators. With each one-parameter sub-
semi-group ©a defined above there is associated an infinitesimal gen-
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erator A (a) of @ which is defined by 

(6.1) lim — [T(f(da)) - l]x = A(a)x 

whenever the limit exists. The domain of A (a) will be denoted by 
©(a); it is clearly a linear subspace of ï . 

THEOREM 6.1. Under the assumptions of Theorem 5.1 the set £)(a) 
is dense in 36 for each a in E^. In particular, 3) (a) contains all elements 
of the form 

T[f(pa)]ydp, ye *, 0 =g a < 0 < «>. 

This is a well known result in the theory of one-parameter semi­
groups (N. Dunford [2], cf. [6, p. 185]). We also observe that for x in 
J) (a) we have 

(6.3) — T[f(pa)]x = T[f(pa)]A(a)x = A(a)T[f(pa)]x. 
dp 

The operator A (a) which is closed is ordinarily unbounded on 35(a). 
Its resolvent is given by the Laplace transform 

(6.4) R[\;A(a)]x= f e-^T[f(pa)]xdp, SR(X) > 0. 
J o 

The spectrum of A (a) may very well fill the complementary half-
plane 9Î(X) ^ 0 . £)(a) is the range of 2?[X; A (a)] for any fixed X with 
9?(X)>0. If JR[X; A (a)] is known, it determines T[f(pa)] uniquely 
with the aid of the inversion formulas for the Laplace transform. 

The mapping a—>A (a) defines a correspondence between the vectors 
a of E„ and the infinitesimal generators A (a) of ©. Under suitable 
assumptions this correspondence is actually an isomorphism under 
the operations of addition and multiplication by positive numbers. 
Our previous postulates suffice for the scalar multiplication, however, 
since (6.1) shows that we have 

THEOREM 6.2. Under the assumptions of Theorem 5.1 we have 
^)(aa) =3)(a) for a > 0 and A(aa) —aA(a). 

For the addition and for the fundamental theorems we need further 
restrictions and the following are convenient assumptions. 

A|. There exists a positive p0 such that \a\ <p0 , \b\ <p0 , a^b im­
plies that T(a)j*T(b). 
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A t F(a, b) has continuous partial derivatives with respect to the 
components of a and b up to and including the third order. 

At every point of E* the function F(a, b) may then be expanded in 
a Taylor series up to terms of the third order. Because of AÎ these ex­
pansions have a special form: at the origin we have in particular 

ji = <*,- + ft + ]T) X ajkOLjPk + R*,i, i = 1, 2, • • • , n, 
(6.5) ,• H 

a = (a,-), b = (ft), c = (7*), o = F(a, 6). 

The crux of the problem before us is to construct elements of 36 
dense in 36 belonging to the domains of definitions of A (a) and of 
A(a)A(b) for every choice of a and b in E^". For this purpose we shall 
use a modification of artifices due to N. Dunford [2], I. Gelfand 
[5], and L. Gârding [4]. The same device gives elements belonging 
to the domain of existence of the product of three or more infini­
tesimal generators, provided we assume the existence of enough 
derivatives. 

Let K(c) be a numerically-valued function of class C(m), m^ 3, 
defined in E%. Let D be a bounded domain whose closure lies in E% 
and let K(c) be integrable over D and vanish outside of D. If Dv is 
a homeomorphic image of D in Et such that no two corresponding 
points are at a distance of more than rj apart, then we suppose that 

(6.6) Ç \ K{c) | dc = o(rj) when rj • •0 t 

where the integration is extended over that part of D which is not in 
Dv. We require that the partials of order not greater than m have the 
same integrability properties. The class of all such kernels K(c) will 
be denoted by $ . Specifically we may choose D as the cube 0<or 
< Y i < T < °° ,j= 1, • • • , n, and define K(c) in the cube as 

K{c) = K(c; er, r) 

( 6 * 7 ) = [C(r - * ) ] - exp | - ( r - cr)* j b [(r - 7*)(7# - *)]-*} 

where C =»/J exp { — [7(1 — 7)]""x}^7. 
For any choice of K(c) in $ we define 

(6.8) y = K[x] = f K(c)T(c)xdCl x e H. 
•/ D 

For fixed K{c) this is a linear bounded transformation of H to 36 the 



104 EINAR HILLE [March 

norm of which does not exceed the integral of | i£(f) | over D. If 
K(c) *=*K(c; a, r) the norm is a t most one. 

THEOREM 6.3. Under the assumptions A1, A2, A3, and A\ to A* the 
set [Cia^)(a)]r\[r[a,bS)[A(a)A(b)]] is dense in 9£ and contains the set 
$ [36] of elements of the form (6.8). 

Tha t $ [3£] is dense in H follows from 

(6.9) lim lim K{c\ <r, r)[x] = x 

in the sense of strong convergence for every x. 
We proceed to indicate briefly how one shows that i£ [#]££) (a) 

where, without restricting the generality, we may take \a\ = 1. We 
form 

l.{Tlf(ôa)]-l}y 
(6.10) i 

= — f K(c){T[F(f(Sa), c)] - T{c)\xdc. 
0 J D 

In order to find the limit of the right member, we have to study the 
mapping Us defined by b = F[f(8a), c] which takes D into a set D(8). 
Condition A3 asserts that the correspondence is one-to-one for suffi­
ciently small values of 8 since | / (5a) | SB~l[em-\] <25 if 5 5 < 1 . 
Further 

| 6 - c\ < (1 + B\c\)\f(ba)\ < Mb 

where M depends only upon B and D. The mapping is consequently 
a homeomorphism involving only a small distortion of D when 8 is 
small. I t follows that (6.6) holds with t] replaced by 5 and Dv by D(8). 

By A3 we can solve the equation b = F[f(ôa)> c] for c when 5 is 
small obtaining the unique solution c = ^(ô, f(8a)). This solution is 
continuous by A3; the added condition Ag also makes it differentiable. 
I t follows from the theorem on implicit functions that the solution 
c~\J/(b, s) of the equation F(s, c)—b has continuous partial deriva­
tives with respect to the components of b and 5 of order not greater 
than 3 which is the limit for the existence of partials of F(p, q) postu­
lated in Ag. In this case ƒ(ôa) has continuous derivatives with respect 
to 5 of order not greater than 3 as is seen from equation (5.4). I t 
follows that yp{b, f {8a)) has continuous partials with respect to the 
components of b and with respect to 5 of order not greater than 3. 
Further, the Jacobian 
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(6.11) J(c;b) -J[W,f(6o));b] 

of the inverse transformation U^1 from D(8) to D is near to one uni­
formly in D when 5 is small and has partial derivatives with respect 
to the components of b and with respect to 5 of order not greater than 
2. 

From this we conclude that the right member of (6.10) may be 
written 

Ô-1 f K(c)T(b)xJ(c; b)db - trl f K{b)T(b)xdb 

d~l[K(c)J(c] b) - K(b)]T(b)xdb 
i 

Ô-1 f K(c)J(c;b)T(b)xdb-Ô-1 ( K{b)T(b)xdb 

= / i + J% + / | , 

where Dx^Dr\D{S)y D2 = D(Ô)--Dh DZ = D-Di. Here the norms of 
J2 and Jz do not exceed II #11 times 

-L 
+ 

r 1 f I K(c) I J{c\ b)db and Sr1 f | K(b) \ 
J D2 J Ds 

db 

respectively. Both of these expressions tend to zero with S by (6.6). 
It follows that (6.10) tends to a limit so that y(Ez&(a) and 

(6.12) A{a)y~ f Kx(b; a)T(b)xdb, 

Ki{b: a) - — {K[Kb, f(ba))]j[p(b, f(Sa) ; b]},_,. 
do 

For D near to the origin this becomes 

Ki{b; a) - - JT(ft) [ i l a'**, + 0( | 61 )1 
(6.13) L ' j 

- Z *<W U ' + I E «W* + o( 16 T) , 
» L j k J 

where Ki(b) is the partial of K(b) with respect to j3<. It should be ob­
served that the remainder terms are independent of the kernel. We 
conclude that A(a)K is a linear bounded transformation on 36 to X 
and 
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\\A(a)K\\ ^ f | Kx(fi; a) \ db. 
J D 

Moreover, it is not difficult to see that this bound is a bounded func­
tion of a for \a\ = 1. 

We have now to consider the existence of A (ai)A (a2)y. Here 
A(a2)y is given by (6.12) with a replaced by a2. This integral is of the 
same type as (6.8) with a kernel K\{c\ a2) instead of K(c). Here 
Ki(c; a2) has the same properties as K(c) except for differentiability; 
however, Ki(c; a2)GC ( 2 ) a t least and this more than suffices for our 
needs. The argument given above may consequently be used also to 
prove the existence of A(ai)A(a2)y. Further we see that A(ai)A(a2)K 
is a bounded linear operator and the bound is a bounded function of 
a\ and a2 on the unit sphere in E^. This completes the proof. 

We have seen that the set $ [36] is dense in 2)(a). Actually a stronger 
statement can be made and we can make assertions about the graphs 
of the operators in the relevant product spaces. 

THEOREM 6.4. The graph [y, A(a)y], :y£$[36], is dense in the 
graph [x, A(a)x]t tf£35(a), in 36X3Ê. More generally, the graph 
[y, A(ai)y, • • • , A(ak)y], y£$[36] , is dense in the graph [x, A(ai)x, 
• • • , A(ak)x]t x£DÏS)(a i) , in XX • • • X £ (k + 1 factors). 

The proof is long and laborious so we shall merely sketch the argu­
ment for k = 1 and indicate briefly the extension to more dimensions. 
Since A (a) is a closed linear operator the graph ®i = [x, A(a)x], 
#£S)(a) , with points g\ may be made into a (J5)-space under the norm 
||gi|| H M I "HM(a)*ll w * t n °bvious definition of the algebraic opera­
tions. If the subset ®io= \y, A(a)y]t ^£$[36] , is non-dense in ®i, 
then there exists a linear bounded functional on ©i which vanishes 
on ©io without vanishing identically. Any bounded linear functional 
on ©i is of the form 

g?(gi) = *i*(*) + xt[A(a)x] 

where xf and x2* are arbitrary linear bounded functionals on 3£. We 
have then for some special choice of x? and x* that 

(6.14) x?(y) + x2*[A(a)y] = 0, y £ « [ * ] , 

and by assumption this does not hold for all x in 35(a) if we replace 
y by x. We now make a special choice of y in $[36]. We take as 
domain of integration the cube C(S, e): 5 < Y » < € , i = l , 2, • • • , n, 
and set K(c) = 0 outside the cube and equal to Hïi£o(Y») m t n e c u b e 
where 
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K0(y) = exp {-~V(e - ö)[(e - 7 ) (7 - S)]"1}» n > 0. 

The corresponding elements y = y(x; 3, €, rç), x£3Xa) , are in $ [ £ ] . 
Substituting this value of y in (6.14) gives an identity in 3, e, 77, and 
x. By continuity we may let 5—»0 and afterwards 77—>0. Under these 
two operations xf(y) is carried into 

(6.15) f *i*[r(c)*]<fc 
J C(0,c) 

since i£0(7)—*1 boundedly in C(0, e). For the discussion of #2*[-4(0)3;] 
we use (6.13) which gives the corresponding kernel. This expression 
involves two terms of which the first one leads to 

(6.16) f ( E Z *i<ai + 0(\c\)\ x£[T(c)%]dc. 
J c(o,«) \ i i ) 

We recall tha t the remainder term is independent of the kernel. The 
second term of (6.13) gives rise to n singular integrals of which the 
first one, i = l , involves the integral 

rj I #0(71) [(7i — «) - 7 i ]fi(c)dyi 
J 0 

which is multiplied by XI2 ^o(7i) integrated with respect to the re­
maining n — 1 variables from 0 to e. Here 

Me) = L- + S E « W * + o( I * I2)] *i*[r(<0*]-

Passing to the limit with 77 gives the result 

/l(€, 72, • • * , 7n) - jfl(0, 72, • • ' , 7n) 

as is easily seen. At the same time XI2 ^o(7y)—>1. Thus we see 
that the limit of x*[A(a)y] under the limit processes S—>0, 77—>0 be­
comes the integral over the (n — 1) -dimensional boundary of the cube 
C(0, e) of the function which on the face 7; = e equals fi(c) and on the 
face 7; = 0 equals —fi(c). 

After performing these operations on x?(y)-\-x*[A(a)y] we multi­
ply by €""* and let €—»0. The contributions from (6.15) and (6.16) add 
up to 

(6.17) **(*) - J £ E «î*a,j **(*)• 

The surface integral leads to two terms of which one arises from the 
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partials of the factors ca+ ^2j^2kO^kCtj7k+0(\c\2) and gives a limit 
which cancels the second term of (6.17). The second term involves 
combinations of difference quotients of xf[T(c)x], Since everything 
else tends to a limit when €—»0, this term must also tend to a limit 
which we denote by X*(x). We have then 

(6.18) x?(x) + X*(x) = 0, x E S)(a). 

Since S)(a) is dense in £, this must hold for all x so that X*~ —x?. 
But for x~y in $ [ # ] we have X*(y) ~x*[A(a)y] and $ï[X] is dense 
in £)(a) so we must have X*(x) =x<f[A(a)x] for all x in 35(a). But 
this shows that (6.14) holds with y replaced by any x of $)(a) so that 
g*(gi) = 0 for all gi. Thus ®i0 is dense in ®i. 

The extension from 1 to k does not offer any new difficulties. The 
graph ®k= [x, A(ai)x, • • • , A(ak)x], x£0Î2>(ay), becomes a (J3)-
space under the norm ||gA.|| a=||#|| + ]Ci|M(ay)x |l a n°l t n e linear func-
tionals on ®fc are of the form 

g?(gk) = xf(x) + x?[A(ai)x] + • • • + xk\i[A(ak)x]. 

Proceeding as above with the same choice of y = y(x; ô, e, rç), x 
£0Î3)(ay), and passing to the limit with the parameters, one ob­
tains a relation of type (6.18) holding for all x under consideration. 
But for # = y £ $ [ X ] we have 

(6.19) X*(y) = x?[A(oi)y] + • • • + ***+i[i4(a*)y]. 

Here X* has a unique extension when we pass from the dense set 
$ [ £ ] to the set fl?£)(ay) and the right-hand side of (6.19) has the 
obvious extension obtained by replacing y by x. I t follows that (6.19) 
holds for all points of nîS)(#i) so that g* is the zero functional and 
the subgraph is dense in ©*. 

We now define an operator U(a) by 

(6.20) U(a)x = lim Srl[T(èa) - / ] * 
5->0 

whenever the limit exists. 

THEOREM 6.5. U(a)y exists and equals A(a)y if ; y£$[X] . 

The existence of U{a)y is proved by the argument used in the proof 
of Theorem 6.3. We have merely to replace /(5a) by ha throughout. 
B u t / ( ô a ) - ô a = 0(S2) whence it follows that 

*(6, ƒ(«*)) - # ( M a ) =0(3 2 ) , 

AWifipo)); b] - J[W, da); b] - 0(ô2), 
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so the right member of (6.13) is unchanged when we replace/(Sa) 
by da. Hence U(a)y~A(a)y for 3>G$[X]. If it could be shown that 
U(a) is a closed operator, then it would follow from Theorem 6.4 
that the domain of U(a) contains that of A (a) and that equality be­
tween the operators holds in 35(a). At present we cannot decide this 
question and it is not vital for the following discussion. 

THEOREM 6.6. If y~K(c) [x] and if a\% a2t b are points of "Ë£ with 
\a>i\ <§(£>), \a2\ <ô(D), \b\ g l , then there exists a constant C depend­
ing only upon K(c) such that 

(6.21) | [r(aO - T(a2)]y\ S C | <n - a2\ \\x\\ 

and the same relation holds with y replaced by A {b)y. 

This is proved by the method of Theorem 6.3. We omit the details. 
We can now prove that the correspondence a-*A(a) is a homo-

morphism under addition in the following sense. 

THEOREM 6.7. 3D(ai+a2) contains 35(ai)P\5D(a2) and in the latter set 

(6.22) A(ai + a2)x = A(ai)x + A(a2)x. 

We start by proving (6.22) for # = ; y £ $ [£]. In this set it is sufficient 
to prove the corresponding relation with A replaced by U and this is 
accomplished if we can show that 

[T(B(ax + a,)) - T(da1) - T(8a2) + l]y « o(t) 

when 5—>0. The left member equals 

{T(ô(a1 + a2)) - T[F(Beu Ôa2)]}y + [T(iax) - l][T(8a2) - l]y. 

By Theorem 6.6 the norm of the first term does not exceed 

C| 8(ai + a2) — F(ôah ôa2) \ \\x\\ 

which is 0(ô2) by Aj since co(£)=0(£). Since yG©(a2) , we have 
[T(ôa2)~-l]y = ÔA(a2)y+o(ô), so that 

II [r(«ax) - l][T(ôa2) - J]y|| ^ «|| [r(8a0 - l]A(a2)y\\ 

+ o(ô)||r(8ai) - l\\ g Cô21 ai\ \\4 + o(t) 

from which the assertion follows. In order to extend the validity of 
(6.22) from $ [ £ ] to 3)(ai)PüD(a2) we argue as follows. By Theorem 
6.4 the subgraph [y, A(ai)y, A(a2)y], ? £ $ [ £ ] , is dense in the graph 
[x, A(ai)x, A(a2)x]f x£35(ai)r\2)(a2). Hence for any x in the latter 
set we may find a sequence :ynE$[3Ê] such that yn—>#, A(ai)yn 

—^A{ai)x1 A(a2)yn-*A(ai)x* I t follows that 
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A (ai + a2)yn » A(a^)yn + A(a2)yn->A(ai)x + A(a2)x. 

Since A(ai+a2) is also a closed operator, it follows that A(ai+a2)x 
exists and that (6.22) holds. 

We come now to the main theorem of this section. 

THEOREM 6.8. Let 

a = (ai, a2, - • • , an) = axex + a2e2 + • • • + <xnen 

and set A (ek) — A^. Then S)(a) contains the set 0££)(£*) ^SDn #wd /or x in 
the latter set 

(6.23) A(a)x = a ^ i * + a2A2x + • • • + an4.n*. 

77*6 ftasic infinitesimal generators Ai, A2, - - - , An are linearly inde­
pendent in SDn. 

The validity of (6.23) is an immediate consequence of the preced­
ing theorem. A linear relation with constant coefficients between 
AiX,A2x, • • • , Anx valid for all x in £>n implies the existence of two 
distinct vectors a and b in Ej" such that A (a) x — A(b) x in S)n. We 
know that the subgraph [3/, A(a)y], 3>E$[X], is dense in the graph 
of A(a). A fortiori this is true for the graph [x, A(a)x], xGS» . Now 
for 9?(X) > 0 the set [XJ—A (a)] [£)(#)] is dense in 36 so the same must 
be true for [\I-A (a) ] [£)n] = [\I-A (b) ] [$)»]. From this we conclude 
that the linear bounded operators R\\; A (a)] and JR[X; A(b)] coin­
cide in a dense set and hence everywhere. By the inversion formulas 
for the Laplace transform, applied to formula (6.4), we conclude that 
the corresponding one-parameter semi-group operators T[f(pa)] and 
T[f(pb)] are identical for all values of p. But for all small values of p 
we have f{pa)9^f(pb) and |/(pa) j <p0 , |/(p&)| <Po- Thus the result 
contradicts A | so we conclude that A (a) and A (b) are distinct oper­
ators on S)w when a 5̂  b. 

The infinitesimal generators A (a) of © form an ^-dimensional 
system which is closed under addition and multiplication by positive 
numbers. On the other hand, multiplication by negative numbers is 
not allowed since a and —a are not simultaneously in En if a5^0. In 
this respect there is a striking difference between the semi-module of 
infinitesimal generators of a semi-graup and the Lie ring of generators 
of a group. 

7. The fundamental theorems. We come now to the analogues of 
the three fundamental theorems of Lie. 

THEOREM 7.1. For :y£$[X] and small values of a in En 
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(7.1) — - T(a)y = £ Tik(a)T(a)Aky, j « 1, 2, • • • , », 

w&ere /Ae matrix (Tjk(a)) tends to the unit matrix when a-+0. /ƒ /fte 
operator in the left member is closed, then its domain contains © n and 
(7.1) holds in 3)». 

The left side of (7.1) is the limit when S—»0 of 

(7.2) t-^Tio + ied - T(o)]y. 

Using A3 we see that the equation F(a, h)~a+ôej has a unique 
solution in E^, viz. 

h = *(a + heh a) = %*(*, 5) = c,{o)d + 0(ô2), 

where the components Tjk(a) of the vector Cj(a) are determined by 
the linear system of equations 

n 

(7.3) E*<*(*. 0)r/»(a) » «„, i — lf 2, — , ». 

Here .Fa as in formula (5.4) is the partial derivative of the ith com­
ponent of F(a, b) with respect to the &th component of b in which 
we set ô = 0. Since Fik(a, 0)~+oik when | a\ —>0, the determinant of the 
system (7.3) is different from zero for small values of | a | so that the 
Tjk(a) may be determined. Further r#(d0—>8/jfe when \a\ —>0. Thus 

lr*[T(o + iej) - T(a)]y 

-r(a)»-i{rb(fl,«)]-r}y 
-r(a)«-»|rNa)l-/}, 

+ r(a)ô-i{r[x,^,ô)] - r[&,(a)]}y. 
The first term in the last member tends to T(a)A [cj{a)\y when 5—>0 
by Theorem 6.5 while the second term tends to 0 by Theorem 6.6. 
Hence the limit exists and by Theorem 6.8 it equals 

TO 

T{a)A[ci{a)]y = ^Tjk(a)Aky. 

The left side of this equation involves a closed operator, but it is not 
a priori obvious that the partials of T(a) are closed operators ; if they 
are, then Theorem 6.4 shows immediately that (7.1) holds in ©„. 

Theorem 7.1 also gives us 

(7• 5) T(a)Aiy = £ Aik(a) — - T(a)y 
fc«i dak 
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where (A^fa)) is the inverse of the matrix (Tjk(a)). I t follows from 
(7.3) that 

(7.6) Aik(a) - F « ( a , 0 ) . 

The second and third fundamental theorems involve the structural 
constants of the semi-group defined by 

i i f d2Fi \ 
(7.7) 7 # = aih - akh aik = ( ~ — — I 

o,o 

in the notation of (6.S). We note that 

(7.8) — • Aik(a) -> aih | a | -> 0. 

THEOREM 7.2. /ƒ ^ G ^ [ ï ] 
n 

(7.9) [Ait A,\y s ( 4 * 1 , - i l^<)y = Z Y ^ * , -

ƒƒ /Ae operator in the first member is closed, then the relation holds in 3D». 

For the proof we use (7.5) twice forming 

- E M < 0 T - 1 Z **.(*) —- r(a)y} . 

Interchanging i and j , subtracting and simplifying we get 

r (a ) [il,, i l , ] , - E A , » - / - r ( a ) , 

where 

n» A ( à d \ 
Aii(a) = Zs\&ik(a) Ajm(a) - Ayfc(a) Aim(a)> , 

jb-i t dak dak ) 

which tends to 7^ when | a| —>0 by (7.8) since A,-*(a)-»5<jb. Formula 
(7.1) shows that the partial of T{a)y with respect to am tends to 
Amy. I t should be observed that the second order partials of T(a)y 
which arise in the process, but cancel in the subtraction, actually 
exist when , £ $ [ £ ] . This follows from the fact that in (7.4) we may 
replace y by A iy and still carry through the limit process. The second 
partials may consequently be found by formal differentiation of 
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formula (7.1). If [Ai, Aj] is a closed operator, then Theorem 6.4 
shows that (7.9) holds in SDW. 

The second fundamental theorem asserts that each commutator 
[Ai, Aj] is a linear combination of basic infinitesimal generators, but 
in the semi-group case it does not follow that [Ai, Aj] is also an 
infinitesimal generator, that is, we cannot always find a vector c in 
E* such that [Ai, Aj]y~A(c)y. In particular, we note that if [-4*, Aj] 
is an infinitesimal generator, [Aj, Ai] cannot be one. 

THEOREM 7.3. The structural constants satisfy 

(7.10) 7y*= -yU 
n 

(7.11) 2^ LTtWY/fc + yjnrtki + 7*mYf/J = 0. 

Here (7.10) follows from (7.7) while (7.11) follows from the rela­
tion 

(7.12) [Ait [AhAk]]+ [Ah [Ak,Ai]]+ [Ak, [AifAj]] = © 

which holds when the operator on the left acts on the subspace &[%]• 

8. Conclusions. The preceding theory raises perhaps more ques­
tions than it answers. Let us list some directions in which further 
research is desirable. 

(1) Determine the set of points c such that c=f(a) for some a. 
In particular, are all finite boundary points of this set "accessible" 
and found by solving the equation F(p, p)=*p? 

(2) Extend the investigation to other parameter sets. 
(3) Prove that the partials of T(a) and the commutators are closed 

operators. 
(4) Formulate and prove converses of the fundamental theorems. 
(5) Is it possible to embed the given semi-group © in a group of, 

in general, unbounded operators, the group being generated by the 
s e t s \aicAh with real a 's not necessarily positive? 
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