A NOTE ON THE ERGODIC THEOREMS

YAEL NAIM DOWKER

Introduction, definitions and remarks. The purpose of this note is to give an example of a measurable transformation of a measure space onto itself for which the individual ergodic theorem holds while the mean ergodic theorem does not hold.

Let S be a measure space of finite measure, m the measure defined on the measurable subsets of S, and T a 1-1 point transformation of S onto itself which is measurable (both T and T^{-1} transform measurable sets into measurable sets). Let the points of S be denoted by y and let f(y) be any real valued function defined on S. We denote by $F_h(y)$ the average $(1/h)\sum_{i=0}^{h-1} f(T^iy)$.

We shall say that the individual ergodic theorem holds for f(y) if the sequence of averages $\{F_h(y)\}$ converges to a finite limit almost everywhere. If the individual ergodic theorem holds for every integrable function $f \in L_1(m)$ we shall say that the individual ergodic theorem holds (with respect to m).

We shall say that the mean ergodic theorem holds in $L_p(m)$ $(p \ge 1)$ for a function $f \in L_p(m)$ if $F_h(y) \in L_p(m)$ for $h = 1, 2, \cdots$ and the sequence $\{F_h(y)\}$ converges in the norm of $L_p(m)$. If the mean ergodic theorem holds in $L_p(m)$ for every function $f(y) \in L_p(m)$ then we shall say that the mean ergodic theorem holds in $L_p(m)$.

The following relations between the two ergodic theorems are known: If T is measure preserving, both the individual [1] and the mean [4]² ergodic theorems hold. Without assuming that T is measure preserving, the mean ergodic theorem in $L_p(m)$ for any $p \ge 1$ implies the individual ergodic theorem for all functions in $L_p(m)$ ([2, p. 1061], see also [3, p. 539] for the case p = 1).

The question arises whether, conversely, the individual ergodic theorem implies the mean ergodic theorem in $b_p(m)$ for some $p \ge 1$. This question has significance only when $L_p(m)$ is transformed into itself by the transformation induced on it by T. For in this case and only in this case is it true that for any $f \in L_p(m)$ the averages $\{F_h\}$ also belong to $L_p(m)$ for $h = 1, 2, 3, \cdots$ 3 We answer this question in

Received by the editors April 9, 1948.

¹ The words in the parenthesis will be omitted if there is no reason for ambiguity.

² Only the case p=2 is proved in [4]; see [2, p. 1053] for all $p \ge 1$. The numbers in brackets refer to the bibliography at the end of the paper.

³ It is easy to give examples for which the individual ergodic theorem does hold while $L_p(m)$ is not transformed into itself. Such an example for instance is given if T is periodic while m is non-atomic and T^{-1} is singular.

the negative by constructing for each given $p \ge 1$ an example of a transformation of a measure space (S, m) onto itself for which (1) the individual ergodic theorem holds, (2) the mean ergodic theorem does not hold in $L_p(m)$, and (3) every function in $L_p(m)$ is transformed into a function belonging to $L_p(m)$.

REMARK. Even though the individual ergodic theorem does not imply the mean ergodic theorem with respect to the original measure m it is known [2, p. 1059] that in case the individual ergodic holds, it is possible to introduce a new measure μ defined on the measurable sets of S such that μ has no more null sets than m and μ is also invariant under T. It follows then from the statements made above that the mean ergodic theorem holds in $L_p(\mu)$ for every $p \ge 1$.

The example for p=1. Let S be the totality of all points on the circumferences c_1, c_2, \cdots of a sequence of circles. Let the length of c_n be $1/2^n$. Let the measure m and the family of measurable sets in S be the obvious ones determined by the Lebesgue measure on each of the circumferences. On each circumference c_n we fix the polar coordinates $\rho = (1/2^n \cdot 2\pi) \cdot e^{i\theta}$. Let $x = \theta/2\pi$. Let us divide c_n into 2n+2 arcs, the end points of the arcs being x=0, x=1/2, and $x=\pm 1/2^{k+1}$, k=1, $2, \cdots, n$. The arcs are

$$A_{nk}: \frac{1}{2^k} \ge x \ge \frac{1}{2^{k+1}},$$
 $A_{n,n+1}: \frac{1}{2^{k+1}} \ge x \ge 0,$

while if $n+2 \le k \le 2n+2$, A_{nk} is the reflection in $\theta=0$ of $A_{n,2n+3-k}$.

We define T as follows: For the points of A_{nk} let T be the unique transformation given by x'=ax+b, a>0, which transforms A_{nk} onto $A_{n,k+1}$ for $k=1, \dots, 2n-1$, and A_{nk} onto $A_{n,1}$ for k=2n+2. T is clearly a 1:1 point transformation of S onto itself. Moreover it is easily seen that T is measurable and pointwise periodic with the period of 2n+2 for the points of c_n . T also satisfies the following two conditions:

- (1) $m(T^{-1}A) \leq 2m(A)$ for every measurable set A in S.
- (2) The set of ratios

$$R_A^n = \frac{1}{2n+2} \cdot \sum_{i=0}^{2n-1} \frac{m(T^{-i}A)}{m(A)}$$

where $n=1, 2, \cdots$ and A varies over all measurable sets $A \subseteq S$ is not a bounded set of numbers. (1) follows from the fact that T^{-1} is de-

termined by a linear transformation with a stretching factor of at most 2. (In fact, it is either 1/2, 1, or 2.)

To prove (2) consider the sequence of sets $A_{n,n+1}$. Since $\bigcup_{i=0}^{2n-1} m(T^{-i}A_{n,n+1}) = c_n$ we have that

$$\frac{1}{2n+2} \cdot \sum_{i=0}^{2n-1} m(T^{-i}A_{n,n+1}) = \frac{1}{2n+2} \cdot \frac{1}{2^n} \cdot \frac{1}{2^n}$$

On the other hand $m(A_{n,n+1}) = (1/2^{n+1}) \cdot (1/2^n)$ and hence

$$R_{A_{n,n+1}}^{n} = \frac{2^{n+1}}{2n+2},$$

which is an unbounded sequence.

We can now show that the above example satisfies the required conditions specified in the introduction.

- (a) The individual ergodic theorem holds. In fact let f(y) be any real-valued function defined on S, then since T is pointwise periodic the sequence $\{F_h(y)\}$ converges to a finite limit for every y, that is, the individual ergodic theorem holds for every real-valued function defined on S. A fortiori it holds (with respect to m).
- (b) $L_1(m)$ is transformed into itself by T: In fact, it can be easily seen that $\overline{m}(A) = m(T^{-1}A)$ is a completely additive non-negative set function (that is, a measure) defined on the measurable sets of S. It can also be shown by considering approximating sums to the integrals that if $f \in L_1(m)$ then

$$\int_{S} |f(Ty)| dm = \int_{S} |f(y)| d\overline{m}.$$

By (1), $\overline{m}(A) \leq 2m(A)$ for every measurable set A and hence

$$\int_{S} |f(y)| d\overline{m} \leq 2 \int_{S} |f(y)| dm < \infty$$

from which follows that $f(Ty) \in L_1(m)$, that is, $L_1(m)$ is transformed into itself by T.

(c) The mean ergodic theorem does not hold in $L_1(m)$. To prove this statement we use the following result due to Miller and Dunford [3, p. 539]: Suppose that the mean ergodic theorem did hold in $L_1(m)$; then there would exist a positive constant c independent of A and h such that

(i)
$$\frac{1}{h} \cdot \sum_{i=0}^{h-1} m(T^{-i}A) < c \cdot m(A)$$

for all measurable sets A and $h=1, 2, \cdots$. But (i) is in contradiction with (2) above. Hence the mean ergodic theorem does not hold in $L_1(m)$.

It is possible to prove the last statement also directly by exhibiting functions in $L_1(m)$ for which the mean ergodic theorem does not hold in $L_1(m)$. In fact let $\bar{f}(y)$ be defined as follows: $\bar{f}(y) = 2^n$ on $A_{n,n+1}$, $n=1, 2, \cdots, \bar{f}(y)=0$ everywhere else on S, then $\bar{f}(y) \in L_1(m)$ but $\{\bar{F}_h(y)\}$ is not convergent in $L_p(m)$, for if it were then the limit function $\bar{f}^*(y)$ of $\{\bar{F}_h(y)\}$ would have to belong to $L_1(m)$. But $\bar{f}^*(y)$ is seen to be equal to $(1/2n+2)\cdot 2^n$ for $y\in c_n$. We have

$$\int_{S} |\bar{f}^{*}(y)| dm = \sum_{n=1}^{\infty} (1/2n + 2)$$

which is a divergent series, that is, $\bar{f}^* \oplus L_1(m)$ and hence $\{F_h(y)\}$ is not convergent in $L_1(m)$.

The example for $p \ge 1$. Let p be a fixed integer ≥ 1 . Let S be the same sequence of circumferences c_1, c_2, \cdots as before. We divide each c_n into $2(n \cdot 2^p - n + 1)$ arcs, the end points being x = 0, x = 1/2 and $x = r/2^{kp+1}, k = 1, 2, \cdots, n, r = 1, 2, \cdots, 2^p - 1$. Again we define T by the transformation given by x' = ax + b, a > 0, which transforms each arc into the next adjacent one.

T is again seen to be a 1-1 measurable pointwise periodic transformation of S onto itself with the period $2(n \cdot 2^p - n + 1)$ for the points of c_n . As before it follows that (a) the individual ergodic theorem holds. (b) $L_p(m)$ is transformed into itself since there is a bound (the bound being 2^p) on the stretching factor of T^{-1} . (c) The mean ergodic theorem does not hold in $L_p(m)$. To prove this last statement we use the following generalization of Miller and Dunford's result stated above: Let t be any real number ≥ 1 , then if the mean ergodic theorem holds in $L_t(m)$ there exists a constant C independent of A and b such that

(ii)
$$\left[\frac{1}{h} \cdot \sum_{i=0}^{h-1} m(T^{-i}A)\right]^t < C \cdot m(A).$$

The proof is almost the same as for the special case t=1. If, however, we consider the sequence of sets A_{nq} , where $q=n(2^p-1)+1$ and where the enumeration of the arcs on each c_n is analogous to that used in the case p=1, we can easily see that the sequence of ratios

$$R_{n} = \left[\frac{1}{2a} \sum_{i=0}^{2q-1} m(T^{-i}A_{nq})\right]^{p} / m(A_{nq})$$

is an unbounded sequence. This is in contradiction with (ii) for t=p. Hence the mean ergodic theorem does not hold in $L_p(m)$. Again the statement made in (c) may be proved directly by exhibiting functions in $L_p(m)$ for which the mean ergodic theorem does not hold in $L_p(m)$.

Let p_1 be any fixed number not less than 1. Let p be the first integer not less than p_1 . Then the example constructed above for p is also a valid example for p_1 , for the individual ergodic theorem clearly holds and $L_{p_1}(m)$ is transformed into itself for the same reasons as before, while it follows from the fact that $m(A) \leq 1$ for every measurable set p_1 and the fact that $p \geq p_1$ that the same sequence of sets which violates (ii) for the case p_1 also violates (ii) for p_2 . Hence the mean ergodic theorem does not hold in $p_2(m)$.

BIBLIOGRAPHY

- 1. G. D. Birkhoff, *Proof of the ergodic theorem*, Proc. Nat. Acad. Sci. U.S.A. vol. 17 (1931) pp. 356-660.
- 2. Yael Naim Dowker, Invariant measure and the ergodic theorems, Duke Math. J. vol. 14 (1947) pp. 1051-1061.
- 3. N. Dunford and D. S. Miller, On the ergodic theorem, Trans. Amer. Math. Soc. vol. 60 (1946) pp. 538-549.
- 4. J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 70-82.

RADCLIFFE COLLEGE