
REMARKS ON CYCLIC ADDITIVITY 

J. W. T. YOUNGS1 

1. Introduction. For the purposes of this discussion suppose that 
X and F a r e topological spaces while G is a commutative, topological 
semi-group (with zero element) which, as a space, is Hausdorff. In 
other words, each pair (gi, £2) of elements in G uniquely determines an 
element (gi+gz) in G; the operation + is associative and commuta­
tive; there is a unique element 0 such that g (EG implies g+0 = g; 
finally, G is a Hausdorf space and the operation + provides a map­
ping ( = continuous transformation) from the product space GXG 
into G. Obviously, topological groups, and the space of non-negative 
real numbers compactified by the addition of 00, with the operation 
+ meaning addition, and the convention that a+00 = oo-f-a = 00, 
provide examples of such semi-groups. 

I t will be said that lm is a Peanian factorization of a mapping 
f:X—*Yiî and only if there are mappings m\X—^H and Z:36—» F such 
that 36 is a Peano space and the composition lm is ƒ. The space 36 is 
called the middle space of the Peanian factorization lm of/. 

Let F be the class of mappings ƒ : X—> Y each of which has a t least 
one Peanian factorization, and suppose that 7 is a transformation 
from F into G. 

For each Peano space 3£ let 6(36) be the class of true cyclic elements 
of X. (See Whyburn [ó] for the Peano space theory involved in this 
paper.)2 If (§£8(36) there is a unique monotone retraction m'36Z|@. 
(The double arrow indicates that r<g(36) = ©.) If ƒ G F and lm is a 
Peanian factorization o f / w i t h middle space 36, while @G£(36), then 
define /<g = Imm. 

I t is the object of this paper to investigate the statement 

(1) 7 Ü ) = £ T C / « ) , < £ € £ ( £ ) 

where the equality means that for each neighborhood U of y (J) there 
is a finite subclass J{U) of 6(36) such that if J is any finite subclass 
of 6(36) containing J{U) then U3 X/Y(/®)> @G7, it being understood 
that addition over an empty class yields 0. 

In the event that (1) holds for each / G ^ and for each Peanian 
factorization of ƒ, then y is said to be cyclicly additive. 

Cyclic additivity theorems of a'weaker type have been considered 
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by Helsel [3], Radó [5] and others in connection with Lebesgue 
area. 

2. The theorems. The first object is to investigate consequences of 
the assumption that y is cyclicly additive. 

I. If ƒ G F and has a Peanian factorization in which the middle 
space is a dendrite, then y(f)=0. 

This is an obvious consequence of the fact that a dendrite has no 
true cyclic elements. 

Ia. If ƒ £ JF and has a Peanian factorization in which the middle 
space is an arc, then y(f) = 0. 

(It is understood that an arc may consist of a single point.) 
Before considering more substantial necessary conditions, suppose 

that 36 is a Peano space and define 3̂ G <P(36) if and only if $ is a Peano 
subspace of X such that £0P)C£(X) . Let D G £ ( £ ) if and only if O 
is a Peano subspace of 36 having a finite cyclic chain approximation 
(Si, • • • , Ê 3 such that either (£* is an arc, or S A G £ ( 3 £ ) , & = 1, • • • , g. 
(See Whyburn [6, p. 73].) 

I t is easy to see that i£(3E) C *P(36)3^(36), where <zA(J£) is the class 
of A -sets in 36. 

Given ^ G ^ P ( ï ) , let 2l = ^5VJU@, where the union is taken over 
those elements @G£(X) having the property that ^3AS consists of 
at least two points. I t follows that 9tG<^(3£), that #G2t — V implies 
there is a unique @ G £ ( 2 I ) such that j G S , and if 6 ( $ ) £ < B G £ ( S 0 

then (SP\̂ )3 is a dendrite. Since a dendrite is an absolute retract if 
£ ( $ ) £ < 8 G £ ( 8 ) , then there is a retraction p« :<E3(Sn$) . (See 
Borsuk [l].) Define 

n: if Ï G Ç , 

lpc(f) if ïGŒS and £fl3) £ (g G £(21). 

I t follows that 0$ is a retraction from §1 onto ^3, but % is not uniquely 
defined in terms of §1 and ty. If r»:XZ|3l is the unique monotone re­
traction, and r$ = 0$r«, then r$:XZ^P is a retraction. 

The retraction f$ depends upon the retraction 0$ which is not 
unique, however, if @G£0P)> while s ^ ^ Z ^ S and r@: 36Zt@ are re­
tractions, then 

(2) r<g = s&y. 

There may be retractions from 36 onto $ defined in other ways; 
however, the notation r$ will always be used to indicate a retraction 
Q<$r% defined as above, hence r$ is unique modulo the factor 0$. 

In this connection notice that if a is the maximum of the diameters 
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of the components of 36 — 21, and (3 is the maximum of the diameters 
of <g for 6 ( ^ ) 9 (ge 6(8) , then 

(3) p{ ï , f*( ï ) } â a + iS. 

H f(~F and Zm is a Peanian factorization of ƒ with middle space 
36 while ^ ( E ^ X ) , then j ^ — lr%m is a mapping from X into Y having 
a Peanian factorization l(r<$w) with middle space $ . In other words, 
j % £ F . Different selections of r<$ will produce different mappings ƒ$; 
however, if GESIST) then in view of (2) it is true that /(g== Ingrn 
— ls®r<$rn= (ƒ$)©=ƒ$(£. Hence ƒ$$ is independent of the retraction ry in 
spite of the fact that ƒ$ is not. 

II. If / € * F has a Peanian factorization lm with middle space 36, 
while » * e ^ ( X ) , *' = 1, 2, 2Iin2I2 is a point, and «iU8ï ,= 3Ê, then 
7(/« l)+7(/«1)=7(/) . 

PROOF. If the theorem is false suppose that the sum on the left 
above is rj^yif), and select neighborhoods U and Uo for rj and y(f), 
respectively, such that 

(4) f / n t / o = 0 . 

Let Ui be a neighborhood of TC%»)> ^= 1, 2, such that 

Ux+UtC Ü. 

Note that e(»i)Ue(8tO = e(X), and e(2ti)n£(§t2) = 0 . Since <^(*) 
C^P(ï) and 7 is cyclicly additive, there is a finite subcollection 
J (Ui) of 6(31;) such that if Ji is a finite subcollection of £(2ït) con­
taining J(Ui), then (understanding that 2Io = 36) 

Ui3?L,y(f*)> <&eji, f = 0 , 1 , 2. 

If 7 is any finite subcollection of 6(36) containing J(Uo)^JJ(Ui) 
VJ(U2) let 7 < = y n e ( « 0 i * = 1. 2, and note that J1r\J2 = 0 while 
7iW72 = y. Hence 

GÎ/1 + P2CP. 

Therefore UC\U^0 in contradiction to (4). 
II a . The same as II except that the hypothesis is strengthened by 

the condition 3Ê£Ü?(36). 
III. If ƒ £ F and has a Peanian factorization Zm with middle space 36, 

then for each neighborhood U of y (J) there is a D E S (36) such that 
O C ? G ^ P ( ï ) implies that y(fy)&l. 
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PROOF. There is a finite subcollection J(U) of £(36) such that if J 
is any finite subcollection of 6(36) containing J(U), then U3 X/K/©)» 
S G J . The theorem will be proved if it can be shown that there is a 
O G £ ( £ ) such that 6 ( Q ) =?(£ / ) . 

H J(U)=0 let O be any point in 3Ê. If J(U)?*0, suppose 
®i, • • • i @n are the elements in J(U). Define Si* = (Si and join @2 to 
(Si* by an arc $1 with end points only in Si*U(g2. The arc $1 may be a 
single point. Let S*==(22VJ$iUU(S where the union is taken over the 
true cyclic elements @ in J(U) which have at least two points in 
common with $x . 

There is a first subscript m, if any, for which (SW1 is not in (Si*Ufë2*. 
Join S n i to &*Ug* by an arc $ 2 with end points only in &i*US2*W(§wr 

Let Sf = @rHU$2^>'U(g where the union is taken over the true cyclic 
elements (§ in J(U) which have at least two points in common with 
« i . 

This process stops after a finite number of steps m for want of a 
true cyclic element in J{U) not in (Si*U • • • VJ6*j==D. The Peano 
space O certainly has a cyclic chain approximation <£i, • • • , Sfl such 
that &fc is either an arc or fë&£7(£/)C£(£)> & = 1> • • • , <Z- Hence 
O e £ ( X ) and 6 ( 0 ) = 7 ( C 7 ) . 

I II a . If ƒ £ F and has a Peanian factorization Zm with middle space 
36, then for each neighborhood U of y(f) there is a OG^,(36) such that 
Q C 9 î e £ ( ï ) implies y(f*)eU. 

The question of the sufficiency of these conditions is considered 
next. 

THEOREM. If y is a transformation from F into G having the proper­
ties Ia, II» and I II a , then y is cyclicly additive. 

PROOF. Let / £ F and suppose lm is a Peanian factorization of ƒ 
with middle space 36. Suppose U is a neighborhood of y (J) and let O 
be the space in^(36) given by III a . Define J(U) = £ ( 0 ) , and suppose 
J is a finite subcollection of 6(36) containing J(U). 

If J = J(U) let $R = 0 . If J7*7(11), the construction used in the 
proof of I II shows that there is an 9î£i^(36) such that Ê(9Î) =7 a n d 
9 0 D . By III a , y(f*)GU. 

But $R has a finite cyclic chain decomposition Si, • • • , (£r such 
that either (S& is an arc or (£*£ 6(36), k = 1, • • • , r. Using the proper­
ties of a cyclic chain approximation, together with I aand I I a i t follows 
directly that 

y(fn) = Zv(fm), C G e&t), 
= I>(/<8), @G7. 
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Therefore, 

and hence 

7(/) = z y(h), <§ G em. 
3. An application. Though greater generality is possible, suppose 

that X and F are compacta, and for fixed q^O consider the Cech 
cohomology groups Hq(X) and Hq(Y) where the coefficient group is 
discrete and does not change in the remainder of the discussion. The 
topology on Hq(X) and Hq(Y) is taken discrete and it should be 
mentioned that if q = 0 one considers the reduced cohomology group. 

If ƒ G F then there is an induced homomorphism 

f*:Hq(Y)->Hq(X). 

Select any element y&Hq(Y), let G = Hq(X), and define 

7 ( / ) = / * ( y ) . 

I t will be shown that 7 is cyclicly additive] that is, if lm is a Peanian 
factorization of fÇ^Fwith middle space 36, then for eachyÇzHq(Y)> 

f*(y) = T,f£(y), aeem. 
In view of the sufficiency theorem it is enough to check conditions 

Ia, IIa and IIIa. 
In the event ƒ G F and has a Peanian factorization lm whose middle 

space is an arc, then ƒ is clearly homotopic to a point and hence 
f*(y)=0. 

To check IIa one will need the fact that : If X\ and X% are closed 
subsets of X, and X = XiUX 2 , while fiiX-^Y is a mapping for 
i = 0,l, 2, such that /o=/iOnX4- , i==l, 2, and xÇzXj implies fi{x) = ;yo, a 
single point of F, i, j = l, 2; i^j\ then/o*=/i*+/2*. (See Borsuk [2].) 

Suppose 5ltGe><f(36), i = l , 2, and S l i H ^ is a point £0, while §liU2t2 

= 36. Define X t = w~1(§li) and fi — lr^m, i=l, 2. Now Xi and X2 are 
closed subsets of X while -X"iUX2 = X. Moreover, if XÇLX^ then w(x) 
G§lii hence rtiim(x) = m(x) and so ƒ;(#) =lm(x) =f(x) ; however, ƒ,(#) 
^Ir^mix) =/(ïo) since ray(2t<) =£0, *\ j = l, 2; i^j. Hence ƒ*=ƒ]*+/2* 
and 7 ( / ) = T ( / ^ 1 ) + T ( / S Ï 2 ) » which shows that condition II and hence 
IIa is satisfied. 

To check condition IIIa recall tha t there is an e(y) such that if 
0i :X—»F and $2:X—*F are two mappings with the property that 
p{<f>i(x), <t>î(x))<e(y)y xE.X, then <£*(Y) =02*(y). (See, for example, 
Hurewicz-Wallman [4, p. 140].) 
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Since I is continuous on a compact space there is a ô such that 
PUU £2} <ô implies that p{/(&), Z(f2)} <e(y). 

Let {(£&} be a cyclic chain approximation to 36, and select a so 
large that n^a implies that each component of 36 — %n has a diameter 
less than 8/2, where 2tn=US&, £ = 1, • • • , n. Consider 2ta and let 
$k be an arc whose end points are "end points" of (£*, k = 1, • • • , a. 
Let @ e £ if and only if @e£(2I«), i ( « ) <S/2 and ( g H 6 ^ 0 for ex­
actly one integer k = 1, • • • , a. Define 0 = [««-U<g, <g€:6]U[U«*, 
& = 1, • • • , a ] . 

I t is easy to see that O Q 5 ( # ) , in fact 2la is the smallest A -set 
containing O , and if 6(D)35SG:£(2ta), then @P\0 is an arc. 

Now suppose that £0$R££J,(36). If 31 is the smallest A -set contain­
ing 9Î, then 31D$<, and hence each component of 9£ — 31 is in some 
component of Ï - S L . Moreover, if £($)$>@G£(31), then @G£ or <g 
is in some component of 36 —3ïa. In either event d((§) <S/2 . Hence by 
(3), p{x, m(x)} <d. 

Since f$t = lm?nf the selection of ô shows that p{f(x), fvi(x)} 
<€(y), x<EX. Consequent ly /*(y)=/£(y) ; that is, 7(f) = 7 0 » ) . 
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