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completely additive functions on cr-fields and of the theory of 
Carathéodory. 

The first chapter deals with the basic properties of additive and 
totally additive set functions, zero sets and complete fields, and the 
decomposition into regular and singular parts. Chapter II is de­
voted to the Carathéodory theory of measure. Special attention is 
paid to regular measures, and to w-dimensional Lebesgue measure. In 
the third chapter the author discusses the properties of measurable 
functions and sequences of such functions. The theory of integration 
is developed in Chapter IV by characterizing the indefinite integral 
as a new measure satisfying certain inequalities. A discussion of the 
approximation of integrals by sums, some mean value theorems, and 
convergence theorems, is followed by a section on product measures 
and the Fubini theorem. The last chapter deals with the Vitali cover­
ing theorem, the differentiation of measures and interval functions, 
and some applications to density and approximate continuity. 

The book is carefully written and systematic. The proofs are given 
in great detail, a fact which may help many who wish to become 
acquainted with the fundamentals of measure theory. 

HERBERT FÉDÉRER 

Sur les groupes classiques. By Jean Dieudonné. (Actualités scien­
tifiques et industrielles, no. 1040; Publications de l 'Institut de 
Mathématiques de l'Université de Strasbourg. VI.) Paris, Hermann, 
1948. 82 pp. 

The main purpose of this little book is to obtain the structural 
properties of the classical groups which can at present be obtained 
by purely algebraic methods. By skillful organization, complete 
mastery of his subject, and constant adherence to the "conceptual" 
point of view so fruitfully introduced into linear algebra in modern 
times, the author achieves this purpose with simplicity, efficiency, and 
elegance. The results are, with some exceptions, either old ones (to be 
found in the pioneering works of L. E. Dickson), or extensions of old 
ones to more general situations. But the long complicated matrix 
computations of the older literature, in which the ideas are fre­
quently buried beyond recall, are here almost entirely replaced by 
conceptual arguments expressed in geometric language which brings 
out for inspection the intuitive geometric motivation in the proofs. 

The classical groups are the full linear groups GLn(K), the sym-
plectic groups Spn(K), the orthogonal groups On(K,f), and the uni­
tary groups Un(K,f). The full linear groups over an arbitrary skew 
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field K have been previously treated by the author (Bull. Soc. Math. 
France vol. 71 (1943) pp. 27-45), and therefore are not considered in 
the present book. The symplectic and orthogonal groups are defined 
over a completely arbitrary field K, and the unitary groups either 
over a separable extension K of degree 2 over an arbitrary field or 
over a non-commutative skew field K possessing an involutorial anti-
automorphism. Most of this great generality comes gratis with the 
proofs ; but a large proportion of pages is required to clear up certain 
"marginal" cases (characteristic 2, fields with 3 elements, and so on). 

The symplectic groups prove to be the easiest. A bilinear form ƒ 
on a vector space E of dimension n over K is alternating if ƒ (x, x) = 0 
identically; the rank of such an ƒ is always even. Given such a form 
of rank n (so that n = 2m), a linear transformation u of E onto E is 
symplectic iîf(ux, uy) =ƒ(#, y) identically; the group of all symplectic 
transformations of E is Spn(K). I t is always possible to reduce to the 
case/(x, y) = XXi(£t,17m+™km+iVi) by choosing a suitable base of E; 
therefore up to isomorphism Spn(K) does not depend on the par­
ticular choice of the alternating form ƒ. The structure of Spn(K) 
is determined by proving: (a) the center of Spn(K) consists of the 
identity transformation I and — I (easy) ; (b) except when K has 2 
elements and n = 2 or 4, or when K has 3 elements and n = 2, the fac­
tor group of Spn(K) by its center is simple. The proof of (b) largely 
depends on the one hand on the fact that Sp2(K) is identical with 
the unimodular group £L2(i£) which, by the author's above-men­
tioned paper on GL^K), is known to be simple modulo its center 
except when the number of elements in K is 2 or 3, and on the other 
hand on the author's theorem that every symplectic transformation 
is a product of symplectic transvections, that is, mappings of the form 
x—>x+\f(x, a) (where A£i£ , aÇzE,f(a, a ) = 0 ) . 

The structure of the orthogonal groups proves to be more compli­
cated. In the case of field characteristic other than 2, a symmetric 
bilinear form ƒ on E uniquely determines a quadratic form g, and con­
versely. A transformation u of E onto E is said to be orthogonal if 
g(ux)=g(x) (or equivalently f(ux, uy)~f(x, y)). The group of all 
such orthogonal transformations is 0n(K, ƒ). In general, two quad­
ratic forms are not equivalent, so that it is necessary to specify the 
particular ƒ used. A vector subspace F of E is totally isotropic if 
f(x, y)=0 for all x and y in V. The maximum dimension v of a totally 
isotropic subspace is the index of ƒ. (This index, introduced by E. 
Witt (J. Reine Angew. Math. vol. 176 (1937) pp. 31-44), in an 
ordered field becomes the smaller of the two numbers 5 and n — s> 
where 5 is the index of inertia of g.) In the case of Spn(K) the integer 
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analogous to v is n/2; much of the complication surrounding On{K,f) 
seems to arise from the fact that v can assume any value subject to 
O^v^n/2. When n^S and v^l the structure can be described as 
follows: (a) the group 0%(K, ƒ) of all orthogonal transformations 
with determinant unity is a normal subgroup of On{K,f) of index 2; 
(b) the commutator group £2n(i£, ƒ) of On(Kyf) is a normal subgroup 
of Ot (K, ƒ) with factor group isomorphic with a subgroup of K*/Q, 
where K* is the multiplicative group of nonzero elements of K and Q 
is the group of all squares of elements of K*\ (c) the factor group 
fin (if, f)/Znr\Qn(K, ƒ), where Zn is the center of 0n(K, ƒ), is simple; 
(d) Zn={l, — ƒ } . The proof depends on a theorem on quadratic 
forms due to Witt (loc. cit.), on certain detailed information concern­
ing On(K, ƒ) for 2^nS6 quoted from B. L. van der Waerden's 
Gruppen von linearen transformationen (Berlin, 1935), and on a se­
quence of interesting propositions concerning orthogonal equivalence 
of subspaces of E and sets of generators for 0^(Kt ƒ), Ot(K, ƒ), and 
Q,n(K, ƒ). When ^ = 0, however, the structure of On(K> ƒ) evidently 
depends in a deep way on the nature of the particular field K, and 
the author confines himself to examples illustrating this fact. When K 
is the field of real numbers and ƒ is definite (so that v = 0) then (for 
n>2) Qn(K, f)=Ot(K, ƒ) and Ot(Ky f)/Zn is known to be simple; 
but when K is the field of formal power series ^C^z» ^ k with real 
coefficients then the author shows that On(K, ƒ) contains a sequence 
On(K,f) = G ( O G O • • • of normal subgroups such that n^oGt== {/} 
and each factor group Gi-i/d is abelian. 

The case of field characteristic 2 presents special problems. A 
quadratic form g is defined as a mapping g of E into K such that 
gÇkx+ny) ~\2g(x)+ix2g(y)+\iJ,f(xt y) identically, where ƒ is a bilinear 
form on E. ƒ is then alternating and therefore is of even rank 2p^n; 
the set E* of all vectors x such that ƒ (x, ;y) = 0 for all y in E is a vector 
space of dimension n — 2p; the set £0 of all vectors x in E* such that 
g(x)=0 is a vector space of dimension say qSn — 2p. g is called 
regular if # = 0; only regular quadratic forms are considered. The 
index v is now defined as the maximum dimension of a totally singu­
lar subspace of £ , a vector subspace V being totally singular if 
g(x) = 0 for all x in V. On(K, g) is now defined as the group of all linear 
transformations u of E onto E such that g(ux)—g(x) identically. 
When n — 2p = 0 (defect 0), n*z6, and J > ^ 1 , and when n — 2p>0 
(defect>0)j 2p^2, v^l (with the possible exception of the case 
2p = 4, v = 2)f the author proves that the commutator group On(if, g) 
is simple. Moreover, he shows that On(K, g)/Çln(K, g) is, in the case 
of defect 0, isomorphic with a subgroup of K*/Q, as in the case 
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of characteristic not 2, or with the product of such a subgroup and a 
cyclic group of order 2. Examples are given which show that when 
v = 0 the structure need not be so simple. 

Turning to the unitary groups the author considers two very gen­
eral types. To define the first type, consider a separable extension K 
of degree 2 over an arbitrary field K0. By means of the unique 
automorphism £—»| of K over K0, the concept of hermitian symmetric 
form is introduced: A mapping ƒ of EXE into K is an hermitian sym­
metric form if f(x+x', y) =ƒ(*, y)+f(x', y), f(x, y+y')=f(x, y) 
+ƒ(*, yOi /(X#, w) = W(*» 30» /(y* x) =ƒ(*> 30 identically. Given a 
symmetric hermitian form ƒ of rank n, a linear transformation « of E 
onto £ is unitary if ƒ(##, «y) =ƒ(#, y) identically, and the group of 
all such unitary transformations is Un(K,f). For the second type of 
unitary group the starting point is a reflexive non-commutative skew 
field K, that is, a skew field K distinct from its center K0 for which 
there exists an involutorial antiautomorphism £—>£ relative to K0 

such that £ + | and ££ belong to K0 for every £ in K. A reflexive skew 
field is always of rank 4 over its center (for characteristic not 2 is a 
generalized quaternion skew field). If £ is a right vector space over 
K then a mapping ƒ of EXE into K is an hermitian symmetric form 
on E if ƒ (*+* ' , y)=f(x, y)+f(x', y), f(x, y+y')=*f(x, y)+f(x, y'), 
f(xk, yp) = X/(x, y)y>,f(y, x) =ƒ(#, y) identically, and ƒ(#, #) always be­
longs to the center K0. The definition of Un(K, f) then proceeds as 
in the commutative case. For both types the theory develops much 
as for On(K,f), except that characteristic 2 does not cause so much 
difficulty as before. The index v is defined in the expected way. In 
the commutative case, when n^2 and v^l, the structure can be 
described as follows : (a) the set C/J (&i ƒ) °f unitary transformations 
with determinant unity is a normal subgroup of Un(K,f) with factor 
group isomorphic with the multiplicative group of all elements X £ i £ 
such that XX = 1 ; (b) except when KQ has 3 elements and n = 2 and 
when Ko has 2 elements and n = 2 or 3, the factor group Un(K, f)/Zn, 
where Zw is the center of Un(K,f), is simple; (c) Zn consists of those 
mappings x—>\x for which X n = 1 and XX = 1. In the non-commutative 
case for n^2 and v^l, the factor group of Un(K, ƒ) by its center 
Zn is simple, and Z n = {/, — / } . In both cases the structure is irregu­
lar for p = 0. 

E . R. KOLCHIN 


