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The object of this paper is to show that a certain system of non­
linear differential equations has one and only one periodic solution. 
These equations are of interest in that they describe the vibrations 
of a common type of electric network; therefore, the physical origin 
of the equations will be discussed first. 

A linear network is a collection of linear inductors, linear resistors, 
and linear capacitors arbitrarily interconnected. If a periodic electro­
motive force is applied to this network, a periodic system of currents 
can exist, provided that the network has no free vibration of the 
same period. This, of course, is well known. The main theorem of 
this paper states that if in such a network the linear resistors are re­
placed by quasi-linear resistors, a periodic system of currents can 
again exist. 

A quasi-linear resistor is a conductor whose differential resistance 
lies between positive limits. Quasi-linear resistors have extensive 
practical applications. No other type of nonlinearity except this 
type of nonlinear damping is considered here. 

For example, consider a linear network with one degree of freedom. 
An inductor of inductance L, a resistor of resistance R, and a ca­
pacitor of capacitance S"1 are connected in series. The current i(t) 
flowing in this circuit must satisfy the following differential equation: 

di C 
L — + Ri + Si idt = g. 

dt J 

Here g(t) is the electromotive force impressed in the circuit and is a 
periodic function of time. 

The corresponding nonlinear equation to be studied is obtained by 
replacing the linear relation Ri by a function V(i) which for all values 
of i is such that A~~l S V(ï) ^Af where A is a positive constant. 

In a general network with m degrees of freedom, if a set of m inde­
pendent circuits (meshes) is chosen, any distribution of current in 
the network may be uniquely specified by assigning suitable values 
to the cyclic currents iiy i%% • • • , im flowing in these circuits. Let 
gu g2r ' • • > gm be the electromotive forces acting in these cir­
cuits. I t is convenient to introduce the electric charge variables 
Jii y% • • • , y m such that ij = yj. The linear network equations may 
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then be written as Ly"-\-Ryf+Sy = g. Here L, R, and S are m-way 
matrices and y and g are vectors with components y3- and gj. Well 
known arguments concerning electric and magnetic energy show that 
the matrices L, R, and 5 are symmetric semidefinite. The nonlinear 
network equations are Lyn-\- V(y')~\-Sy = g where F is a vector 
function. 

The central idea of this paper is to consider the network equations 
as a transformation of Hubert space; that is, the equations give a 
transformation from the Hilbert space of electric charge to the Hubert 
space of electromotive force. The existence theorem to be proved, 
then, is that this transformation has an inverse. The novelty of the 
proof arises when the linear transformation is replaced by a nonlinear 
transformation. Theorem 4, below, gives conditions which insure 
that a nonlinear transformation have an inverse. This theorem is 
analogous to the theorem that closure and completeness are equiva­
lent for linear transformations. The casual reader may turn directly 
to this theorem and skip the algebraic complications which must be 
disposed of first. 

I t should be noted that Levinson, Chevalley, Lefschetz, and others 
have treated even more general types of nonlinearity in a single 
second-order differential equation. Therefore, in the case of one de­
gree of freedom, the contribution of this paper is to furnish a method 
of proof which differs radically from theirs. It would be interesting to 
know if their techniques could be extended to treat the system of 
equations discussed here. 

In a previous paper the transient solutions of the nonlinear system 
of equations were discussed. Combining the results of these two 
papers, it follows that for networks of the type considered, all solu­
tions must approach the periodic solution. No appeal, however, will 
be made in this paper to results obtained in previous papers. More­
over, no appeal will be made to known theorems on differential equa­
tions. Theorem 3 of the present paper is believed to be a new theorem, 
even for linear networks. 

Let £ be a Euclidean space of m dimensions. A vector x will have 
components xi, X29 • • • , xm which are real numbers. If x and y are 
vectors, then the inner product is given by (x, y) = Xiyi+x2y2+ • • • 
+xmym and the norm of x is \\x\\ = (x, x)1/2. All constants and func­
tions shall be assumed real. The symbol A will stand for a positive 
constant whose value, however, may differ in different sections. 

If B is a matrix, the manifold of all vectors of the form Bx will be 
designated as MB. A semi-definite matrix B satisfies the relation 
{Bx, x)*z0 for all vectors x. 
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LEMMA 1. If B is a symmetric matrix which satisfies the inequality 
0^(Bx, x) SAi\\x\\2 for all vectors x, then: 

(a) \\Bx\\2^Ai(Bx, X). 
(b) (Bx, x) SA%\JBx\|2 where A2 is a constant. 
(c) ||J&||2^./12CB;S, z) where z=*Bx. 

PROOF. The inequalities of this lemma are obvious if B is a 
diagonal matrix; however, the expressions are invariant under an 
orthogonal transformation, and it is well known that there is an 
orthogonal transformation which reduces B to diagonal form. 

LEMMA 2. Let MB and M' together span E. Then any vector v has a 
unique representation v — Bb-\-vf where b is orthogonal to M' and v' is 
contained in M''. There is a constant A independent of v such that \\b\\9 

\WUA\H\. 

PROOF. If the manifold spanned by the vectors of the form Bb+v' 
were not E, there would be a nonzero vector c such that (Bb+v', c) = 0 
for all b and v'. Let & = 0, then (vr, c) = 0 , so c is orthogonal to M'\ 
therefore, it must be in MB- Let b = c; therefore (Be, c )=0 , and by 
Lemma 1 (c) it follows that c = 0, which is a contradiction. 

From v=Bb+v', we have (v, 6) = (Bb, b), so (Bb, b)^\\v\\ \\b\\. Then 
from Lemma 1 (c) we have ||&||2^S-4|MI ||&|| or | | i | | ^^4||z;||. Because 
v' = v—Bb, it is obvious that v' satisfies an inequality of the same 
form. The uniqueness of the representation follows directly from 
these inequalities. 

In what follows, L, R, and S will denote symmetric semi-definite 
matrices such that ML, MR, and Ms together span E. A simple 
application of Lemma 1 (a) reveals that the matrix L+R+S is non-
singular. 

THEOREM 1. Any vector v has a unique representation in the form 
v=Ll+Rr+Ss where IGML, r^MR, and s£Ms and Rl = Sl = Sr = 0. 
Moreover, \\l\\, \\r\\, \\s\\ SA\\v\\ where the constant A is independent of v. 

PROOF. In Lemma 2 let B =L and let M' be the manifold spanned 
by MR and Ms. Then v=Ll+v'. The manifold M' is also a Euclidean 
space, so again by Lemma 2, v' =Rr-\-v" where vrfÇzMs\ hence 
v" = Ss. The remainder of the statements of the theorem follow easily 
from Lemma 2. 

We are to consider vector equations of the form 

(1) Ly" + Ry'„+ Sy = g. 

We first wish to show that it is possible to make a linear transforma­
tion of variables so that these equations break up into three inde-
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pendent sets, two of which are of very simple form; the remaining 
set we shall call the canonical form. First by an orthogonal trans­
formation of y", y', y. and g, we may employ a rotated coordinate 
system in which 5 is a diagonal matrix. Since the matrix elements of 
5 are then non-negative, a second transformation, D~'1yn', D~ly', 
D~ly, and Dg (where D is a nonsingular diagonal matrix), may be 
chosen in such wise that the new matrix elements of S are either 0 
or 1. The new matrices L, R> and S are expressed in terms of the old 
by DLD. DRD. and DSD. Moreover, the new matrices are sym­
metric semi-definite. By Lemma 2, any vector y of E may be uniquely 
expressed in the form ^ + 5 5 where y\ is in the manifold ML+MR 
and ^ is orthogonal to this manifold and is in the manifold Ms» But 
now S2 = S, so Ss = s. Let y^ — s, then we have a unique decomposi­
tion of the vector y in the form yi+y2. Then Sy = Syx+Syi = Syi+y^ 
where Syi(~ ML+MR. T O show the latter statement, let x be any 
vector orthogonal to ML+MR, SO it is in Ms» Then (Syi, x) = (yi, Sx) 
— (yu # ) = 0 . The vectors y' and y" are split in the same fashion. 
Noting that Lyi' —Ryl = 0, we may write the equations in the form 
Lyl' +Ryl +Syi+Sy2 = g. Both sides of this relation can be split 
into components in the manifold ML+MR and its orthogonal comple­
ment. Thus Lyl' +Ry{ +Syi — gi, and 3>2 = g2. We could transform 
the first set of equations in an analogous fashion but splitting L in­
stead of S; this gives the desired decomposition into the three sets 
y2 = g2, yt' =gh and Lyi' +Ryl +Syz — gs. The latter set of equations 
is the canonical form and is such that if £3 is the manifold of these equa­
tions, then ML and MR span Ez and MR and Ms also span Ez. In other 
words, L+R and R+S are both nonsingular. 

Let v = V(x) be a vector function with corresponding differential 
transformation dv = V'dx where V' is the matrix of differential coeffi­
cients. If R is a symmetric semi-definite matrix, we shall say that 
V(x) is a quasi-linear replacement of the linear function Rx if: 

(I) 7(0) = 0 . 
(II) V'(x) exists f or all x as a symmetric matrix. 
(III) There is a positive constant A such that f or all vectors x and y 

A-i(Ry,y) ^ (V'y, y) g A(Ry, y). 

By use of Lemma 1 we may derive other inequalities such as 
| | # y | N ^ 3 ( F y , / ) , \\V'y\\*ûAWy, y), and || V'y\\ SAh\\Ry\\. It is 
apparent that V' is semi-definite and that it is made up of uniformly 
bounded matrix elements. By the mean value theorem V(x) — V(y) 
= V'(x—y) where V' is evaluated at the point y+6(x—y); O ^ ö ^ l . 
Setting y = 0, we have V(x) = V'x. 
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In performing the transformation of equations (1) to a canonical 
form, we note that the new matrix Rn is given in terms of the old by 
the relation Rn = BtRB where B is a nonsingular matrix and Bt is its 
transpose. The quasi-linear replacement would become Vn(x) 
= BtV(Bx), and hence Vn =BtV'B. Clearly, then, Vn(x) is a quasi-
linear replacement of Rnx. 

We now wish to show that all vectors v = V(x) are contained in the 
manifold MR. Because V(x) = V'x, the manifold of vectors V'y con­
tains v. If the manifold of vectors V'y were not contained in the 
manifold MR, there would be a vector z perpendicular to MR; that 
is, Rz = Q but V'z5*0. By virtue of the inequalities given for a quasi-
linear replacement, this implies that 2 = 0. I t follows, therefore, that 
the same transformation which reduces equations (1) to canonical 
form will also reduce the following equations: 

(2) Ly" + V(y') + Sy = g. 

We now regard the vectors of a space E to have components which 
are functions of the time t. The primes in equations (1) and (2) refer 
to differentiation with respect to time; thus Ry' = (d/dt)Ry. We adopt 
the convention that writing Ry' does not imply that all components 
of y are differentiate but only those in the manifold MR. Moreover, 
in what follows, "differentiable" means absolutely continuous; that 
is, we differentiate only those functions which are the integrals of 
Lebesgue integrable functions. I t follows, of course, that the deriva­
tives may not exist everywhere, but only almost everywhere. Except 
where the contrary is indicated we shall require only that the equa­
tions (1) and (2) hold almost everywhere. 

We define the real Hubert space H (of electromotive force) to be 
the set of all vectors of E whose components are periodic functions 
of the time t of period 27T and which are of integrable square; that is, 
they belong to £2(0, 27r). The bilinear form of two vectors x and y is 
given by ((x, y)) = (l/27r)/o7r (x, y)dt. If x and y are constant vectors, 
it follows that ((x, y)) = (x, y). The norm of x is given by ||x||2 = ((#,#)). 
The context will prevent confusion between norms in the space E 
and H. The subspace of constant vectors will be denoted by C. The 
subspace Ha will be defined as the space of all vectors orthogonal to 

a 
The normed linear space Q will be defined as the space of vectors 

of the form y ==y0+U2/2+rt+s where /, r, and s satisfy Theorem 1 
and where yo(£Ho. The norm of y is given by the relation | |^ | | | = H ^ ' H 2 

+ ||ity/||2+||«S3>||2. We note that in equation (1) if g £ C , we can obtain 
a solution j G Q w ^ h Jo = 0. This is by virtue of Theorem 1. If yÇzQ, 
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it follows that Lyn', Ry', and SyÇzH, and by the convention adopted 
above, Lyf and Ry are absolutely continuous. 

In what follows it will be tacitly assumed that we are considering a 
canonical form, because a considerable simplification of the proofs is 
thereby achieved. It will be apparent, a posteriori, that the main 
theorems are independent of this assumption. The first simplification 
is that 1 = 0, because by Theorem 1, (R+S)l = 0, but R+S is non-
singular in the canonical form. We now have that Ly' is periodic as 
well as being absolutely continuous, so Ly'ÇzH. Thus (L+R)y'£iJ, 
and since L+R is nonsingular, y' exists and belongs to H. 

LEMMA 3. If u, v, u', and v' all belong to H, then ((u, vf)) = — ((u', v)). 

PROOF. Since (d/dt)(u, v) = (u', v) + (u, vf), and since (u, v) is ab­
solutely continuous and of period 2x, it follows that integration of 
this equation on the left yields zero. 

LEMMA 4. If yEQ, then ((Sy, / ) ) = 0 and ((Ly", / ) ) = 0 . 

PROOF. We have seen above that y1 exists, so y is absolutely con­
tinuous, and so, also, is Sy. We now have (Sy, y) an absolutely con­
tinuous periodic function, and (d/dt)(Sy, y)=2(Sy, y'), so the first 
part of the lemma is true. The second part follows from the identity 
(d/dt)(Ly',y')=2(Ly",y'). 

A sequence fn, n = 1, 2, • • - , of H converges strongly tof if ||/—/n|| 
approaches zero as n approaches infinity, and a sequence converges 
weakly if ((x, ƒ—ƒ»)) approaches zero for every x of H. Strong con­
vergence, of course, implies weak convergence. Pointwise convergence 
is ordinary convergence, and if such convergence is bounded (uni­
formly) it implies strong convergence by Lebesgue's theorem. 

If a sequence fn is uniformly bounded, it is easy to show, by using 
the "diagonal process" on an expansion of fn in terms of a complete 
orthonormal set, that there is a sub-sequence which is weakly con­
vergent. 

LEMMA 5. If fn is a sequence of Ho andfn is uniformly bounded and 
weakly convergent, then there is anfC^Ho such that f n converges pointwise 
and boundedly to f and f n converges weakly to f. Conversely, if fn con­
verges pointwise to ƒ, then fn converges weakly to ƒ'. 

PROOF. Suppose fn' converges weakly to f'. We may take f to be 
the derivative of a function ƒ belonging to H§. Considering the se­
quence fn —f', we see that there is no loss of generality in supposing 
in the beginning that fn' converges weakly to zero. Thus ((x, fn))-*0, 
and by taking x to be a vector of one component, which component is 
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the characteristic function of the interval a, ô, we have, if un is the 
corresponding component of fnj fh

aUndt-^0. But \un{b)— un(a)\2 

^\JluUt\2S\b-a\Jl\u:\HtS{2iry\\f:\\\ Thus un(b)-un(a) is 
boundedly convergent, so fl* (un(b)—un(a))da—^9. But since fn ÇZHQ, 

the integral of the second term vanishes, so 2irun(b)-*0. Thus all the 
components of fn approach zero pointwise and boundedly. The con­
verse is obvious. 

LEMMA 6. If yGQ, then | |y | | ^ ^ 4 | | ^ | | Q where A is independent of y. 

PROOF. Otherwise there is a sequence yn such that \\yn\\ = 1 and 
IWIQ—>0. Clearly rn and sn approach zero by Theorem 1, so without 
loss of generality we assume yCiHo. Since Lyn ' converges strongly to 
zero, it follows from Lemma S that Lyû converges to zero. Thus 
(L+R)yn converges to zero but L+R is nonsingular, so y I con­
verges to zero, which is incompatible with H^'1| = 1. 

THEOREM 2. The space Q of electric charge is a Hubert space. 

PROOF. Let the bilinear form be ((x, y))Q = ((Lx", Ly")) 
+ ((Rx', Ry')) + ((Sx, Sy)). If |M |Q = 0, it follows from Lemma 6 that 
y' = 0. But by Theorem 1, r = 5 = 0, so ^ = 0. It is apparent, therefore, 
that the bilinear form has the necessary qualifications. 

It remains to show that Q is closed, so consider a sequence yn such 
that ||3>n—3>m||!—>0. Without loss of generality we may suppose that 
yn&H0. By Lemma 6, y^ is convergent, and by Lemma 5, yn con­
verges pointwise to a function y. By the converse statement of Lemma 
5, Ly^', Ryn , and Syn converge to Ly", Ry', and Sy respectively. This 
completes the proof. 

We need the following further restriction on a quasi-linear replace­
ment: 

(IV) If V is a function of the time t, then V(x, t) = V(x, t+lir) and 
(Vl9 Vi)£A(V, V) where Vi = dV(x, t)/dt. 

It is evident that the inequalities given for a quasi-linear replace­
ment remain unchanged when the bilinear form (,) is replaced by 
the bilinear form ((,)). 

LEMMA 7. IfRxn converges strongly to Rx, then V{xn) converges strongly 
to V(x). The same is true for pointwise convergence. 

PROOF. V(xn) — V(x) = V'(xn—x), so 

| | F « ) - V(x)\\2 = \\V(xn - *) | |2 ^ A\\\Rxn - Rx\\*-^0. 

The proofs below would be a lot simpler if we could say the same thing 
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for weak convergence. However, it is easy to see that the lemma is 
almost always false under such conditions. Consider sin nt, which 
converges weakly to zero, but / ( C + s i n nt) would not converge 
weakly tof(C) for all C unless/(C) is a linear function. 

The fundamental hypothesis which will be imposed on the matrices 
L, i?, and S in what follows is the relation: 

(3) Ly" + Ry' + Sy = 0 implies y = 0 if y G Q. 

An apparently less restrictive condition would be that these equations 
have no periodic solution in Q, but by virtue of Theorem 1 it is easy 
to see that these conditions are equivalent. It may be shown that a 
necessary and sufficient condition for this hypothesis is that the de­
terminant (-n2L + (-iy'*nR+S)?éO for »=* ± 1 , ± 2 , • • • . No use 
shall be made of this fact, however. 

THEOREM 3a. Let Ly"+V'(x)y'+Sy=f where yGQ and xÇiH. 
Then | H | Q ^ - 4 | | / | | where A is independent of x and y. 

PROOF. It is to be noted that, in particular, V'(x)y' could be V(y'). 
Because \\y\\Q is finite, it follows from the inequalities derived for a 
quasi-linear replacement that ||/|| is finite. If the theorem is not true, 
it is clear that a sequence yn exists with | |^«||Q = 1 and the cor­
responding sequence fn converging strongly to zero. By Lemma 6, 
| | y | | ^ - 4 , so it may be assumed that the sequence y I converges 
weakly. I t may also be assumed that sn converges; hence, by Lemma 
5, yn converges pointwise to some y. 

Employing Lemma 4, we have ((Vyd, yn)) — ((Lyn' +V'yn 
+Syn, yn)) = ((/n, yn ))—>0. By the inequalities for a quasi-linear re­
placement, Ryn and V'yJi converge strongly to zero. Write Ly" = / n 

— Vfyn'—Syn. The terms on the right converge strongly; hence, 
Ly" converges strongly. Thus yn converges in Q to, say, y, so 
Ly"+Sy = 0 and jR/ = 0. But Ly"+Ry'+Sy = 0 implies ;y==0 by 
hypothesis (3). This is incompatible with 1=11^1^ = 11̂ 110, so the 
contradiction proves the theorem. 

Let Ln=L-}-R/n where n is a positive integer. The equation 
Lny"-\-Ry'-\-Sy~Q for y(EQ implies y = 0. This is seen by forming 
the inner product with y', yielding ((Ry', y'))=0- Thus Ry'= 0, and 
consequently Ry" = 0. Thus Ly"+Ry'+Sy = 0 and y = 0. 

THEOREM 3b. Theorem 3a is valid if L is replaced by Ln for an A 
independent of n if fÇzH. 

PROOF. For n fixed we may introduce a space Qn. Then by the 
above remarks we see that Theorem 3 is applicable. Thus ||Lw:y"||2 
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+ | | i ?y | | f + | |5y | | ^ i l« | | / | | » . Since Ln is nonsingular, ||Ln;y"|| ^ I I M I 
è^42 | |l '^ / / |L We may assume ( X ^ J U ^ I , SO if An=A/A2, then 

IMI^J/II-
If it is not possible to obtain a uniform bound, there is a sequence of 

integers, say {m}y with a corresponding sequence ym and fm with the 
properties assumed in the proof of Theorem 3a. Then as before we 
have that Lmy^ is strongly convergent. But Lmym =LyJ +RyJ /mf 

and this converges to Ly'. Thus by Lemma 5, Lmy^ converges strongly 
to Ly". As before, we obtain the contradiction Ly"+Ry'+Sy = 0. 

THEOREM 4. Let T be a transformation of a linear vector space Q on 
a Hubert space H such that: (a) if yn is a sequence of Q such that 
\\Tyn\\t£A, then there is a sub-sequence ym such that T(ym) converges 
weakly to T(y) for some y of Q; (b) for each x and y of Q, 
limh-*o(T(y+hx) — T(y))/h = T'(y, x) exists where h is real] (c) for 
each y the relation ((T'(y, x),f)) =0for all x implies f = 0. 

Then for any g of H the equation g = T(y) is solvable. 

PROOF. Let b be the greatest lower bound of ||g — T(y)\\ for all y of 
Q. Let yn be a sequence such that ||g— r(y„)||—>b. Clearly | | r (y n) | | is 
uniformly bounded, so there is a weakly convergent subsequence, ym, 
and by condition (a) there is a y such that T(ym)—>T{y) weakly. Thus 
| | « - r ( y ) + r ( y ) - r ( y « ) | | » - | | « - r ( y ) | | « + 2 ( ( g - r ( y ) ^ T(y)-T(ym))) 
+ \\T(y)-T(ym)\\\ The limit of the left side is b2, and the limit of 
the right is not less than \\g— T(y)\\2, so &2è||g—r(:y)||2; hence 
b = \\g-T(y)\\. L e t f = T ( y ) - g , then \\g-T(y±hx)\\* = \\f+T(y±hx) 
- r ( : y ) | | 2 = | | / | | 2+2(( / , T{y±hx)-T(y))) + \\T{y±hx)-T{y)\\\ Thus 
0^2((jf, T(y±hx)~T(y))) + \\T(y±hx)-T(y)\\2. Divide through by h 
taken to be positive, and let k approach zero. Then 0 ^2 ( ( / , T'{y, x)))t 

and 0 ^ - 2 ( ( / , T'(y, x))), so by (c) it follows that ƒ = 0 . Q. E. D. 

THEOREM 5. For each g of H there is a unique y of Q such that 
Ly"+V(y')+Sy = g. 

PROOF. First assume that L is nonsingular. Let T(y)=Ly" 
+ Viy^+Sji and consider the conditions of Theorem 4. Let T(yn) be 
a uniformly bounded and weakly convergent sequence. By Theorem 
3a, Lyn' is uniformly bounded. There is a sub-sequence, therefore, 
over which Ly" is weakly convergent, and since L is nonsingular, 
y" is also weakly convergent. Also by Theorem 3a, Ryt and Syn are 
uniformly bounded, so we may assume that a sub-sequence has been 
selected in such wise that rn and sw converge. Thus by Lemma S 
there is a y of Q such that yn converges pointwise boundedly to y, y I 
converges pointwise boundedly to y', and y" converges weakly to 
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y". By Lemma 7, F(y» ) converges pointwise to V(y'). It follows, 
therefore, that T(yn) converges weakly to T(y). This shows that (a) 
is satisfied. To show that (b) is satisfied, we note that (V(y'+hx') 
-V(y'))/h has the limit V'(y')%'. Thus T'(y, x)=Lx"+V'x' + Sx, 
and T' is a linear transformation of x. To show that (c) is satisfied, 
consider the relation ((ƒ, Lx"+ V'x'+Sx)) = 0. First let x be a con­
stant vector; then 0 = ((ƒ, Sx)), so the component of ƒ in C is orthog­
onal to the range of S. The same will be true of/» where ƒ» is the first i 
terms of the Fourier series for ƒ. An x may be chosen, therefore, so 
that x' =ƒ,; then ((ƒ, Lx")) = ((*', Lx")) = 0, and ((ƒ, Sx)) = ((*', Sx)) 
= 0. Thus we obtain ((ƒ, F V ) ) = 0 , or ((ƒ, F ' / t ) ) = 0 . Allowing i to 
approach infinity in this expression, we obtain ((ƒ, V' ƒ)) =0 . By the 
properties of a quasi-linear replacement, this implies that Rf=0; 
thus, ƒ belongs to Ho, Letf=u", and let u and x belong to H0\ then 
Q = ((u",Lx"-Bx'+Sx)). By Lemma 3, <£x",Lu"+Ru' + Su))=0, 
but x" is an arbitrary element of H0, so Lu"+Ru'+Su = 0; thus u = 0 
and hence, ƒ=(). This proves the existence of a solution under the 
assumption that L is nonsingular. 

The matrix Ln is nonsingular, so let g be a function of Ü with a 
bounded first derivative. By what we have just proved, there is a y of 
Çsuch that Lny"+ Vy'+Sy = g. Thus 3/" = L ~ 1 ( g - F ( y ; ) - 5 y ) almost 
everywhere. Since yn' is absolutely continuous, y' =foLn1(g— V(yf) 
— Sy)dt+C. But the integrand is continuous, so actually the expres­
sion for y" holds in the pointwise sense. I t is clear, therefore, that 
y" has a first derivative which is uniformly bounded in the pointwise 
sense; hence, by a well known theorem of Lebesgue integration, y" 
is absolutely continuous, and therefore y'ÇîQ. We may write Lny'" 
+ V'y" + Sy'=gi where gi = g'-V1{yr). By hypothesis IV, | | 7 i ( / ) | | 
^^4| | F (y ) | | and from Theorem 3b applied to the equation for g, we 
have || 7(y') | | ^4 | | g | | . Thus ||gi|| is uniformly bounded, so applying 
Theorem 3b to the equation for gi, we have that ||Z/y"'||, ||ify"||, 
||Sy'\\ are uniformly bounded. Allow n to approach infinity and con­
sider the sequence yn. We may suppose that the sequence is so chosen 
that Lyi/', Ryi', and SyJ are weakly convergent. Thus Lyr

n', Ryn , 
and Syn converge pointwise. Clearly, V{yJi) converges pointwise. 
The equation for gi may be solved for Ry'n'/n in terms of uniformly 
bounded expressions. It may be assumed, therefore, that it is uni­
formly bounded in H and that Ry'n/n is pointwise convergent. But 
||-Ry»1| i s uniformly bounded, so Ry'n/n must approach zero. If y is 
the limit of yn, then Ly" + V(y')+Sy = g, and this equation holds in 
the pointwise sense, and all terms appearing are continuous. 

If g does not have a bounded derivative, let gt- equal the first i terms 
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in its Fourier series, and we can satisfy the equation for g*. If yt and 
yj correspond to gi and gJ} let z = yi — yj'} then Lz" + V'z'+Sz = gi — gj. 
By Theorem 3a, ||s||<2 approaches zero as i and j approach infinity, 
so yi converges in Q to some y. This y satisfies the equation for g, 
and the proof that a solution exists is complete. 

To prove the uniqueness of the solution, we note that if z is the dif­
ference of two solutions, then Lz"' + F V + & = 0. Theorem 3a shows 
directly that 2 = 0. 

THEOREM 6. Suppose that all solutions of equations (3) are such that 
3/'—>0 as t—*oo. Let yi be the periodic solution of equations (2) when g 
is a function with a bounded first derivative. If y2 is any other solution 
of these equations with a continuous first derivative, then Jo^yl —yl^dt 
< o o . 

PROOF. This is a special case of a theorem which the writer proved 
in a previous note [ l ] . 1 To apply this theorem here it is necessary to 
know that y I is continuous, but this is apparent from the proof of 
Theorem 5. In the previous note it was not explicitly stated that V 
could be a function of the time. The proof, however, remains un­
changed for this generalization. 

A later note will consider similar theorems for networks of linear 
resistors and iron-core inductors. 
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