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1. Introduction. Let Q be the unit square O g ^ ^ l , O ^ T J ^ I , in 
the uv-plane {u, v are Cartesian coordinates), and let x(u, v), y{u, v) 
be real-valued continuous functions in Q. These functions determine 
a continuous mapping T: x = x{u, v), y — y{u, v), {uy v)Ç.Qy from Q 
into the :ry-plane, where x, y are again Cartesian coordinates. If we 
introduce, for convenience, the complex variables w = u+iv, z — x+iy, 
then T appears in the form 

(1) T: z=*f(w), wGQ, 

where f{w) = x{u, v)-\-iy{u, v). In connection with various problems 
in geometry and in analysis, there arises the problem of defining the 
concepts of bounded variation and of absolute continuity for continuous 
mappings T given as in (1). A detailed review of the extensive rele­
vant literature may be found in Chapter IV.5 of the writer's book 
Length and area. This book will be referred to as LA, and will be used 
as general reference both for technical details and for literature. The 
present note is concerned with a line of thought that led to the con­
cepts eBV {essential bounded variation) and eAC {essential absolute 
continuity). The theory of these concepts, as presented in LA, is based 
on the work of the writer and P. V. Reichelderfer. During the war 
years, Cesari in Italy developed an analogous theory based on ap­
parently different basic concepts. However, as the writer has shown 
(see Bibliography [2]), the basic concepts used by Cesari are equiva­
lent to those used in LA (see Bibliography). Thus the theories de­
veloped in LA and in the work of Cesari respectively can be com­
bined into a single theory whose aim it is to provide two-dimensional 
concepts of bounded variation and absolute continuity comparable 
in scope and in utility to the corresponding classical one-dimensional 
concepts for functions of a single real variable. The present status of 
the theory seems to justify the assumption that the two-dimensional 
concepts eBV and eAC (see above) represent adequate generaliza­
tions of the corresponding one-dimensional concepts. However, it 
seems desirable to put the definitions of the two-dimensional concepts 
into a form which reveals the fundamental analogy with the one-
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dimensional concepts as clearly as possible. The purpose of the 
present note is to make a contribution in this direction for the concept 
eAC. 

2. The one-dimensional situation. Let / denote the unit interval 
O ^ w ^ l o n a w-axis, and let 

(2) T: * = ƒ ( « ) , uei, 

be a continuous mapping from I into a (real) x-axis. Naturally, T is 
then termed BV (of bounded variation) or AC (absolutely continu­
ous) if and only if the function f(u) is BV or AC respectively. How­
ever, the geometrical picture yields an important re-wording as fol­
lows. Let us define a multiplicity function N(x) by the agreement: for 
— oo < x 0 < + oo, N(xo) is equal to the number (possibly infinite) of 
those points « £ ƒ that are mapped by T into Xo. The following facts 
are well known. 

(a) T is BV if and only if N(x) is summable. 
(b) If T is BV, then it is AC if and only if for every set E of meas­

ure zero in I the image set T(E) is also of measure zero. 

3. The two-dimensional situation. In dealing with the two-dimen­
sional situation, we shall use LA as a reference. However, in LA a 
more general situation is considered, namely the case where the map­
ping T operates from a general bounded domain. In the special case 
considered in this note, the domain is taken as the interior of the unit 
square Q, and T is assumed to be defined and continuous on the 
perimeter also. These restrictions are made only to simplify the pres­
entation, and our main result is readily seen to remain valid in the 
general case considered in LA. 

Given T as in (1), there is associated with T an essential multipli­
city junction K(Z, T, Q) (see LA, IV. 1.4). Furthermore, with each 
point z there is associated a class (possibly empty or infinite) of con­
tinua in the interior Q° of Qy namely the class of the essential maximal 
model continua (abbreviated to e.m.m.c.) of z under T in Q (see 
LA IV. 1.27). As a matter of fact, K(Z, T, Q) is equal to the number 
of the e.m.m.c.'s of z (see LA IV. 1.39). The sum of all the e.m.m.c.'s, 
corresponding to all the points z, is the complete essential set £*, while 
the restricted essential set £ is the sum of all those e.m.m.c.'s that 
reduce to single points (see LA IV. 1.56). Both £* and 6 are Borel sets 
(see LA IV.1.58, IV.1.59). In analogy with the statements (a), (b) 
in §2 above, we have the following statements in the two-dimensional 
case. 

(a) The mapping T, given as in (1), is eB V if and only if the essen-
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tial multiplicity f unction K{Z, T, D) is summable. 
(b) If T is eB V, then it is eA C if and only if for every set E of meas­

ure zero in the complete essential set 6* the image set T(E) is also of 
measure zero. 

The statement (a) is in fact the definition of the concept eBV (see 
LA, IV.4.1). The statement (b) is the new result that we propose to 
prove in the present note. 

4. Background. In an interesting paper on absolutely continuous 
mappings, L. Giuliano (see Bibliography [l]) established the fol­
lowing facts: If the mapping T, given as in (1), is eBV and maps 
subsets of measure zero of Q° into sets of measure zero, then T is 
eAC. However, examples show that this condition is not necessary 
for T to be eAC. 

Thus it would seem that the characterization (b) of AC mappings 
in the one-dimensional case (see §2) admits of no analogue for the 
two-dimensional eAC concept. And yet, our theorem (b) in §3 re­
veals a fundamental analogy. This theorem also reveals the im­
portance of the complete essential set £*. The basic importance of 
the complete essential set £*, as against the restricted essential set 6, 
was first recognized by P. V. Reichelderfer (see Bibliography [3]). 

5. Proof of the theorem. Necessity, Suppose that JT, given as in 
(1), is eAC. By definition (see LA IV.4.1) T is then AC6* (see LA 
IV.2.39). Hence, by LA IV.2.42, for every set E of measure zero in 
6* the image set T(E) is of measure zero. 

Sufficiency. Suppose that T, given as in (1), satisfies the following 
conditions. 

(i) T i s eBV (see LA IV.4.1). 
(ii) For every set E of measure zero in £*, the image set T(E) is 

of measure zero. 
We have to show that T is then eAC. To this end, we verify the 

following fact. 
(iii) T is BV£* (see LA IV.2.11). 
Indeed, by LA IV.4.1, IV.2.42, the statements (ii) and (iii) imply 

that T is eAC, and hence it is sufficient to verify (iii). Now, by 
LA IV.2.13, the statement (iii) is equivalent to the following fact. 

(iv) the function N(z, 6*) is summable (where N(z, £*) is the 
number, possibly infinite, of those points wÇ:&* whose image under T 
is z). 

To establish (iv), we note that by assumption (i) the essential 
multiplicity function K(Z, JT, Q) is summable (see LA IV.4.1). Hence 
(iv) will be proved if we can prove the following fact. 
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(v) N(z, £*) = K(Z, T, Q) a.e. (almost everywhere) in the £-plane. 
To establish (v), let us denote for O^r^ 1, r rational, by E} the in­

tersection of 6* with the line u — r, and by EÏ' the intersection of £* 
with the line v = r. Then E'r, for fixed r, is a set of measure zero in 
£*, and hence by (ii) the image set T{E'r ) is of measure zero. Similarly 
the image set T(E!>') is of measure zero. Let us denote by ë the set 
of those points z where K(Z, T, Q) = <*>. Since K(Z, T, Q) is summable, 
è is of measure zero. Let us put 

(3) Ê = a + E r(£r') + £ r(Er"), 
r r 

where the summations are extended over all rational numbers r 
such that 0 O < l . Obviously 

(4) | E | = 0 , 

where | JE | denotes the measure of E. Now take any point ZoQE. 
Then ZoQe, and hence fc(so, T, Q)=ko is finite. Furthermore, if CQ 
is any e.m.m.c. of z0, then by the definition of E it follows that c0 

does not intersect any one of the lines u = r or v = r, where r is any 
rational number such that 0 < r < l . Hence Co must reduce to a single 
point. It follows that N(z0, £*) =k0 = K(z0, T, Q) (cf. LA IV.1.39). 
Hence 

(5) N(z, £*) = K(Z, T, Q) for z 6 E. 

Clearly (4) and (5) imply (v), and thus the proof of our theorem (b) 
in §3 is complete. 
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