
THE GEOMETRY OF FINSLER SPACES 

HERBERT BUSEMANN 

The term "Finsler space " evokes in most mathematicians the pic­
ture of an impenetrable forest whose entire vegetation consists of 
tensors. The purpose of the present lecture is to show that the asso­
ciation of tensors (or differential forms) with Finsler spaces is due to an 
historical accident, and that, at least at the present time, the fruitful 
and relevant problems lie in a different direction. 

Finsler spaces were discovered by Riemann in his lecture [ l]:1 

Über die Hypothesen, welche der Geometrie zu Grunde liegen (1854). 
The goal which Riemann set for himself was the definition and dis­
cussion of the most general finite-dimensional space in which every curve 
has a length derived from an infinitesimal length or line element. In 
modern terminology Riemann's approach is this : Let a differentiate 
manifold M of a certain class be given. In any local coordinate sys­
tem (#1, • • • , xn) = (x) a length F(x, dx) must be assigned to a given 
line element (x, dx) = (xi, • • • , xn] dx, • • • , dxn) with origin x. If 
x(t) is a (smooth) curve in M then fF(x, &)dt is its length. 

In order to insure that the length of a curve is positive and inde­
pendent of the sense in which the curve is traversed, Riemann re­
quires F(x, dx)>0 for dx5*0 and F(x, dx) » F(x, —dx). 

Next Riemann assumes [l, p. 277] that the length of the line ele­
ment remains unchanged except for terms of second order, if all points 
undergo the same infinitesimal change. This amounts to the condition 
F(x, kdx) = kF(z, dx) for k>0. Nowadays we rather justify this con­
dition by requiring that a change of the parametrization of the curve 
does not change its length. 

Riemann then turns immediately to the special case where F(x, dx) 
= [^2gik(x)dxidxk]1,2

t that is, to those spaces which are now called 
Riemann spaces. The general case is passed over with the following 
remarks: the next simplest case would comprise the manifolds, in 
which the line element can be expressed as the fourth root of a bi­
quadratic differential form. The investigation of these more general 
types would not require any essentially different principles, but it 
would be time consuming and contribute comparatively little new to 
the theory of space (verhâltnismâssîg auf die Lehre vom Raume wenig 
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neues Licht werf en), because the results cannot be interpreted geo­
metrically (see [l, p. 278]). 

Here is one of the few instances where Riemann's feeling was 
wrong.2 Nevertheless the passage had a great influence: the general 
case was for a long time entirely neglected, and when it was taken up 
the principles of Riemannian geometry were applied. The results 
thus obtained are not different enough to enrich geometry materially, 
moreover they frequently do not lend themselves to a naïve geo­
metric interpretation. 

The following is a brief sketch of the history. The integral fF(x, &)dt 
is the subject of the Weierstrass theory in the calculus of variations. 
Therefore it is not surprising that the first contributions are due to 
workers in this field. The pioneers are Bliss [2, 3] and his students 
(in particular Underhill [4]) in this country and Landsberg [5] in 
Germany. To develop a geometry it is necessary to have extremals or 
geodesies whose subarcs furnish locally unique shortest connections. 
The Legendre or Weierstrass conditions of the calculus of variations 
suggest to require that F(x, dx) is for fixed x a convex function of dx: 

(1) F(x, dx) + F(x, Ôx) à F(x, dx + ôx) 

or, which is the same, that F(x, y) = 1 is a convex surface in y-space. 
(1) will be assumed henceforth.8 

Bliss' approach is as follows: the homogeneity of F(x, dx) in dx 
permits to write F(x> dx) in the form 

(2) F(x, dx) - [ £ &»(*. dz)d%4%k]lt* 

where the gj*(#, dx) are homogeneous of degree 0 in dx. 
If a field of curves is distinguished and 8(x) is tangent to the field 

at x, then X)g**(x> S(x))dxidxk is the line element of a Riemann 
space. The methods of Riemannian geometry are applicable, but the 

8 It is probable that he did not give the matter much thought. The lecture [l] 
was to give him the privilege to teach at the University of Göttingen. The candidate 
had to propose three topics, and the faculty selected one of them. Riemann had put 
the present topic last. He did not expect to work it out and was pressed for time, 
when it was selected. This is evidenced by the following passage from a letter to his 
brother Wilhelm, dated December 8, 1853: . . . und musste dabei drei Thema ta zur 
Probevorlesung vorschlagen, von denen dann die Fakultât eins wâhlt. Die beiden 
ersten hatte ich fertig und hoffte dass man eins davon nehmen wtirde; Gauss aber 
hatte das dritte gewâhlt, so bin ich wieder etwas in der Klemme, da ich dies noch 
ausarbeiten muss. 

8 On the other hand, many results hold without Riemann's condition F(x, dx) 
= .F(a;, — dx). The present lecture supposes, however, that this relation holds. In the 
sequel it will be convenient to use the term line element both for ds = F(x, dx) and 
for ds2. 
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results depend on the choice of the field. For instance, the Gauss-Bonnet 
Theorem has been investigated by Bliss [3 ] from this point of view. 

Finsler was the first who studied the general spaces systematically 
in his thesis [6] written under Carathéodory's guidance. His main 
idea is this: if a curve is given, then a field which contains the curve 
defines a Riemann metric as above. Those results which are inde­
pendent of the choice of the field are the real geometric properties of the 
curve. In this way Finsler succeeded in developing a theory of curves, 
and also the foundations for a theory of surfaces. This is the reason 
why the name Finsler space was generally accepted for the general 
class of spaces first defined by Riemann. 

Then a new line of thought developed in the geometric school at 
Prague with Berwald, Funk, and Winternitz as principle representa­
tives.4 A Finsler space is not considered as a point space but primarily 
as a set of line elements in which a Riemannian metric is associated with 
each line element. The main emphasis in this theory lies on the defini­
tions and properties of parallelism and similar questions. The whole 
development culminated in Cartan's monograph [8], which is con­
sidered to have given the theory of Finsler spaces its final form 
(endgültige Gestalt, see [7, p. l ] ) . 

Under the restriction to use nothing but Riemannian methods it 
may be true tha t the theory has reached its limits. However, as soon 
as this restriction is dropped it appears that the surface has hardly 
been scratched. 

A first, but not the most interesting or decisive, step beyond the 
mentioned results consists in extending the results of Riemannian 
geometry rather than its methods. 

As an example consider the following statement: In a Riemann 
space R with nonpositive curvature there is exactly one geodesic arc 
connecting two points within a given homotopy class. A real geometer 
will be convinced that such a nice geometric property must have a 
simple geometric core which has nothing to do with the Riemannian 
character of the metric. Guided by this conviction he soon finds that 
a Riemann space has nonpositive curvature if and only if in small 
geodesic triangles abc the (shortest) geodesic connection of the mid 
points 6', c' of the sides ab and ac is at most half as long as the third 
side be 

(3) 2b'c' ^ be. 

This inequality makes sense in any Finsler space. If it is assumed 

4 For the rather voluminous literature see the excellent report [7] of Berwald. 
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(locally) then it turns out, see [9], that not only the mentioned 
theorem, but the whole beautiful theory of spaces with nonpositive 
curvature holds as it was developed by Hadamard [lO] and Cartan 
[l l , Note III] . The proofs are, however, quite different, for instance 
properties of convex functions replace the Gauss-Bonnet Theorem. It 
should also be noted that (3) does not pressuppose differentiability 
properties, and that, in fact, the theory holds without them. 

This is only one example among many. Very frequently, when the 
conclusion of a theorem on Riemann spaces is a simple geometric 
fact, the hypothesis can be freed of its Riemannian character and the 
theorem then carries over to Finsler spaces. 

But investigations of this type yield nothing but direct analogs to 
Riemannian results and are not fundamentally new. Poincaré said 
somewhere6 on the subject of generalizations: On ne fait pas un 
grand voyage pour ne trouver que ce qu'on a chez soi. In the case of 
Finsler spaces a long trip will pay, because they are really funda­
mentally different from Riemann spaces. Just now we have reached 
a stage where we begin to understand the problems. 

Let us start with volume and area. The problem how to define these 
concepts was among the first which attracted the attention in Finsler 
spaces. The approach was as follows: 

The volume element of a Riemann space is | gik(x) \1/2 dx\ • • • dxn, 
where |gtfc(x)| is the determinant of the gik(x). We wish to find an 
expression in the derivatives of F(x, dx) which reduces to | g%k(x) |1 /2 

in the Riemannian case. This turns out to be possible in infinitely 
many ways. Consequently there seemed to be many possible defini­
tions of volume, and the problem was considered as fruitless. 

Is this conclusion justified? An unprejudiced attack on the prob­
lem would doubtless begin with the question: Why are the definitions 
of volume and area unique in the Riemannian case? The answer is 
simple, but rests on two fundamental principles which are usually not 
formulated explicitly. Let G be a bounded domain in a Riemann space 
R whose volume is to be determined. Guided by the procedure em­
ployed in integration, we divide G into small domains Gv. In each 
Gv select a point xv and replace g%k(x) in Gv by gik(xv). With this metric 
Gv is euclidean. We know what volume in a euclidean space means. 
Its value for Gv is | gik(x") \ l,2JjQvdxi • • • dxn. By the usual limit 
process of integration we find ffo\gik(x)\ llHx\ • • • dxn as Rieman­
nian volume of G. The principle which underlies this procedure is 
clearly this: A Riemannian metric is locally euclidean. At every point 

5 The author forgot where he saw this remark and was unable to locate it, but 
would be grateful for a reference. 
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the volume element of the space must coincide with the volume element of 
the local geometry. 

Turning to area we observe: If xt(ui, • • • , Uk) — x(u) is a fe-dimen-
sional submanifold M of i?, then the metric R induces on M the 
metric 

da2 = ]£ gik(x(u))—* dujduh = ^yjhiujdujduh. 
ùk.hh àUj dun j,h 

With this metric M becomes a ife-dimensional Riemann space. Its 
volume must be the area of M as manifold in R. This statement is 
based on the principle that area must be intrinsic, that is, depend only 
on the yjh(u). 

We now try to treat volume and area in a Finsler space R with 
line element F(x, dx) by using the same principles. We divide a given 
domain G in R into small domains Gv. In Gv we select a point x". In 
Gv we replace F(x, dx) by F(xp, dx). But there it seems to end, because 
the space with F(xv, dx) = F(dx) as line elements is not euclidean, but 
is a Minkowskian (or finite-dimensional Banach) space S. 

If dx is replaced by x the distance of two points x, y in 5 is given by 

(4) F(y - x) - | y - x\ F(
 y ~ * ) - | y - *| -F(u) 
\ | y - x\J 

where u is a unit vector in the direction of the vector y—x. Therefore 
the Minkowski distance originates from the euclidean distance y—x 
by multiplying it with a factor which depends only on the direction 
of the segment from x to y. The triangle inequality holds because of 
(1). The euclidean segments are also shortest connections for the 
Minkowski metric, and the only ones when the unit sphere F(x) = 1 is 
strictly convex.6 The same Minkowski space can be derived from 
different euclidean spaces (x) in the form (4). All these spaces are 
related by nondegenerated affine transformations and are called 
associated to the Minkowski space, compare [13, §2]. 

Obviously the Minkowski distance (4) is invariant under the trans­
lations x' = x+a. Since these operate in a simply transitive way on 
the space, the theory of Haar measure shows that up to a constant 
factor at most one measure exists which is invariant under the transla­
tions. One such measure is the Lebesgue measure | M |£ of a set M 
in the euclidean space (x) with distance |y—x\. This measure itself 
cannot be used because it depends on the choice of the associated 
space. Thus the question reduces to determining X such that 

For these statements compare [12, § II.l]. 
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| M \n = X | M \n is an acceptable measure in S. 

Several possibilities suggest themselves: the distance F(y—x) or 
one-dimensional measure can be interpreted as follows: The Minkow-
skian unit sphere V: F(x, y) = 1 is convex and has O as center. For 
given points x, y let Z\Z% be the diameter of V parallel to the line xy or 
the intersection a of the line parallel to xy through 0 with the solid 
sphere W: F(x) S1. Then F(z2—zx) = 2 and since (y—x) / \ y—x \ 
« ( * * — * i ) / | * i — * i | 

| y - x\ 2 , 
F(y - x) = -, fF(z2 - Si) = -i r I y - * I 

W 2 

Observing that 2 is the volume of the one-dimensional euclidean unit 
sphere and keeping the principle of intrinsiqueness in mind, we are 
led to the following choice of X: Let N be a set in a ^-dimensional, 
0<k^n, linear space L. Let a ^-dimensional space parallel to L 
through 0 intersect W in the set a and define in analogy with (5) 

(6) tf.-^lffl* O^-V^ + l).» 

On the other hand Hausdorff measure could be used. In fact there 
are two Hausdorff measures : in one definition the set JV is covered by 
spheres of diameter less than e, and in the other by arbitrary sets of 
diameter less than e. The equality of these measures in the euclidean 
case depends on the fact that the sphere maximizes the volume among 
all sets with a given diameter (see, for instance, [13, p. 239]). 

Since the Minkowski spheres also maximize the volume among all 
sets of a given Minkowski diameter [13, pp. 243-246], the two k-
dimensional Hausdorff measures are equal for the above set N. 
What is more, they also yield the value £2*/1 o: | * for X. There are 
other cogent reasons [13, pp. 242, 243] which lead to the same choice 
of X. Consequently, measure in Minkowski spaces is just as uniquely 
determined and therefore as interesting as in euclidean spaces. 

The principle that the volume element of a space at a point must 
coincide with the volume element of the local space then determines 
volume in Finsler spaces. Area is defined by the same procedure as in 

7 So that Uh is the volume of the ^-dimensional euclidean unit sphere. It should be 
shown that | iV| k is independent of the associated metric, but this is contained in what 
follows. 
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Riemann spaces using the principle that area is intrinsic. 
Hence, there is just as little choice for the definition of volume and 

area in Finsler spaces as there is in Riemann space. How could this 
definition then have been missed by others?8 The volume element 
corresponding to (6) is an integro-differential expression, and the 
preconceived idea that it must be a differential expression barred the 
way. 

In order to discover what volume and area in Finsler spaces are, 
Minkowski spaces had to be investigated, just as euclidean geometry 
furnished the clue for Riemann spaces. But euclidean geometry does 
more for Riemann spaces, not only volume and area, but all the basic 
concepts of Riemannian geometry like angle, curvature of curves and 
surfaces are dictated by the corresponding euclidean concepts. Cartan's 
approach to Riemannian geometry in [ l l ] is based on this idea. 
Clearly the step from no geometry to euclidean geometry is incom­
parably much wider than that from euclidean geometry to Rieman­
nian geometry. 

The volume problem makes it more than probable that an analogous 
situation exists for Finsler spaces. Therefore the study of Minkowskian 
geometry ought to be the first and main step, the passage from there to 
general Finsler spaces will be the second and simpler step. 

What has been done in Minkowskian geometry, what are the diffi­
culties and problems, and which tools will be necessary? Little has 
been done, but the field is quite accessible. The main difficulty comes 
from our long euclidean tradition, which makes it hard (at least for 
the author) to get a feeling for the subject and to conjecture the 
right theorems. 

The type of problem which faces us is clear: A Minkowskian geom­
etry admits in general only the translations as motions and not the 
rotations. Since the group of motions is narrower we expect more in­
variants. By passing from euclidean to projective geometry, ellipses, 
parabolas, and hyperbolas become indiscernible. The present case 
presents the much more difficult converse problem, to discern objects 
which have always been considered as identical. 

An example will make this clearer. A sphere V(p, p) in the euclidean 
or Minkowskian space is defined as the locus of those points x whose 
distance px from p equals p. Let W(p, p) denote the set of points x 
with px^p. In the euclidean case the sphere has the following other 

8 Actually Choquet gave this definition in [14], but only as one possibility among 
several, so that the uniqueness properties of this area were not noted, nor are there 
any theorems on this area. I also heard that C. Loewner proposed in conversations the 
use of this area. 
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properties: 
(1) W(p, p) maximizes the volume among all sets of diameter 2p, 
(2) V(p, p) solves the isoperimetric problem. 
(3) Spheres lead to the area A (s) of a convex or sufficiently smooth 

non-convex simple closed surface S bounding a set K through the 
relation 

(7) A(s) = limp-\\Kp\t-\KÙ 

where KP~\JZÇ:K W(X, p). 
(4) V(p, p) is envelope of planes normal to the rays with origin p. 
It was already mentioned that Minkowski spheres have property 

(1) which is decisive for measure theory. But a Minkowski sphere 
does, in general, not solve the isoperimetric problem for the area defined 
above. The solutions are found by applying the Brunn-Minkowski 
theorem, see [IS]. They are homothetic to each other. It is convenient 
to single out one of them T~ T(o, 1), by the requirement that it has 
o as center and that its Minkowski area is n times its Minkowski 
volume.9 

The relation (7) does not hold for the Minkowski area Am(s) of 5 
and the Minkowski spheres W{p, p). However, if T(p, p) denotes the 
surface obtained from T(o, 1) by the dilation x' ~px followed by the 
translation x"=xf+p and W*(p, p) is the closed set bounded by 
T{p, p), then (7) holds in the form 

(8) Am(S)=limp-\\K*p\n-\K\n) 

where 2£* = U*£j?: W*(x, p), see [IS]. 
Thus T(p, p) has two properties of the euclidean sphere. 
Property (4) proves particularly illuminating. A line L in euclidean 

or in Minkowskian geometry is normal to a set M at a point ƒ G M 
if L contains ƒ and every point x of L has ƒ as foot on M, that is, if 
xy^xf for xÇzL and y G M. In euclidean geometry normality of a line 
to a line Lf or a hyperplane H at ƒ implies normality at ƒ of V to L 
or normality to L of every line in H through ƒ. It is well known from 
the calculus of variations (where the word transversality is used) and 
from the theory of Banach spaces that this is not so in Minkowski 
spaces. 

If H is a supporting plane of the Minkowski sphere V(p, p) at a 
point/, then L =*pf is normal to H and to every line in If through/. 

9 The area of the euclidean unit sphere is «Î2». The corresponding relation is not 
true for the Minkowskian V(ot 1) and W(o, 1). 
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Therefore a Minkowski sphere is still envelope of planes to which the 
radii are normal. 

Is it also the envelope of planes normal to the radii? Normality of 
a plane to a line is as yet undefined, but it is easy to see how it can be 
defined. That L is normal to H may be expressed as follows: if Hi, H* 
are any two planes parallel to H, then the segment intercepted by 
Hit H2 on L is not longer than a segment intercepted on any other 
line L* or also: the one-dimensional measure of a set on a straight 
line L* not parallel to H is at least as large as the measure of its pro­
jection parallel to H on L. 

It is then natural to call the hyper plane H normal to the line L if the 
(w —1)-dimensional Minkowski measure (6) of a set in a hyperplane 
Ü* not parallel to L is at least as large as the measure of its projection 
parallel to L on H. 

The existence of a hyperplane normal to a given line L is trivial 
and not very interesting. But the converse question, whether f or a given 
hyperplane H a line L exists to which H is normal, is very interesting, 
since a positive answer implies among other things that hyperplanes are 
minimal (in the sense of area minimizing) surfaces.10 

The question turns out to be equivalent to the following problem 
on convex bodies: Let W be a convex body with center o. For any 
hyperplane H through o lay off on the normal to H at o (in both 
directions) the (w — 1)-dimensional volume |jffnpF|»-i of HC\W. Is 
the locus Y of the points thus obtained a convex surface? 

The answer is positive, but not trivial, unless the proof in [16] can 
be considerably simplified. This whole discussion shows, what should 
have been a truism from the beginning, that the theory of convex bodies 
is one of the essential tools for Finsler spaces. 

Returning to property (4) we ask: what are the envelopes of the 
planes normal to the rays issuing from a fixed point p? They are found 
to be the solutions T(p, p) of the isoperimetric problem. The deeper 
reason for this surprising fact is that for W=* W(o, 1) the above con­
structed surface Y is related to T(o, 1) by a polar reciprocity with 
respect to a euclidean sphere ]£*? = r2 with a suitable radius r>0 . 

Thus property (4) divides into two properties, the spheres V(p, p) 
have one of them and the solution T(p, p) of the isoperimetric problem the 
other. 

If the definition and four properties of euclidean spheres had all 
led to different Minkowskian surfaces, the theory would be too dis­
organized to be interesting. Had they all led to the Minkowski sphere, 

10 These and some of the following statements will be proved in The foundations of 
Minkowskian geometry, which is going to appear in the Comment. Math. Helv. 
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the above quoted aphorism of Poincaré would apply. The fact that 
just two surfaces emerged seems to promise an interesting future. 

The properties of Minkowskian geometry hitherto discussed are of 
the most primitive nature. This reflects the actual state of the theory, 
with one exception: the differential geometric results connected with the 
sphere as carrier of the spherical image have been extended to Minkowski 
spaces in so-called relative differential geometry. Since this branch is 
almost unknown in America, a digression on its origin and nature 
may be useful. Minkowski [17, §24] observed that (7) yields 

(9) A(S) = nV^K, W(o, 1)) 

where F*(Li, L2) denotes generally the mixed volume of n—i times 
the convex body L\ and i times the convex body L2 (compare [19, 
§§29 and 30]). Guided by (9) he defined [17, §27] for an arbitrary 
convex body L 

AL(S) = nV^K, L) 

as area of S relative to L. Minkowski showed moreover [18, §4] 
that the mixed volumes Vt(K, W(o, 1)) are in E3 closely related to the 
elementary symmetric functions of the principle radii of curvature 
of 5, and that similar statements apply to Vi(K, L). This theory was 
continued by others, in particular extended to En (see [19, §38]). 
Thus a differential geometry relative to L was developed.11 

It was not recognized that its results contribute to Minkowskian 
geometry because they do not yield theorems on the Minkowski 
geometry Vît with V(o, 1) as unit sphere if applied to W(o, 1) as L. 
However (8) shows that 

Am(S) = nVx{K, T). 

Therefore the differential geometry relative to T belongs to Vît. 
A typical result, contained in Duschek [20] and derived under the 

usual unspecified differentiability assumptions of differential geom­
etry, is the following: 

Map a given surface S in a three-dimensional Minkowski space on 
T by associating points x of S and x' of T where the tangent planes 
are parallel. At any point x of S there are exactly two directions di, d* 
which are parallel to the corresponding directions 8i, S2 at #', so that, 
corresponding to the formula of Olindes Rodrigues in ordinary differ­
ential geometry, diX — RibiXr. The Ri do not depend on the associated 
euclidean metric and have therefore a Minkowskian meaning. 

11A complete list of the literature until 1934 is found in [19, p. 65]. 
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Duschek shows that several of the usual interpretations of Ri can be 
extended to the present case and proves moreover: S is a minimal 
surface, tha t is, the first variation of the Minkowski area of 5 vanishes, 
if and only if j R f 1 + R 2 1 = 0. 

Reassuring as these results are, they bypass technically simpler, 
but much more basic, questions which ought to be answered first. 
The first theorem of ordinary differential geometry is the statement 
that the curvature determines a plane curve. More explicitly: if 
P(s)> P'(s)i o^s^cx, are arcs in E2 with the arclength 5 as parameter 
and equal curvature for equal s, then a motion of E2 exists which 
carries p{s) into p'(s) for o^s^a. In E2 this is equivalent to 

(10) P(si)p(s2) = pf(si)p'{s2) for o^Si^ a. 

In a Minkowski plane the relation (10) may hold for arcs for which 
no motion of the plane exists which carries p(s) into p'(s). 

The first problem of Minkowskian differential geometry is therefore, 
clearly, to discuss the meaning of the statement that an arc is determined, 
and then to find curvature functions which determine the arc in some 
sense, for instance (10). But the problem has never been treated.12 

This confirms that in spite of all the work on Finsler spaces we are 
now at a stage which corresponds to the very beginning in the de­
velopment of ordinary differential geometry. Therefore the mathe­
matician who likes special problems has the field. After sufficiently 
many special results have been accumulated someone will create the 
appropriate tools. At the present time it is difficult to guess what 
they will be beyond a vague feeling that some theory of integro-
differential invariants will be essential. 
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