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In this note a constructive criterion for the existence of a Euclidean 
algorithm within a given integral domain is derived, and from among 
the different possible Euclidean algorithms in an integral domain one 
is singled out. The same is done for "transfinite" Euclidean algo­
rithms. The criterion obtained is applied to some special rings, in 
particular rings of quadratic integers. By an example it is shown 
that there exist principal ideal rings with no Euclidean algorithm. 
Finally, different sets of axioms for the Euclidean algorithm and 
related notions are compared, and the possible implications for the 
classification of principal ideal rings, and other integral domains, 
indicated. 

The question of the relationship between different Euclidean 
algorithms in the same integral domain was raised (orally) by O. 
Zariski. 

1. The derived sets. Let Q be an integral domain. A subset P of 
Q — 0 (Q except zero) shall be called a product ideal if P(Q — 0)QP. 

For any subset S of Q, the set B of all b in Q for which there exists 
an a in Q such that a+bQQS is called the total derived set of S, and 
the intersection Bl^iS is called the derived set S'. With S also S' is a 
product ideal. If SiQS, then S{ QS'. 

A Euclidean algorithm (or process) is given by a norm | a | defined 
in Q —0, with positive integral (or zero) values and such that \a\ 
è | & | for b dividing a and that for any b in Q — 0 and any a not 
divisible by b there exist q and r in Q satisfying a = qb+rt \r\ <\b\. 

Let Pit i = 0, 1, 2, • • • , be the set of all b in Q with \b\ ^i. Ob­
viously Pi is a product ideal. For any b in P{, let a be an element 
with a+bQQPi, whence a — bq^O and (for any r~a — bq with 
| H < M ) \r\=i> | & | è * + l ; we see that P!QPi+1. Conversely, 
given a sequence Q —0 = P o 2 - P i 2 • • • of product ideals with empty 
intersection CiPi such that Pi QPi+i, the norm defined by \b\ —i for 
every b in Pi — Pi+i will fulfil the conditions for a Euclidean algo­
rithm. Hence there is a one-one correspondence between sequences of 
this kind and Euclidean algorithms. 

If for another Euclidean algorithm, with the sequence Pt-, always 
PiQ7i, we say that the first algorithm is the faster one (under cer-
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tain additional conditions, indeed less algorithm steps are needed). 
If there exists a t all a Euclidean algorithm in Q, then there exists a 

fastest Euclidean algorithm defined by the sequence Po, Pi, Pi', • • •. 
Hence the emptiness of the intersection OP™ is a criterion (n.a.s.c.) for 
the existence of a Euclidean algorithm in Q, 

Any sequence (Pi) as above may be changed to a new sequence 
Pi, • • • , Pi-u Pi* Pi » Pi' » • • • » where Pi is a product ideal with 
P i - i 2 P t Q ( P z - i ) ' , so (besides the trivial repetition of identical 
product ideals) there always exist, if any, different Euclidean algo­
rithms except if there are no product ideals between any Pff and 
p(i+i) 

2. Generalization. These considerations may be generalized as 
follows. Let a tea (transfinite Euclidean algorithm) be an algorithm as 
before but where (1) we allow \b\ to take any ordinal numbers as 
values; (2) we do not require \a\ è |&| for 6 dividing a. Then it is 
seen in the usual way that the existence of a tea implies that Q is a 
principal ideal ring. 

Further, such a tea determines, and is determined by, a transfinite 
sequence Sx, O ^ X ^ J U , of subsets of Q-0 with (1) Sx 'CSx+i, (2) 
S\QS\-i, but S\~C\Si, i<\, if X —1 does not exist, (3) empty S^. 

Defining "faster" as before there is again a fastest tea given by 
P<X), where S™ is defined as (S<*-i>)' or ns<*>, i<\. 

Hence the criterion for the existence of a tea is the emptiness of some 
PoW. 

For the fastest tea the sequence consists of product ideals, so that 
the monotonity condition \a\ à \b\ for b dividing a is automatically 
fulfilled. 

If no PQX) vanishes then there is no tea. If Q is not a principal ideal 
ring this is certainly so, but even for a principal ideal ring the constant 
PoM) (which is the largest subset S of Q with 5 = 5 ' , and therefore 
never a principal ideal) may not be empty, as shown by some of the 
following examples. 

3. Examples. The derived set S' of a given set S may also be de­
fined as the set obtained from S by exemption of all b such that for 
every a, b divides some a+c with c not in S. In particular Pi is the 
set of all non-units except 0. Now call a non-unit by^Q a side divisor 
of a if b divides some a+e, where e is a unit or 0. Then Pi' is obtained 
from Po by exemption of the universal side divisors, that is, of those 
elements b which are side divisors of every a in Q, or equivalently for 
which there is a unit, or 0, in every residue class mod b. Such an 
element is obviously prime; the principal ideal (b) must even be 
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maximal. If no universal side divisors exist, then P0" =PÓ, and there 
is, except for the trivial case of a field, no tea in Q. 

For the ring of rational integers, Q—P& has three elements 0, 
± 1 . Hence the universal side divisors are ± 2 and ± 3 , and Q—P" 
contains all c with \c\ <2 2 . By induction, b is in P£° if and only if 
\b\ ^2*. The fastest Euclidean algorithm is given by a = bq+r with 
minimal \r\ (in a fixed algorithm q and r need not be unique). 

P" = P0 ' holds f or the algebraic integers of every quadratic number 
field with negative discriminant d except — 1 , —2, —3, — 7, —11. This 
can be seen as follows. I t is well known that the above integers are 
the numbers ƒ+gd1/2, where ƒ and g denote arbitrary rational integers, 
and in addition, if 4 divides d — 1 , the numbers ƒ + 1 / 2 + (g+1/2)^1/2 . 
I t follows easily that , except for the five stated values of d, 2 and 3 are 
irreducible and ± 1 the only units, so that the only side divisors of 
2 are ± 2 , ± 3 ; but these are not side divisors of ( l+d 1 / 2 ) /2 , and if 
this is not an integer, of d112. Hence there are no universal side di­
visors. For the excepted values of d there are respectively 12, 4, 24, 
4, 4 universal side divisors, among which all the 22 non-real quadratic 
integers b with l<bh^3 occur. (Dedekind [2, Supplement XI , §159 
(4th éd., 1894, p. 451) J1 stated that the usual norm gives no Eu­
clidean algorithm for the principal ideal ring belonging to d= —19. 
Hasse [4, p. 11 ] asked whether a Euclidean algorithm might be ob­
tained by another norm, retaining the multiplicativity condition 
\ab\ = | a | |&|. We see that this is not the case, even without this 
condition and allowing ordinal numbers as norm values. Hence we 
have an example of a principal ideal ring with no Euclidean algorithm. 
The given result for arbitrary negative discriminant generalizes, and 
contains a new proof of, the similar result of Dickson [3, pp. 150-151] 
for the usual norm. For this norm and positive discriminant the 
question is not entirely solved, see Chatland [ l ] , with further ref­
erences.) 

We have also P" = Po for the ring of all polynomials, or power 
series, of one variable over an integral domain that is not a field. 
Likewise, for a valuation ring with no smallest positive value, 
P 0 " = P o . If a smallest positive value v exists, then Pj° is the set of 
all elements whose value is a t least i, and Pj* )=Pjw + 1 ) . In particular 
for the power series of one variable over a field, PQ')=0. Similarly 
for the polynomials of one variable over a field, P$° is the set of all 
polynomials of degree not less than i. This is a special case of the 
next example. 

1 Numbers in brackets refer to the references cited at the end of the paper. 
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4. Quotient rings. If, within the affine space over an algebraically 
closed field K of arbitrary characteristic, C is a rational curve with no 
singular point at finite distance, then the ring of all rational func­
tions on C with no poles at finite distance is a principal ideal ring (for 
example, since we shall see that it has a Euclidean algorithm). The 
ring consists of all those rational functions with coefficients in K, of a 
parameter t of the curve, whose poles belong to a given finite set 
(h, • • • , tu). Subjecting t, if necessary, to a broken linear trans­
formation, we may suppose /1 = 00. In this case P ( i ) is the set of all 
the functions in the ring that have at least i zeros (with due counting 
of multiplicities) outside (fc, • • • , /&)• Indeed, define \a\ accordingly 
as the number of zeros of a outside (h, • • • , * * ) ; to prove that 
I a — bq\ <\b\ can be solved we may (multiplying both by a poly­
nomial c with \c\ = 0) suppose that a and b are polynomials and 
(shifting other factors of b to q) that b has no zero in (h, • • • , tk), 
in which case the usual polynomial q will do. And obviously, since 
for | # i | < | & | , | a 2 | < | ô | , aiT^az, never a% — a^ — bq, no faster Eu­
clidean algorithm exists. 

Similarly a tea may be defined in any quotient ring of an integral 
domain with a given tea by letting | a\ be the smallest value of | am/n\ 
in the original ring, where m and n are elements of a fixed multiplica-
tively closed set of denominators that yields the quotient ring con­
sidered. 

5. Related notions. If we modify the definition of the derived set 
by demanding the existence of an a (not divisible by b) such that 
aM+bNQ(St 0), where M and N are given subsets of Q (for in­
stance, the set 0, ± 1 , ± 2 , • • • ) , we obtain sequences of subsets quite 
similar to those obtained before, which contract the faster the larger 
the sets M and N are. Here too P 0 is the set of non-units except 0. For 
M = N=Q and if Q is a principal ideal ring, P™ is the set of all ele­
ments that are products of at least i primes, so Pjw) = 0; the cor­
responding (multiplicative) norm being 7* with fixed 7 > 1 . 

Comparing the strength of different notions similar to the usual 
Euclidean algorithm, we may consider an algorithm (J, k, /), where 
j = l means that the norm shall be a positive integer, j = 2 that it be 
within a set of real positive numbers with no limit point except 00, 
7 = 3 that it be an ordinal number; k = 1 that | ab\ == | a\ \ b\, k = 2 that 
I a I ^ I b\ f or & dividing a, k = 3 no such condition; / = 1 that, for any 
&T^0 and a not divisible by &, there exists some q with 10 — &g| < | b\, 
1 = 2 that, in the only relevant case \a\ ^ | b\, there only need exist m 
and q with | a m — bq\ <\b\ and m prime to b (that is, b shall divide 
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mn only if it divides n), / = 3 the same, demanding only \am — bq\ 
< | a | , / = 4 again demanding that \am — bq\ <\b\, but with no re­
striction for tn. So I determines the stepping down condition char­
acteristic for the "descente infinie" application of Euclidean algo­
rithms. We exclude the case j==3, & = 1. 

Then the existence of any algorithm (j, k, I) clearly implies that 
the integral domain Q is a principal ideal ring. It is easily seen that in 
every principal ideal ring the before mentioned norm 7* fulfils (1,1,2) 
(see, for example, [4, pp. 7-8]), so that every combination with / > 1 
gives a n.a.s.c. for principal ideal rings. On the other hand, even the 
weakest condition with Z = l, which is (3, 3, 1), is not always fulfilled 
in principal ideal rings, as we have shown; and (3, 3, 1) is equivalent 
to (3, 2,1), (2 ,3, 1) is equivalent to (2, 2,1), (1, 3, l ) , and (1,2,1), and 
finally (2, 1, 1) to (1, 1, 1), while it remains open whether these 
three sets of conditions are really of different strength. 

A further classification of integral domains may be made according 
to the number y of §2, or by (M, iV)-stepping down conditions. Thus 
the fact that (1, 1, 3) is fulfilled for M = ( l ) , iV = ( ± l ) in the ring of 
rational integers is the essence of the simple Kronecker-Zermelo 
proof [4, p. 3] of unique decomposition into primes. For a similar, still 
weaker condition than / = 4 characterizing integral domains with 
unique decomposition into primes, see Krull [5, pp. 107-108]; also 
with respect to that condition derived sets may be defined and inte­
gral domains grouped according to whether the constant P(li) is or is 
not empty, and according to p. 
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