
ON FIBERING SPHERES BY TORUSES 

B. ECKMANN, H. SAMELSON AND G. W. WHITEHEAD 

1. Introduction. In this note we answer a question which was 
recently asked by H. Hopf, namely whether there exist fiber decom­
positions of the w-dimensional sphere Sn, or of the ^-dimensional 
Euclidean space En, with an ^-dimensional torus T8 (the product of 
s factors S1) as fiber. The answers are given in Theorems 1 and 2 be­
low. The fiber decompositions are understood in the sense of fiber 
bundle [ l ] , 1 with the group of all homeomorphisms as structure 
group, that is, we are given three spaces X, F and M (the bundle, 
the fiber and the base space), and a map $:X—>itf, the projection; 
and for every point p of M there is given a neighborhood Vp of p 
and a homeomorphism of <t>~"1(Vp) with the product VPXF, such 
that 4>~l(q) is mapped onto qXF for every'point qÇzVp. The sets 
<t>~l(p) are called the fibers. 

2. Results. We now consider the case where X is either Sn or 
En (n>0), and where F is T8 (s>0). We shall establish the following 
results: 

THEOREM 1. A fiber decomposition (in the sense of §1), with a (locally 
finite) polyhedron as base space, of the n-sphere Sn with the s-torus T8 

as fiber exists if and only if n is odd and s = 1. 

THEOREM 2. For no n and s does there exist a fiber decomposition (in 
the sense of §1), with a (locally finite) polyhedron as base space, of 
Euclidean n-space En with the s-torus T8 as fiber. 

REMARK. We show in §7 (a) that Theorem 1 holds also if arbitrary 
separable metric spaces (instead of polyhedra only) are admitted as 
base spaces. The corresponding statement for Theorem 2 can be made 
only modulo a theorem concerning singular homology groups, which 
is probably true, but for which, as far as the authors are aware, there 
is no proof in the literature. 

We note for the if part of Theorem 1 that there exists a well known 
fiber decomposition of S2l+1 with circles T1 as fiber; the base space is 
the complex projective space Kl (of dimension 21) (see [2, p. 55]). 

The proofs of Theorems 1 and 2 are based on the consideration of 
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homotopy groups and singular homology groups and their connec­
tions, in particular on the results of Hurewicz-Steenrod [3], Eckmann 
[4] and Eilenberg-MacLane [5]. 

3. Homotopy groups. Let (X , F, M, </>) be a fiber bundle as in §1. 
With a fixed fiber F0 and base point q0 in F0 we form the absolute 
homotopy groups 7r^(X, q0) or in short irk{X)y and the relative homot­
opy groups TTk{Xy Fo> qo) or in short 7r^(X, F0); we set up the homot­
opy sequence of X mod F0 [6, p. 463] : 

• • • irjb(Fo, qo) —> Vh(X, q0) -» Tk(X, F0, q0) -* vk-i(F0l q0) 

— > . . . — > 7Ti(X, Ço). 

This is an exact sequence; the kernel of each homômorphism is the 
image under the preceding homômorphism. Furthermore, from Steen­
rode results in [l, Theorem 9, p. 302] on the existence of a covering 
homotopy in fiber bundles, and from the reasoning of [3, Theorem 2], 
or from [4, p. 162, (4)], it follows that the groups of X mod FQ and 
the absolute groups of M are isomorphic (we put po =<t>(qo)) : 

(2) 7Tfc(M, po) « Tk(X, F 0 , q0). 

We now consider the special case of Theorem 1 and assume F=T* 
and X = Sn (for the time being we make the restriction n>2)\ we 
denote the base space by M\ (by hypothesis, M± is a polyhedron). 
The first step in the proof of Theorem 1 is the determination, in 
equations (5), of the homotopy groups of M± up to dimension n — 1. 

Let Zj stand for the free abelian group of j generators. The follow­
ing facts are well known : 

w
 Tjb(r-) = 0 for* T M ; 

(4) Tk(S
n) = 0 for 0 < k < n. 

The connectedness of T8 implies that TI(MI) vanishes: every closed 
path in Mi is, by the covering homotopy theorem, image of a path 
in Sn with initial and terminal point in the same fiber, and therefore 
also image of a closed path in Sn; moreover iri(Sn) vanishes. For 
2^k<n it follows from the exactness of (1) and from (4) that the 
groups <7Tfc(5w, TQ) and 7Tk-i(T8) are isomorphic (if in a "section of 
length 4" in an exact sequence the two outer groups vanish, then the 
two inner groups are isomorphic, cf [7, p. 687]). By (2), the groups 
7TA,(5n, TQ) and 7r&(Mi) are isomorphic. It follows that irk(Mi) and 
7Tfc_i(rs) are isomorphic for 2^k<n; in view of (3) we can therefore 
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state the following equations : 

wk(Mi) = 0 for 0 < k < n, k y* 2, 

7T2(Ml) = Z8. 

4. Homology groups. Let Hl be the ith singular integral homology 
group, and let 2*' be the subgroup of spherical cycles. To prove our 
Theorems 1 and 2 we shall make use of Theorem IIm of Eilenberg-
MacLane [5] which says: If X is a space such that 7r»(X)=0 for 
i<m and m<i<n (m<n) then Hl(X)y for i<n, and Hn(X)f2n{X) 
are determined by the structure of the group irm{X)\ our equations 
(5) show that this theorem is applicable to the space Mi with m = 2. 
In order to compute the groups Hl{Mi), i<n, and Hn(ikfi)/2n(Afi), 
we use a geometrical method; we construct a space P whose 
homotopy groups Ti(P) for i<n are isomorphic with the correspond­
ing groups of Mi, and whose homology groups are known; by the 
theorem just mentioned the groups of Mi will be isomorphic to those 
of P , for the appropriate dimensions. The space P is defined as the 
topological product of s complex projective spaces Kl, with I suffi­
ciently large, for example, l>n. For the homotopy groups of Kl the 
following relations are known : 

(6) T2(K
1) = Zi; Wi(Kl) = 0, 0 < i < 21 + 1, i ^ 2. 

These relations are immediate consequences of equation (5), for 
n = 2l+l and 5 = 1, since, as mentioned in §2, Kl is the base space of 
a fiber decomposition of S2l+1 with fiber T1. The homotopy groups of 
a topological product are the direct sums of the homotopy groups of 
the factors ; the relations 

(7) Ti(P) « 7Ti(Mi), 0 < i < n 

follow then from (5) and (6). 
The homology groups of Kl are given by the equations [8, p. 83]: 

(8) E2k{Kl) = Zi, for 0 S k ^ Z; H^'^K1) = H2l+k(Kl) = Ofor k > 0. 

The subgroups of spherical cycles are given by 

(9) 2 2 ( # 0 = H2(Kl); 2 ^ 0 = 0, i ^ 2 , 

as can be seen easily from (6) and from the fact that the generators of 
H2(Kl) and of ir^K1) are both given by the subspace Kl of Kl. The 
homology groups of P can now be found from (8) by Künneth's 
theorem; we note that all groups of odd dimensions vanish, that the 
groups of even dimensions (not greater than dim P) do not vanish, 
and that nonbounding spherical cycles exist only in dimension 2 : 
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H2t-l(P) = 0, t > 0; H2t(P) ^0îox0^t^2~1 dim P ; 
(10) 

2<(P) = 0 for/ 3^2. 

5. Proof of Theorem 1. As noted above, equations (5) and (7) make 
it possible to apply Theorem IIm of [5] with m = 2; the following rela­
tions between the homology groups of Mi and P hold therefore : 

(11) H*(Mi) « ff*(P)forO gi<n; Hn(Mi)/?n(Mi) « Hn(P)/2n(P). 

This amounts to a partial determination of the homology groups of 
Mi. On the other hand, the homology groups of Mi vanish for dimen­
sions above n — s: since every point p of Mi has a neighborhood V 
such that VXT8 is homeomorphic with the open subset <jrl(V) of 
En it is clear that the dimension of the polyhedron Mi is n — s, and 
therefore the homology groups in higher dimensions vanish. We state 
the equation: 

(12) H*(Mi) = 0 fori>n-s. 

Theorem 1 follows now quickly from the properties of the homology 
groups of Mh given by (10), (11), (12): 

By equation (12), the group Hn(Mi) vanishes. From (11) we see 
that therefore the subgroup 2)n(P) equals the whole group Hn(P). 
Comparing this with (10) we conclude that n must be odd, since ob­
viously w<dim P (notice that we assumed n>2). But then Hn~l{P) 
does not vanish, again by (10). By (11) Hn"x{Mi) does not vanish; 
by (12) we have n — l^n — s; it follows that s = 1. This concludes the 
proof of Theorem 1 for n>2. For n = 2 the only case of interest is 
s — 1; it is easily seen that then the Jordan curve theorem for S2 

would imply that every point of the compactum Mi is a cut point, 
which is impossible [9, p. 54]. For n = l there is nothing to prove. 

6. Proof of Theorem 2. We now assume that we have a fiber de­
composition of En (n > 0) with fiber T* (s > 0) ; we denote the base space 
by Mi\ by hypothesis, M% is a polyhedron. The reasoning which leads 
to a contradiction is similar to that of §5. Equation (4) is replaced by 

(40 *•*(£») = 0 , k > 0. 

7Ti(ikf2) vanishes, for the same reason as TI(MI). The exactness of (1), 
and (4') show now that irk(E

n, TQ) and wjc-i(To) are isomorphic for all 
&^2. We find, therefore, applying (2) and (3), 

(50 7r2(M2) = Z9, wkiMt) = 0 for k ^ 2. 

We again consider the comparison space P , the product of s factors 
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Kl, with l>n. From (5') and (6) it follows, as in §4, that 

(70 Ti(P) « Vi(M2) îovi<2l+l; 

Theorem II m of [5], which applies again with m = 2 because of (5') 
and (7r), shows that 

(110 E*(P) « Hi(M2) for % < 21 + 1. 

By the reasoning which we used to establish (12), we see that the 
dimension of Mi is n — s and that the homology groups in dimensions 
above n — s vanish : 

(120 #*(M2) = 0 for i > n - s. 

We now choose an even i0 with n — s<io<2l-\-l; this is possible 
since l>n; from (10) we see that HiQ(P) does not vanish, but H^{M^) 
vanishes because of (120. This contradiction establishes Theorem 2. 

7. Remarks, (a) I t would be desirable to prove Theorems 1 and 2 
with arbitrary separable metric spaces (and not only polyhedra) as 
admissible base spaces for the fiber decompositions. Now the only 
point where the polyhedral character of M\ and M2 has been made use 
of is in establishing equation (12) and (120- We shall show how to 
derive (12), and so to prove Theorem 1, if Mi is assumed to be only 
separable metric: Mi is compact, as image of Sn. Consider a neigh­
borhood Vp of a point £ £ M i , for which VPXTS is homeomorphic 
with <t>"1(Vp)t under a homeomorphism h. Since T8 is a product of 
one-dimensional factors, it follows from a theorem of Hurewicz [lO] 
that Vp, and therefore Mi, is of dimension n — s. In addition, Mi is 
locally contractible: Consider an arbitrary t(E:T8\ then h(VpXt) is a 
set in Sn which is mapped by <£ homeomorphically onto Vp. Consider 
a small spherical neighborhood U of h(pXt), contained in ^(Vp), 
and let W= UT\h(VpXt). Then 4>(W) is a neighborhood of p, con­
tained in Vp. The set W is obviously contractible in U, and <j> maps 
the contraction of IF into a contraction of <£( W), taking place in <£(£/), 
and so in Vp. I t follows that the singular groups of Mi are isomorphic 
with the Cech groups of Mi (cf. [ i l , p. 107]), and so they vanish in 
dimensions above that of Mi. We have found: 

(12") H'(Af 1) = 0 for i > n - s, 

and as noted above, this suffices to prove Theorem 1 under the 
weakened hypothesis. In the case of Theorem 2, assuming M2 separa­
ble metric only, one sees, by the same reasoning as above, that M2 is 
locally compact, locally contractible, and of dimension n—s. In order 
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to establish equation (12') (and with it Theorem 2 under the weak­
ened hypothesis) one would have to have a theorem to the effect 
that in a separable metric, locally compact, locally contractible space 
the singular homology groups and the compact Cech groups are 
isomorphic, and so vanish for dimensions above the dimension of the 
space. 

(b) Theorem 2 verifies in a special case the conjecture that En can­
not be fibered with any compact fiber (cf. [12; 13]). 

(c) Theorem 1 gives a topological proof for the fact (which is useful 
in determining which spheres are group manifolds (cf. [14])): If a 
sphere is a Lie group then its rank is 1. The rank is the dimension of 
a maximal abelian subgroup; such a subgroup is homeomorphic with 
a torus T\ and the cosets of the subgroup give a fiber decomposition 
of the group. 
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