REMARKS ON CYCLIC ADDITIVITY

J. W. T. YOUNGS1

1. Introduction. For the purposes of this discussion suppose that X and Y are topological spaces while G is a commutative, topological semi-group (with zero element) which, as a space, is Hausdorff. In other words, each pair (g_1, g_2) of elements in G uniquely determines an element (g_1+g_2) in G; the operation + is associative and commutative; there is a unique element 0 such that $g \in G$ implies g+0=g; finally, G is a Hausdorf space and the operation + provides a mapping (=continuous transformation) from the product space $G \times G$ into G. Obviously, topological groups, and the space of non-negative real numbers compactified by the addition of ∞ , with the operation + meaning addition, and the convention that $a+\infty=\infty+a=\infty$, provide examples of such semi-groups.

It will be said that lm is a Peanian factorization of a mapping $f: X \rightarrow Y$ if and only if there are mappings $m: X \rightarrow \mathfrak{X}$ and $l: \mathfrak{X} \rightarrow Y$ such that \mathfrak{X} is a Peano space and the composition lm is f. The space \mathfrak{X} is called the *middle space* of the Peanian factorization lm of f.

Let F be the class of mappings $f: X \rightarrow Y$ each of which has at least one Peanian factorization, and suppose that γ is a transformation from F into G.

For each Peano space \mathfrak{X} let $\mathcal{E}(\mathfrak{X})$ be the class of true cyclic elements of \mathfrak{X} . (See Whyburn [6] for the Peano space theory involved in this paper.)² If $\mathfrak{E} \in \mathcal{E}(\mathfrak{X})$ there is a unique monotone retraction $r_{\mathfrak{E}}: \mathfrak{X} \to \mathfrak{E}$. (The double arrow indicates that $r_{\mathfrak{E}}(\mathfrak{X}) = \mathfrak{E}$.) If $f \in F$ and lm is a Peanian factorization of f with middle space \mathfrak{X} , while $\mathfrak{E} \in \mathcal{E}(\mathfrak{X})$, then define $f_{\mathfrak{E}} = lr_{\mathfrak{E}}m$.

It is the object of this paper to investigate the statement

(1)
$$\gamma(f) = \sum \gamma(f_{\mathfrak{F}}), \qquad \mathfrak{F} \in \mathcal{E}(\mathfrak{X})$$

where the equality means that for each neighborhood U of $\gamma(f)$ there is a finite subclass $\mathcal{J}(U)$ of $\mathcal{E}(\mathfrak{X})$ such that if \mathcal{J} is any finite subclass of $\mathcal{E}(\mathfrak{X})$ containing $\mathcal{J}(U)$ then $U \ni \sum \gamma(f_{\mathfrak{E}})$, $\mathfrak{E} \in \mathcal{J}$, it being understood that addition over an empty class yields 0.

In the event that (1) holds for each $f \in F$ and for each Peanian factorization of f, then γ is said to be *cyclicly additive*.

Cyclic additivity theorems of a weaker type have been considered

Received by the editors April 11, 1948.

¹ Fellow of the John Simon Guggenheim Memorial Foundation.

² Numbers in brackets refer to the bibliography at the end of the paper.

by Helsel [3], Radó [5] and others in connection with Lebesgue area.

- 2. The theorems. The first object is to investigate consequences of the assumption that γ is cyclicly additive.
- I. If $f \in F$ and has a Peanian factorization in which the middle space is a dendrite, then $\gamma(f) = 0$.

This is an obvious consequence of the fact that a dendrite has no true cyclic elements.

 I_a . If $f \in F$ and has a Peanian factorization in which the middle space is an arc, then $\gamma(f) = 0$.

(It is understood that an arc may consist of a single point.)

Before considering more substantial necessary conditions, suppose that \mathfrak{X} is a Peano space and define $\mathfrak{P} \in \mathcal{P}(\mathfrak{X})$ if and only if \mathfrak{P} is a Peano subspace of \mathfrak{X} such that $\mathcal{E}(\mathfrak{P}) \subset \mathcal{E}(\mathfrak{X})$. Let $\mathfrak{Q} \in \mathfrak{P}(\mathfrak{X})$ if and only if \mathfrak{Q} is a Peano subspace of \mathfrak{X} having a finite cyclic chain approximation $\mathfrak{C}_1, \dots, \mathfrak{C}_q$ such that either \mathfrak{C}_k is an arc, or $\mathfrak{C}_k \in \mathcal{E}(\mathfrak{X}), k=1, \dots, q$. (See Whyburn [6, p. 73].)

It is easy to see that $\mathcal{Q}(\mathfrak{X}) \subset \mathcal{P}(\mathfrak{X}) \supset \mathcal{A}(\mathfrak{X})$, where $\mathcal{A}(\mathfrak{X})$ is the class of A-sets in \mathfrak{X} .

Given $\mathfrak{P} \in \mathcal{P}(\mathfrak{X})$, let $\mathfrak{A} = \mathfrak{P} \cup U\mathfrak{E}$, where the union is taken over those elements $\mathfrak{E} \in \mathcal{E}(\mathfrak{X})$ having the property that $\mathfrak{P} \cap \mathfrak{E}$ consists of at least two points. It follows that $\mathfrak{A} \in \mathcal{A}(\mathfrak{X})$, that $x \in \mathfrak{A} - \mathfrak{P}$ implies there is a unique $\mathfrak{E} \in \mathcal{E}(\mathfrak{A})$ such that $\mathfrak{F} \in \mathfrak{E}$, and if $\mathfrak{E}(\mathfrak{P}) \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A})$ then $\mathfrak{E} \cap \mathfrak{P}$ is a dendrite. Since a dendrite is an absolute retract if $\mathfrak{E}(\mathfrak{P}) \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A})$, then there is a retraction $\mathfrak{P}_{\mathfrak{E}} \colon \mathfrak{E} \hookrightarrow \mathfrak{P}$. (See Borsuk [1].) Define

$$\theta_{\mathfrak{P}}(\mathfrak{x}) = \begin{cases} \mathfrak{x} & \text{if} \quad \mathfrak{x} \in \mathfrak{P}, \\ \rho_{\mathfrak{G}}(\mathfrak{x}) & \text{if} \quad \mathfrak{x} \in \mathfrak{E} \quad \text{and} \quad \mathcal{E}(\mathfrak{P}) \not \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A}). \end{cases}$$

It follows that $\theta_{\mathfrak{P}}$ is a retraction from \mathfrak{A} onto \mathfrak{P} , but $\theta_{\mathfrak{P}}$ is not uniquely defined in terms of \mathfrak{A} and \mathfrak{P} . If $r_{\mathfrak{R}}: \mathfrak{X} \longrightarrow \mathfrak{A}$ is the unique monotone retraction, and $r_{\mathfrak{P}} = \theta_{\mathfrak{P}} r_{\mathfrak{R}}$, then $r_{\mathfrak{P}}: \mathfrak{X} \longrightarrow \mathfrak{P}$ is a retraction.

The retraction $r_{\mathfrak{P}}$ depends upon the retraction $\theta_{\mathfrak{P}}$ which is not unique, however, if $\mathfrak{E} \in \mathcal{E}(\mathfrak{P})$, while $s_{\mathfrak{E}}: \mathfrak{P} \rightrightarrows \mathfrak{E}$ and $r_{\mathfrak{E}}: \mathfrak{X} \rightrightarrows \mathfrak{E}$ are retractions, then

$$r_{\mathfrak{E}} = s_{\mathfrak{E}} r_{\mathfrak{F}}.$$

There may be retractions from \mathfrak{X} onto \mathfrak{P} defined in other ways; however, the notation $r_{\mathfrak{P}}$ will always be used to indicate a retraction $\theta_{\mathfrak{P}}r_{\mathfrak{X}}$ defined as above, hence $r_{\mathfrak{P}}$ is unique modulo the factor $\theta_{\mathfrak{P}}$.

In this connection notice that if α is the maximum of the diameters

of the components of $\mathfrak{X}-\mathfrak{A}$, and β is the maximum of the diameters of \mathfrak{E} for $\mathcal{E}(\mathfrak{P}) \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A})$, then

(3)
$$\rho\{\mathfrak{x}, r_{\mathfrak{P}}(\mathfrak{x})\} \leq \alpha + \beta.$$

If $f \in F$ and lm is a Peanian factorization of f with middle space \mathfrak{X} while $\mathfrak{P} \in \mathcal{P}(\mathfrak{X})$, then $f_{\mathfrak{P}} = lr_{\mathfrak{P}}m$ is a mapping from X into Y having a Peanian factorization $l(r_{\mathfrak{P}}m)$ with middle space \mathfrak{P} . In other words, $f_{\mathfrak{P}} \in F$. Different selections of $r_{\mathfrak{P}}$ will produce different mappings $f_{\mathfrak{P}}$; however, if $\mathfrak{E} \in \mathcal{E}(\mathfrak{P})$ then in view of (2) it is true that $f_{\mathfrak{E}} \equiv lr_{\mathfrak{E}}m$ = $ls_{\mathfrak{E}}r_{\mathfrak{P}}m \equiv (f_{\mathfrak{P}})_{\mathfrak{E}} \equiv f_{\mathfrak{P}}\mathfrak{E}$. Hence $f_{\mathfrak{P}}\mathfrak{E}$ is independent of the retraction $r_{\mathfrak{P}}$ in spite of the fact that $f_{\mathfrak{P}}$ is not.

II. If $f \in F$ has a Peanian factorization lm with middle space \mathfrak{X} , while $\mathfrak{A}_i \in \mathcal{A}(\mathfrak{X})$, $i=1, 2, \mathfrak{A}_1 \cap \mathfrak{A}_2$ is a point, and $\mathfrak{A}_1 \cup \mathfrak{A}_2 = \mathfrak{X}$, then $\gamma(f_{\mathfrak{A}_1}) + \gamma(f_{\mathfrak{A}_2}) = \gamma(f)$.

PROOF. If the theorem is false suppose that the sum on the left above is $\eta \neq \gamma(f)$, and select neighborhoods U and U_0 for η and $\gamma(f)$, respectively, such that

$$(4) U \cap U_0 = \varnothing.$$

Let U_i be a neighborhood of $\gamma(f_{\mathfrak{A}_i})$, i=1, 2, such that

$$U_1 + U_2 \subset U$$
.

Note that $\mathcal{E}(\mathfrak{A}_1) \cup \mathcal{E}(\mathfrak{A}_2) = \mathcal{E}(\mathfrak{X})$, and $\mathcal{E}(\mathfrak{A}_1) \cap \mathcal{E}(\mathfrak{A}_2) = \emptyset$. Since $\mathcal{A}(\mathfrak{X}) \subset \mathcal{P}(\mathfrak{X})$ and γ is cyclicly additive, there is a finite subcollection $\mathcal{F}(U_i)$ of $\mathcal{E}(\mathfrak{A}_i)$ such that if \mathcal{F}_i is a finite subcollection of $\mathcal{E}(\mathfrak{A}_i)$ containing $\mathcal{F}(U_i)$, then (understanding that $\mathfrak{A}_0 = \mathfrak{X}$)

$$U_i \ni \sum \gamma(f_{\mathfrak{C}}), \quad \mathfrak{E} \in \mathcal{J}_i, \quad i = 0, 1, 2.$$

If \mathcal{J} is any finite subcollection of $\mathcal{E}(\mathfrak{X})$ containing $\mathcal{J}(U_0) \cup \mathcal{J}(U_1) \cup \mathcal{J}(U_2)$ let $\mathcal{J}_i = \mathcal{J} \cap \mathcal{E}(\mathfrak{A}_i)$, i = 1, 2, and note that $\mathcal{J}_1 \cap \mathcal{J}_2 = \emptyset$ while $\mathcal{J}_1 \cup \mathcal{J}_2 = \mathcal{J}$. Hence

$$U_{0} \ni \left[\sum \gamma(f_{\mathfrak{E}}), \mathfrak{E} \in \mathfrak{F}\right]$$

$$= \left[\sum \gamma(f_{\mathfrak{E}}), \mathfrak{E} \in \mathfrak{F}_{1}\right] + \left[\sum \gamma(f_{\mathfrak{E}}), \mathfrak{E} \in \mathfrak{F}_{2}\right]$$

$$\in U_{1} + U_{2} \subset U.$$

Therefore $U \cap U_0 \neq \emptyset$ in contradiction to (4).

II_a. The same as II except that the hypothesis is strengthened by the condition $\mathfrak{X} \in \mathfrak{D}(\mathfrak{X})$.

III. If $f \in F$ and has a Peanian factorization lm with middle space \mathfrak{X} , then for each neighborhood U of $\gamma(f)$ there is a $\mathfrak{D} \in \mathfrak{P}(\mathfrak{X})$ such that $\mathfrak{D} \subset \mathfrak{P} \in \mathfrak{P}(\mathfrak{X})$ implies that $\gamma(f_{\mathfrak{P}}) \in \mathfrak{U}$.

PROOF. There is a finite subcollection $\mathcal{J}(U)$ of $\mathcal{E}(\mathfrak{X})$ such that if \mathcal{J} is any finite subcollection of $\mathcal{E}(\mathfrak{X})$ containing $\mathcal{J}(U)$, then $U \ni \sum \gamma(f_{\mathfrak{E}})$, $\mathfrak{E} \in \mathcal{J}$. The theorem will be proved if it can be shown that there is a $\mathfrak{D} \in \mathfrak{D}(\mathfrak{X})$ such that $\mathcal{E}(\mathfrak{D}) = \mathcal{J}(U)$.

If $\mathcal{J}(U) = \emptyset$ let \mathfrak{Q} be any point in \mathfrak{X} . If $\mathcal{J}(U) \neq \emptyset$, suppose $\mathfrak{C}_1, \dots, \mathfrak{C}_n$ are the elements in $\mathcal{J}(U)$. Define $\mathfrak{C}_1^* = \mathfrak{C}_1$ and join \mathfrak{C}_2 to \mathfrak{C}_1^* by an arc \mathfrak{R}_1 with end points only in $\mathfrak{C}_1^* \cup \mathfrak{C}_2$. The arc \mathfrak{R}_1 may be a single point. Let $\mathfrak{C}_2^* = \mathfrak{C}_2 \cup \mathfrak{R}_1 \cup U\mathfrak{C}$ where the union is taken over the true cyclic elements \mathfrak{C} in $\mathcal{J}(U)$ which have at least two points in common with \mathfrak{R}_1 .

There is a first subscript n_1 , if any, for which \mathfrak{E}_{n_1} is not in $\mathfrak{C}_1^* \cup \mathfrak{C}_2^*$. Join \mathfrak{E}_{n_1} to $\mathfrak{C}_1^* \cup \mathfrak{C}_2^*$ by an arc \mathfrak{R}_2 with end points only in $\mathfrak{C}_1^* \cup \mathfrak{C}_2^* \cup \mathfrak{E}_{n_1}$. Let $\mathfrak{C}_3^* = \mathfrak{E}_{n_1} \cup \mathfrak{R}_2 \cup U\mathfrak{E}$ where the union is taken over the true cyclic elements \mathfrak{E} in $\mathcal{J}(U)$ which have at least two points in common with \mathfrak{R}_2 .

This process stops after a finite number of steps m for want of a true cyclic element in $\mathcal{J}(U)$ not in $\mathfrak{C}_1^* \cup \cdots \cup \mathfrak{C}_m^* \equiv \mathfrak{Q}$. The Peano space \mathfrak{Q} certainly has a cyclic chain approximation $\mathfrak{C}_1, \cdots, \mathfrak{C}_q$ such that \mathfrak{C}_k is either an arc or $\mathfrak{C}_k \in \mathcal{J}(U) \subset \mathcal{E}(\mathfrak{X})$, $k=1, \cdots, q$. Hence $\mathfrak{Q} \in \mathfrak{Q}(\mathfrak{X})$ and $\mathcal{E}(\mathfrak{Q}) = \mathcal{J}(U)$.

III_a. If $f \in F$ and has a Peanian factorization lm with middle space \mathfrak{X} , then for each neighborhood U of $\gamma(f)$ there is a $\mathfrak{D} \in \mathfrak{Q}(\mathfrak{X})$ such that $\mathfrak{D} \subset \mathfrak{R} \in \mathfrak{Q}(\mathfrak{X})$ implies $\gamma(f_{\mathfrak{R}}) \in U$.

The question of the sufficiency of these conditions is considered next.

THEOREM. If γ is a transformation from F into G having the properties I_a , II_a and III_a , then γ is cyclicly additive.

PROOF. Let $f \in F$ and suppose lm is a Peanian factorization of f with middle space \mathfrak{X} . Suppose U is a neighborhood of $\gamma(f)$ and let \mathfrak{D} be the space in $\mathfrak{Q}(\mathfrak{X})$ given by III_a. Define $\mathfrak{Z}(U) = \mathcal{E}(\mathfrak{D})$, and suppose \mathfrak{Z} is a finite subcollection of $\mathcal{E}(\mathfrak{X})$ containing $\mathcal{Z}(U)$.

If $\mathcal{J}=\mathcal{J}(U)$ let $\mathfrak{R}=\mathfrak{Q}$. If $\mathcal{J}\neq\mathcal{J}(U)$, the construction used in the proof of III shows that there is an $\mathfrak{R}\in\mathfrak{Q}(\mathfrak{X})$ such that $\mathcal{E}(\mathfrak{R})=\mathcal{J}$ and $\mathfrak{R}\supset\mathfrak{Q}$. By III_a, $\gamma(f_{\mathfrak{R}})\in U$.

But \Re has a finite cyclic chain decomposition $\mathfrak{C}_1, \dots, \mathfrak{C}_r$ such that either \mathfrak{C}_k is an arc or $\mathfrak{C}_k \in \mathcal{E}(\mathfrak{X})$, $k=1,\dots,r$. Using the properties of a cyclic chain approximation, together with I_a and II_a it follows directly that

$$\gamma(f_{\Re}) = \sum \gamma(f_{\Re \mathfrak{G}}), \qquad \mathfrak{E} \in \mathcal{E}(\mathfrak{R}), \\
= \sum \gamma(f_{\mathfrak{G}}), \qquad \mathfrak{E} \in \mathfrak{F}.$$

Therefore,

$$U \ni \sum \gamma(f_{\mathfrak{E}}),$$
 $\mathfrak{E} \in \mathfrak{I},$

and hence

$$\gamma(f) = \sum \gamma(f_{\mathfrak{C}}),$$
 $\mathfrak{E} \in \mathcal{E}(\mathfrak{X}).$

3. An application. Though greater generality is possible, suppose that X and Y are compacta, and for fixed $q \ge 0$ consider the Čech cohomology groups $H^q(X)$ and $H^q(Y)$ where the coefficient group is discrete and does not change in the remainder of the discussion. The topology on $H^q(X)$ and $H^q(Y)$ is taken discrete and it should be mentioned that if q=0 one considers the reduced cohomology group.

If $f \in F$ then there is an induced homomorphism

$$f^*: H^q(Y) \longrightarrow H^q(X)$$
.

Select any element $y \in H^q(Y)$, let $G = H^q(X)$, and define

$$\gamma(f) = f^*(y).$$

It will be shown that γ is cyclicly additive; that is, if lm is a Peanian factorization of $f \in F$ with middle space \mathfrak{X} , then for each $\mathbf{y} \in H^q(Y)$,

$$f^*(y) = \sum f^*_{\mathfrak{C}}(y),$$
 $\mathfrak{C} \in \mathcal{E}(\mathfrak{X}).$

In view of the sufficiency theorem it is enough to check conditions I_a, II_a and III_a.

In the event $f \in F$ and has a Peanian factorization lm whose middle space is an arc, then f is clearly homotopic to a point and hence $f^*(y) = 0$.

To check II_a one will need the fact that: If X_1 and X_2 are closed subsets of X, and $X = X_1 \cup X_2$, while $f_i: X \to Y$ is a mapping for i = 0, 1, 2, such that $f_0 = f_i$ on X_i , i = 1, 2, and $x \in X_j$ implies $f_i(x) = y_0$, a single point of Y, i, j = 1, 2; $i \neq j$; then $f_0^* = f_1^* + f_2^*$. (See Borsuk [2].)

Suppose $\mathfrak{A}_i \in \mathcal{A}(\mathfrak{X})$, i=1, 2, and $\mathfrak{A}_1 \cap \mathfrak{A}_2$ is a point \mathfrak{x}_0 , while $\mathfrak{A}_1 \cup \mathfrak{A}_2 = \mathfrak{X}$. Define $X_i = m^{-1}(\mathfrak{A}_i)$ and $f_i = lr_{\mathfrak{A}_i}m$, i=1, 2. Now X_1 and X_2 are closed subsets of X while $X_1 \cup X_2 = X$. Moreover, if $x \in X_i$, then $m(x) \in \mathfrak{A}_i$, hence $r_{\mathfrak{A}_i}m(x) = m(x)$ and so $f_i(x) = lm(x) = f(x)$; however, $f_j(x) = lr_{\mathfrak{A}_j}m(x) = l(\mathfrak{x}_0)$ since $r_{\mathfrak{A}_j}(\mathfrak{A}_i) = \mathfrak{x}_0$, i, j=1, 2; $i \neq j$. Hence $f^* = f_1^* + f_2^*$ and $\gamma(f) = \gamma(f_{\mathfrak{A}_1}) + \gamma(f_{\mathfrak{A}_2})$, which shows that condition II and hence II_a is satisfied.

To check condition III_a recall that there is an $\epsilon(y)$ such that if $\phi_1: X \to Y$ and $\phi_2: X \to Y$ are two mappings with the property that $\rho\{\phi_1(x), \phi_2(x)\} < \epsilon(y), x \in X$, then $\phi_1^*(y) = \phi_2^*(y)$. (See, for example, Hurewicz-Wallman [4, p. 140].)

Since l is continuous on a compact space there is a δ such that $\rho\{\xi_1, \xi_2\} < \delta$ implies that $\rho\{l(\xi_1), l(\xi_2)\} < \epsilon(y)$.

Let $\{\mathfrak{C}_k\}$ be a cyclic chain approximation to \mathfrak{X} , and select a so large that $n \geq a$ implies that each component of $\mathfrak{X} - \mathfrak{A}_n$ has a diameter less than $\delta/2$, where $\mathfrak{A}_n = \mathsf{U}\mathfrak{C}_k$, $k = 1, \dots, n$. Consider \mathfrak{A}_a and let \mathfrak{R}_k be an arc whose end points are "end points" of \mathfrak{C}_k , $k = 1, \dots, a$. Let $\mathfrak{C} \in \mathcal{E}$ if and only if $\mathfrak{C} \in \mathcal{E}(\mathfrak{A}_a)$, $d(\mathfrak{C}) < \delta/2$ and $\mathfrak{C} \cap \mathfrak{C}_k \neq \emptyset$ for exactly one integer $k = 1, \dots, a$. Define $\mathfrak{Q} = [\mathfrak{A}_a - \mathsf{U}\mathfrak{C}, \mathfrak{C} \in \mathcal{E}] \cup [\mathsf{U}\mathfrak{R}_k, k = 1, \dots, a]$.

It is easy to see that $\mathfrak{Q} \in \mathfrak{Q}(\mathfrak{X})$, in fact \mathfrak{A}_a is the smallest A-set containing \mathfrak{Q} , and if $\mathcal{E}(\mathfrak{Q}) \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A}_a)$, then $\mathfrak{E} \cap \mathfrak{Q}$ is an arc.

Now suppose that $\mathfrak{Q} \supset \mathfrak{R} \in \mathfrak{Q}(\mathfrak{X})$. If \mathfrak{A} is the smallest A-set containing \mathfrak{R} , then $\mathfrak{A} \supset \mathfrak{A}_a$ and hence each component of $\mathfrak{X} - \mathfrak{A}$ is in some component of $\mathfrak{X} - \mathfrak{A}_a$. Moreover, if $\mathcal{E}(\mathfrak{R}) \ni \mathfrak{E} \in \mathcal{E}(\mathfrak{A})$, then $\mathfrak{E} \in \mathcal{E}$ or \mathfrak{E} is in some component of $\mathfrak{X} - \mathfrak{A}_a$. In either event $d(\mathfrak{E}) < \delta/2$. Hence by $(3), \rho \{x, r_{\mathfrak{R}}(x)\} < \delta$.

Since $f_{\Re} = lr_{\Re}m$, the selection of δ shows that $\rho\{f(x), f_{\Re}(x)\}\$ $< \epsilon(y), x \in X$. Consequently $f^*(y) = f_{\Re}^*(y)$; that is, $\gamma(f) = \gamma(f_{\Re})$.

BIBLIOGRAPHY

- 1. Karol Borsuk, Einige Sätze über Streckenbilder, Fund. Math. vol. 18 (1932) pp. 198-213.
- 2. ——, Sur l'addition homologique des types de transformations continues en surfaces sphériques, Ann. of Math. vol. 38 (1937) pp. 733-738.
- 3. R. G. Helsel, A theorem on surface area, Trans. Amer. Math. Soc. vol. 61 (1947) pp. 443-453.
 - 4. W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
- 5. T. Radó, On continuous mappings of Peano spaces, Trans. Amer. Math. Soc. vol. 58 (1945) pp. 420-454.
- 6. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1941.

INDIANA UNIVERSITY