REMARKS ON CYCLIC ADDITIVITY
J. W. T. YOUNGS!

1. Introduction. For the purposes of this discussion suppose that
X and Y are topological spaces while G is a commutative, topological
semi-group (with zero element) which, as a space, is Hausdorff. In
other words, each pair (gi, g2) of elements in G uniquely determines an
element (g,+g:) in G; the operation - is associative and commuta-
tive; there is a unique element 0 such that g&G implies g+0=g;
finally, G is a Hausdorf space and the operation + provides a map-
ping (=continuous transformation) from the product space GXG
into G. Obviously, topological groups, and the space of non-negative
real numbers compactified by the addition of «, with the operation
+ meaning addition, and the convention that ¢+ o = 4a= =,
provide examples of such semi-groups.

It will be said that Im is a Peanian factorization of a mapping
f:X—Yif and only if there are mappings m:X—% and I:¥— Y such
that ¥ is a Peano space and the composition /m is f. The space ¥ is
called the middle space of the Peanian factorization Im of f.

Let F be the class of mappings f: X—7Y each of which has at least
one Peanian factorization, and suppose that v is a transformation
from Finto G.

For each Peano space ¥ let E(¥%) be the class of true cyclic elements
of %. (See Whyburn [6] for the Peano space theory involved in this
paper.)? If EE E(X) there is a unique monotone retraction rg:¥3E.
(The double arrow indicates that rg(X)=C€.) If fEF and Im is a
Peanian factorization of f with middle space ¥, while §< E(%), then
define fg=Irgm.

It is the object of this paper to investigate the statement

€Y v(f) = 2 (o), Ce E®

where the equality means that for each neighborhood U of vy(f) there
is a finite subclass F(U) of E(¥) such that if ¥ is any finite subclass
of E(%) containing F(U) then UD Y v(fe), EEY, it being understood
that addition over an empty class yields 0.

In the event that (1) holds for each f&F and for each Peanian
factorization of f, then « is said to be cyclicly additive.

Cyclic additivity theorems of a-weaker type have been considered
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by Helsel [3], Radé [5] and others in connection with Lebesgue
area.

2. The theorems. The first object is to investigate consequences of
the assumption that vy is cyclicly additive.

I. If fEF and has a Peanian factorization in which the middle
space is a dendrite, then y(f) =0.

This is an obvious consequence of the fact that a dendrite has no
true cyclic elements.

I.. If fEF and has a Peanian factorization in which the middle
space is an arc, then y(f) =0.

(It is understood that an arc may consist of a single point.)

Before considering more substantial necessary conditions, suppose
that X is a Peano space and define P& P(%) if and only if P is a Peano
subspace of ¥ such that E(P) CE(X). Let QEQ(¥) if and only if Q
is a Peano subspace of X having a finite cyclic chain approximation
&, - - -, €, such that either € is an arc, or §, € E(X), k=1, - -, q.
(See Whyburn [6, p. 73].)

It is easy to see that Q(¥) CP(¥) DA (%), where <4(¥) is the class
of A-setsin %.

Given PEP(%), let A=PUUGE, where the union is taken over
those elements §& E(¥) having the property that P\E consists of
at least two points. It follows that A4 (¥), that x EA—P implies
there is a unique €€ E(Y) such that 1&E, and if E(P)PESEX)
then NP is a dendrite. Since a dendrite is an absolute retract if
E(P)PCEE(Y), then there is a retraction pg:EZ(ENP). (See
Borsuk [1].) Define

t if reP,
pe(t) if tEE and EP)PECE EQ.

It follows that 0y is a retraction from 9 onto P, but 0y is not uniquely
defined in terms of % and PB. If ro: ¥ is the unique monotone re-
traction, and rg =f0gry, then rg: ¥ 3P is a retraction.

The retraction r¢ depends upon the retraction fp which is not
unique, however, if € E(P), while s¢: P3E and r¢: ¥3E are re-
tractions, then

o = {

(2) r¢ = SGry.

There may be retractions from ¥ onto P defined in other ways;
however, the notation ¢ will always be used to indicate a retraction
Ogpry defined as above, hence r¢ is unique modulo the factor 6.

In this connection notice that if & is the maximum of the diameters
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of the components of ¥—9, and 8 is the maximum of the diameters

of @ for E(P)P Ec E), then
3) rle. @} Satp

If fEF and Im is a Peanian factorization of f with middle space
¥ while PE P(¥%), then fe=Irpm is a mapping from X into ¥ having
a Peanian factorization /(rg¢m) with middle space PB. In other words,
feEF. Different selections of r¢ will produce different mappings fg;
however, if EE€E(P) then in view of (2) it is true that fe=lrem
=Isegrem = (fp)e=fps. Hence fpe is independent of the retraction rg in
spite of the fact that fyp is not.

I1. If fEF has a Peanian factorization Im with middle space %,
while A;E A (%), i=1, 2, WY, is a point, and A\ JA;=%, then
7(f?11) +'Y(faz) =7(f)°

Proor. If the theorem is false suppose that the sum on the left
above is 77#v(f), and select neighborhoods U and U, for 9 and y(f),
respectively, such that

4) UNU,=¢.
Let U; be a neighborhood of v(fy,), ¢=1, 2, such that
U,+ U, CU.

Note that E(;)\JEQL) = E(X), and EU)NE,) =F. Since A(¥%)
CP(¥) and v is cyclicly additive, there is a finite subcollection
F(U;) of E(U;) such that if ¥; is a finite subcollection of E(Y:) con-
taining ¥(U,), then (understanding that %, =%)

U D 2 v(fe), cey, 1=0,1, 2,

If ¥ is any finite subcollection of E(¥) containing F(Uo)\JF(U1)
UF(Uy) let Fi=FNEQL), i=1, 2, and note that iN\F.= while
FHUFe=7F. Hence

UoD [2v(fe), € EF]

= [Z'Y(f@)r@eyl] + [ZYU@),@E%]
eU,+U.CU.

Therefore UNU,# < in contradiction to (4).

I1,. The same as II except that the hypothesis is strengthened by
the condition XE9(¥).

II1. If fE F and has a Peanian factorization Im with middle space %,
then for each neighborhood U of v(f) there is a Q&EQ(¥) such that
QCPBEP(X) implies that y(fp) EU.
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Proor. There is a finite subcollection F(U) of E(¥) such that if ¥
is any finite subcollection of E(¥) containing ¥(U), then U >_vy(fe),
E&¥. The theorem will be proved if it can be shown that there is a
0 EQ(%) such that E(Q) =F(U).

If $(U)=& let Q be any point in ¥. If F(U)=f, suppose
Gy, - - -, G, are the elements in ¥(U). Define €*= G, and join &, to
C* by an arc & with end points only in €*\UG,. The arc & may be a
single point. Let €5 = E,\U&,\UUGE where the union is taken over the
true cyclic elements € in ¥(U) which have at least two points in
common with &;.

There is a first subscript #4, if any, for which &,, is not in E*\UG*.
Join €,, to €f\UGS by an arc & with end points only in E*UEHUE,,.
Let €F =G,,J 8\JUE where the union is taken over the true cyclic
elements € in ¥(U) which have at least two points in common with
Ke.

This process stops after a finite number of steps m for want of a
true cyclic element in F(U) not in G*U - - - UG} =. The Peano
space Q certainly has a cyclic chain approximation €, - « +, €, such
that G is either an arc or &EF(U)CE(%), k=1, - - -, q. Hence
QEQ(¥) and E(Q)=F(V).

ITI,. If f&F and has a Peanian factorization Im with middle space
%, then for each neighborhood U of y(f) there isa Q& Q(¥) such that
QCREQ (%) implies y(fr) EU.

The question of the sufficiency of these conditions is considered
next.

THEOREM. If v is a transformation from F into G having the proper-
ties 1., 11, and 111,, then v is cyclicly additive.

Proor. Let fEF and suppose Im is a Peanian factorization of f
with middle space ¥X. Suppose U is a neighborhood of y(f) and let Q
be the space in (%) given by I11,. Define F(U) = E(LQ), and suppose
¥ is a finite subcollection of E(¥) containing F(U).

If ¥=%(U) let R=0. If F=F(U), the construction used in the
proof of I1I shows that there is an REQ(¥) such that E(R) =F and
RDOQ. By IIL, y(fw) €U.

But R has a finite cyclic chain decomposition €, - - -, €, such
that either G is an arc or €, EE(%), k=1, - - -, r. Using the proper-
ties of a cyclic chain approximation, together with I,and I1, it follows
directly that

y(fw) = 2, v(fxe), G e EW),
= > v(fe), ey
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Therefore,

U>S X2 v(fe), cey,

and hence

() = 2 v(fe), € e E).

3. An application. Though greater generality is possible, suppose
that X and Y are compacta, and for fixed g=0 consider the Cech
cohomology groups H¢(X) and H4(Y) where the coefficient group is
discrete and does not change in the remainder of the discussion. The
topology on H¢(X) and H4(Y) is taken discrete and it should be
mentioned that if g=0 one considers the reduced cohomology group.

If fEF then there is an induced homomorphism

¥ H(Y) - Hy(X).
Select any element yEH(Y), let G=H4X), and define
v(f) = f*&).

It will be shown that v ¢s cyclicly additive; that s, if Im is a Peanian
Sfactorization of f & F with middle space X, then for each y CH(Y),

) = 2 fel»), G € E(%).

In view of the sufficiency theorem it is enough to check conditions
I., I1, and IIL,.

In the event f& F and has a Peanian factorization Im whose middle
space is an arc, then f is clearly homotopic to a point and hence
*(y) =0.

To check II, one will need the fact that: If X; and X, are closed
subsets of X, and X=X,\UX,, while f;:X—Y is a mapping for
1=0,1, 2, such that fo=f;on X;,4=1, 2, and x EX; implies fi(x) =v,, a
single point of ¥, 4, =1, 2; i547; then f¢* =f*+f*. (See Borsuk [2].)

Suppose A A (%), i=1, 2, and AN\, is a point o, while A\ I,
=X. Define X;=m~1(;) and fi=lrgam, ¢=1, 2. Now X; and X, are
closed subsets of X while X;\JUX,=X. Moreover, if x&€ X, then m(x)
€N;, hence ram(x) =m(x) and so fi(x) =Im(x) =f(x); however, f;(x)
=lra;m(x) =1(xo) since ryu, (W) =10, %, j=1, 2; 15j. Hence f*=fi*+f*
and y(f) =v(fu,) +v(fa,), which shows that condition II and hence
II. is satisfied.

To check condition III, recall that there is an e(y) such that if
¢1: X—Y and ¢: X—Y are two mappings with the property that
p{d1(x), a(x) } <e(y), *EX, then ¢*(y) =¢# (7). (See, for example,
Hurewicz-Wallman [4, p. 140].)
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Since ! is continuous on a compact space there is a & such that
el 32{ <8 implies that p {I(z)), }(z2) } <e()-

Let @k} be a cyclic chain approximation to ¥, and select a so
large that #=a implies that each component of ¥ —9, has a diameter
less than 6/2, where ¥,=UG;, k=1, - . -, n. Consider ¥, and let
f% be an arc whose end points are “end points” of &, k=1, - - -, a.
Let G € if and only if EEE(Y.), d(€) <8/2 and CNE=F for ex-
actly one inte]ger k=1, .- -, a. Define Q= [%,— UG, EEE|U[UK:,
k=1,---,al.

It is easy to see that Q&9 (%), in fact U, is the smallest 4-set
containing Q, and if E(Q)PESE(Y,), then ENLQ is an arc.

Now suppose that QDR Q(¥). If A is the smallest 4-set contain-
ing R, then ADY, and hence each component of ¥—U is in some
component of ¥—%,. Moreover, if E(R)P ESEY), then EEE or €
is in some component of ¥ —%,. In either event d(€) <&/2. Hence by
), p{x, ra(x)} <o.

Since fg=Irgm, the selection of & shows that p{ f(x), fm(x)}
<e(y), *€X. Consequently f*(y) =f&(»); that is, v(f) =v(fw).
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