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1. Introduction. The title of this article requires some explanation. 
The term "abstract algebra" was used to indicate that we shall deal 
with purely algebraic objects like groups, algebras and Lie algebras 
rather than topological groups, topological algebras, and so on. The 
method of study is also purely algebraic but is the replica of an alge­
braic process which has been widely used in topology, thus the words 
"toplogical methods" could be replaced by "algebraic methods 
suggested by algebraic topology." These purely algebraic theories do, 
however, have several applications in topology. 

The algebraic process borrowed from topology is the following. 
Consider a sequence of abelian groups {Cq) and homomorphisms 8, 

(1.1) C°-^Cl-> > O " 1 -^ Cq - i Cq+1 -» • • • 

such that ôô = 0. In each group Cq two subgroups are distinguished 

Zq = kernel of 8:Cq -* 0 + 1 , 

Bq = image of ô:C*~l ~» Cq 

with the second definition completed by setting 5° = 0. The condi­
tion SS = 0 is then equivalent with BqQZq. The group 

Hq = Zq/Bq 

is called the gth cohomology group of the sequence (1.1). The ele­
ments of the groups Cq

y Zq
y Bq and Hq are called g-dimensional co-

chains, cocycles, coboundaries and cohomology classes respectively. 
Each cocycle zÇzZq determines a cohomology class as the coset 
\z\ =*z+Bq, Two cocycles in the same coset are called cohomol-
ogous. 

The process just described can be applied in the following three 
instances. 

I. Groups. Let Q be a multiplicative group and G an abelian group 
written additively. Assume further that Q operates on G, that is, that 

An address delivered before the Summer Meeting of the Society on September IS, 
1945, by invitation of the Committee to Select Hour Speakers for Annual and Sum­
mer Meetings; received by the editors May 29, 1948. 

1 The presentation has been brought up to date and includes many results ob­
tained after 1945. 
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for each x(EQ and gÇ^G an element # g £ G is given such that 

x(gi + g*) = xgi + %&, x2{xxg) = (x2xi)g, \g » g 

where 1 is the unit element in Q. The group C*((), G) of the g-dimen-
sional cochains of Q in G is defined as the group of all functions ƒ of 
q variables in Q with values in G. Addition in Cq(Q, G) is defined by 

(A + /*)(*i» - " # i **) = / i ( * i t ' • • > * « ) + /a(*i» • " ' i *«)• 

The coboundary homomorphism S:Cff(Ç, G)—>Ctf+1(ö, G) is defined 
by the formula 

(Bf)(xi, • • • , xg+1) = Xif(x2j • • • , tfg+i) 

+ 2 (- i)y(*i> • • • » Xi%i+h • • • , «(H-O 
*^ 

The relation ôô = 0 is verified by computation. The resulting co­
homology group Hq(Q, G) is called the qth. cohomology group of Q 
over G. Note that the operators of Q on G are part of the definition 
and a change in these operators will generally alter the group 
H*{Q,G). 

II . Associative algebras. Let A be an associative algebra over a 
field F, and F a vector space over the same field. Assume further 
that F is a two sided 4-module, that is, that for every a £ 4 , vÇ: V 
elements av and va of F are defined which are bilinear functions of a 
and v9 and satisfy 

a2(aiv) = (a2ai)v, a2(vai) = (a2v)ah (va2)ai = Ï ^ 2 #I ) . 

The group Cq(A, V) of the g-dimensional cochains of A in F i s defined 
as the group of all functions ƒ of q variables in 4 with values in F, 
linear with respect to each variable. Addition in Cq(At V) is defined 
as before. The coboundary formula is 

(ô/)(ai, • • • , aq+i) = aif(a2, • • • , aq+1) 
Q 

+ 2 (-i)y(ûii • • • > öfö<+i, • • • , öfl+i) 
* - i 

The resulting cohomology group Hq(A, V) is the qth cohomology 
group of A over F. The groups Ca, • • • , Hq in this case are clearly 
vector spaces over the field F. 

I I I . Lie algebras. Let L be a Lie algebra over a field J7 and let F 
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be a vector space over F. Assume further that a representation P of 
L in F is given, that is, that for every x £ Z a linear transformation 
Px: V—>V is given such that Px is a linear function of x(~L and that 

•* y* x -Lx* y = = -* [»,y] 

for x, yÇzL. The group Ca(L, P) is defined as the group of all functions 
ƒ of g variables in L with values in V, linear with respect to each vari­
able and alternating with respect to permutations of the variables. 
Addition in Cq(L, P) is defined as before. The coboundary formula is 

(df)(xh • • , xq+i) 

= ] £ ("-l)*+ m/([*&, *i]9 xi, • • • , **, • • • , xh • • • , xq+i) 
k<i 

<H-1 

+ Z ( - i ) m ^ . , / ( * i , • • • , *i, • • • , ^+1), 
*=»0 

where the symbol under the circumflex is to be omitted. The resulting 
cohomology group Hq(L, P) is called the qth. cohomology group of L 
over P and clearly is a vector space over F. In the special case when 
V~F and the representation P is trivial (that is, when Px — 0 for all 
x(E£), the second part of the coboundary formula is zero. We then 
write Hq(L) instead of Hq(L, P ) . 

In all the three cases discussed above the convention prevails that 
a function of zero variables with values in G is an element of G. Thus 
C°(Q, G) =G, C\A, V) » V, C°(i , P) = V. 

A certain common feature can be observed in all the points at 
which the cohomology theories defined above come into contact with 
established parts of algebra. The cocycles almost invariably arise as 
"deviations" from a certain simple behavior. This point is not suffi­
ciently formalized to be discussed here, but will be emphasized as the 
various instances come up. A strong analogy with the "obstructions" 
considered in topology in problems on extension and classification of 
mappings and in the theory of fiber bundles is suggested. In some 
instances the "deviations" and the "obstructions" actually come into 
contact. 

The definition of the cohomology groups of groups was given by 
the author and S. MacLane in 1943 ([12], [13], [IS], see also Hopf 
[26] and Eckmann [ö]).2 The remainder of this paper is devoted to 
the discussion of these groups. After some preliminaries (§§2-3) we 
describe (§§4—8) the connections that have been established be­
tween this cohomology theory and other parts of algebra. This is 

2 Numbers in brackets refer to the bibliography at the end of the paper. 
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followed (§§9-13) by the description of some intrinsic properties of 
the cohomology groups; these are often helpful in actual computa­
tions. Some contacts with topology become apparent. Finally 
(§§14—17) we give an account of the topological applications of the 
cohomology groups. 

The cohomology theory of associative algebras was studied by 
Hochschild [22], [23], [24]. As yet, there are no applications to 
topology. Some of the algebraic results are analogous to the cor­
responding theorems in cohomology theory of groups. 

The cohomology groups of Lie algebras were studied by Chevalley 
and the author [5]. The contact with topology is established by the 
fact that the cohomology groups (real coefficients) of the space of a 
compact Lie group are isomorphic to the cohomology groups of its 
Lie algebra. The theory is still in a very rudimentary stage and needs 
further development. 

2. Alternative definitions. If we compare the definition of the 
coboundary ôf for the cases of groups and associative algebras we 
observe that they are formally identical except for the right operator 
on the last term. The two formulae can be brought to coincidence by 
assuming that the group Q acts on G as a group of two-sided operators, 
that is, that in addition to the left operators of Q on G, the group Q 
operates on G also on the right in such a way that 

(gl + g*)* = glX + &%> (g*l)*2 = g(XlX2), gl = g, 

(x1g)x2 = Xi(gX2). 

The formula for 5/ is then modified by replacing the last term 
4ficu • • • » %Q) by f(xi, • • • , Xq)xq+i. The cohomology group Hq(Q, G) 
thus obtained includes the earlier groups as special cases, namely when 
the right operators of Q on G are simple (that is, when gx=*g for all 
xÇzQ, g£G). It turns out that this generalization is not essential. In 
fact given that Q operates on G two-sidedly, define the group oG which 
coincides with G as a group but has Q as a group of left operators as 
follows 

x o g = xgxr1. 

Define a map 

«:C*(e,oG)->C«(Q,G) 

by setting 

W)(xi, • • • , xq) = f(xu • • • , xq)xi • ••*«. 
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The maps <f> are isomorphisms and commute with the coboundary 
operators, thus inducing isomorphisms of the cohomology groups 
H(Qt G) (with two-sided operators) and H(Q, oG) (with left oper­
ators). From now on, unless the contrary is specified, we shall adhere 
to the original definition involving left operators only. 

A cochain fÇzCq(Q, G) is called normalized provided/(xi, • • • , # « ) 
= 0 whenever #,= 1 for at least one index i = 1, • • • , q. The normal­
ized cochains form a subgroup Ci of Cq. Since the coboundary of a 
normalized cochain is again normalized, the groups {C£\ define 
cohomology groups i î j the same way as the sequence {CQ} defines 
Hq. Since every normalized cocycle also is a cocycle in the ordinary 
sense, a "natural" homomorphism Hl—*Hq is induced. We have 
(Eilenberg-MacLane [IS]) 

(2.1) The natural homomorphism H%(Q, G)—>Hq(Q, G) maps the 
cohomology group of Q defined using normalized cochains isomorphically 
onto the cohomology group of Q. 

The same is true for two-sided operators. 

3. The groups H°, HK A 0-cochain /GC°((2, G) is by definition an 
element g£G\ Since (àf)(x)~xg — g it follows that ƒ is a cocycle if 
and only if xg — g. Since by definition B°(Q, G) = 0 we have 

(3.1) The 0th cohomology group H°(Q> G) is the subgroup of those 
elements of G on which Q operates simply. 

A 1-cochain fE.C1(Qf G) is a function ƒ :Q—>G while its coboundary 
is 

(àf)(xU X2) = Xif(x2) ~ f(xXX2) +f(%l), 

thence ƒ is a 1-cocycle if and only if 

f(xix2) = f(%i) + xif(x2). 

Such functions ƒ are known as crossed homomorphisms of Q onto G. In 
order that fGB1(Q1 G) we must have f(x) =xg--x for some constant 
g&G. Such crossed homomorphisms are called principal homo­
morphisms. Hence 

(3.2) The first cohomology group Hl(Q, G) is the group of crossed 
homomorphisms of Q into G reduced modulo the principal homomor­
phisms. If4he operators of Q on G are simple (that is, if xg = gfor all x 
and g) then Hl(Q, G) is the group Horn (Ç, G) of all homomorphisms of 
Q into G. 

The first cohomology group is useful in connection with the follow­
ing concepts. Let G and P be groups with the group Q as a group of 
left operators. It is not assumed that P is abelian and it will be 
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written multiplicatively. A pair (E, <t>) will be called a Q-enlargement 
of P by G provided: (1°) £ is a group with Q as left operators, (2°) G 
is a subgroup of E and a direct summand of E, (3°) the operators of 
Q on G agree with the operators of Q on E, (4°) 0 is an operator 
homomorphism of E onto P with G as kernel. Two Ç-enlargements 
(Eu <f>i), (E2, $2) of P by G are called equivalent if there is an operator 
isomorphism r : E i « E 2 leaving G pointwise fixed and such that 
<j{>2T=$l. 

A Q-enlargement (E, </>) of P by G is said to be inessential if there is 
an operator homomorphism ^:P—Œ such that </>$ is the identity. The 
inessential enlargements form an equivalence class. 

Multiplication of equivalence classes of enlargements is defined as 
follows. Given Ç-enlargements (Eu </>i)t (E2, $2) of P by G, consider 
the group E1XE2 and its subgroup F consisting of pairs (ei, e2) with 
#1(01) =02(^2). Clearly F contains the group GXG. Let G be the sub­
group of GXG defined by all the pairs of the form (g, g""*1). The group 
GXG/(T can be identified with the group G by identifying each coset 
(gu gz)G with the element gi+g2. Now let E = F/G and define <j>:E—>P 
by <f>[(ei, e2)G] =<f>i(ei) =$2(02), also define the operators of Q on E by 
setting x[(ei, e2)G] = (xei, xe2)G. With these definitions (E, <£) is a Q-en-
largement of P by G which we define as the product (Ei, <£i) <S> (E2, #2). 

(3.3) 7"Â£ equivalence classes of enlargements of P by G over Qform 
a commutative group Enl (Q, P , G). 77&e equivalence class of inessential 
enlargements is the zero element of this group. 

To exhibit the connection of the group Enl (P, G, Q) with co-
homology theory we consider homomorphisms dlP—^G. With addi­
tion and operators defined by 

(0i + 0%)(p) = 61(p) + 0t(p), (xB)(p) = x[0(*r*p)] 

the homomorphisms 0 form an abelian group Horn (P, G) with Q as 
left operators. 

Let (E, <£) be a ^-enlargement of P by G. Since G is a direct sum­
mand of E and <j> maps E onto P with G as kernel, there exists a 
homomorphism x/ziP—^E such that <^ = identity. Unless the enlarge­
ment is inessential yp cannot be chosen to be an operator homomorphism. 
The expression 

(*) xf(x-ip) - Hp), xEQtPGP, 

measures the deviation of \f/ from being an operator homomorphism. 
An application of <f> shows that (*) is in G, and for a fixed #£(? , (*) 
gives a homomorphism \[/*(x) of P into G. Thus i^*(#)£Hom (P, G) 
and i^GCKQ, Horn (P, G)). A computation yields 



i949l TOPOLOGICAL METHODS IN ABSTRACT ALGEBRA 9 

**(xy)(p) = xy^{y-lx~lp) - t(p) 

= AyKr1*-^) - H^p)] + [x^x^p) - >p(p)] 
= x[r(y)(«r1P)]+r(x)(P). 

Thus 

\l/*(xy) = xxf/^iy) + $*(x), 

that is, 5^* = 0 and ip*E.Zl(Qy Horn (P, G)). If yf/ is replaced by another 
hojtnomorphism ypi:P—>E such that 0^i = identity then ^ — ^ = 0 
GHom (P, G) = C°(Ô, Hom (P, G)), and a computation shows 
that \l/*—\l/*~80. Thus the cohomology class {\[/*} of the cocycle 
^* is independent of the choice of \f/ and is completely determined 
by the enlargement (£ , <£). This yields a map Enl (Q, P , G) 
—>iïx(ö» Hom (P, G)). I t is easy to see that this correspondence 
yields an isomorphism onto. 

(3.4) The group Enl (Ç, P , G) o/ equivalence classes of Q-enlargements 
of P by G is isomorphic with the cohomology group Hl(Q} Horn (P, G)). 

The previous argument becomes more transparent if instead of 
defining Horn (P, G) as a group with Q as left operators, we define 
Horn (P, G) with Q as two-sided operators as follows 

(xd)(p) = *0(^), (Ox)(p) = 0(*£). 

The "deviation" \l/*(x) is then defined as 

**(x){p) = x*(p) - *(*#). 

Then 

\p*(xy) = x*j/*(y) + <t>*(x)y 

and \{/* is a cocycle following the formula with two-sided operators. 
The discussion with left-operators corresponds then to the discussion 
with two-sided operators by means of the mapping 0 of §2. 

This discussion concerning enlargements is capable of the follow­
ing generalization. Suppose that in addition to the group Q another 
group R is given that also operates on G and P on the right. We shall 
assume in addition that the operators of Q and R commute, that is, 
that 

(xg)r = x(gr), (xp)r = x{pt) 

for # £ ( ) , r £ P , gGG, £ £ P . We may then consider pairs (£, <£) 
which are simultaneously Q and P-enlargements and such that the 
operators of Q and R on E also commute. We shall then say that 
(E, <f>) is a Q-P-enlargement. The equivalence classes of Q-R-
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enlargements which are inessential as .^-enlargements form a com­
mutative group Enlie (Q, P, G). The zero element of this group con­
sists of the equivalence class of Ç-P-enlargements (E, </>) which are 
Q-i?-inessential, that is, of those for which there exists a homo-
morphism \p:P—>E which is both a Q- and P-operator homomorphism 
such that <^ = identity. Replacing in the previous discussion all the 
homomorphisms d:P—>G by P-operator homomorphisms, we find 
that the group Enl/g (Q, P, G) is isomorphic with the cohomology 
group H\Q, Horn a (P, G)) where HonijR (P, G) is the group of R-
operator homomorphisms of P into G with the operators of Q de­
fined as before. 

The above discussion of enlargements is new, but is a close analogue 
of a similar discussion for associative algebras (Hochschild [24]). 

4. Group extensions. The discussion of the 2nd and 3rd cohomol­
ogy groups is closedly connected with the problem of group extensions 
(Eilenberg-MacLane [16]). 

Consider a group £, an invariant subgroup K of E and a homo­
morphism <t>\E—>Q mapping E onto Q with kernel K. Let G denote 
the center of the group K. For every eSE the mapping 

k —» eke~l 

is an automorphism of K; thus a homomorphism E—>A(K) of E into 
the group A (K) of automorphisms of K is defined. The subgroup K 
maps into the subgroup I(K) of inner automorphisms of K. There 
results a homomorphism 

S:Q~>A(K)/I(K). 

Replacing kÇzK by gGG we also find a homomorphism (?—>A(G). 
This means that Q operates on G. From now on we shall assume that 
Q, G and the operators of Q on G are fixed. The pair (£, 0) is then 
called an extension of Q belonging to the center G, the pair (Kf 0) is 
then called the kernel of the extension (£, 0). 

Two extensions (Ei, <f>i) and (£2, $2) are called equivalent if there 
is an isomorphism r of £1 onto £2 such that far—fa and r(g) =g for 
each g€zG. 

Multiplication of equivalence classes of extensions is defined as 
follows. Given extensions (£1, <£i), (£2,02) of Q belonging to the center 
G, consider the group £ i X £ 2 and its subgroup F consisting of pairs 
(fi, e%) with <£i(ei)=<£2(e2). Clearly F contains the group GXG. Let 
G be the subgroup of GXG defined by all pairs of the form (g, g"1). 
The group GXG/ü can be identified with the group G by identifying 
each coset (gi, g2)G with the element gi+g2. Now let £=»P/5 and 
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define <f>:E—>Q by <f>[(exf e2)G] =<£i(£i) =02(02)- The extension (£, </>) is 
defined to be the product (£1, <£i)®(E2, ^2). 

(4.1) The equivalence classes of extensions of Q belonging to the 
center G (with prescribed operators of Q on G) form a commutative and 
associative system £(Q, G). 

Extensions (E, <j>) in which K = G (that is, the kernel is abelian) 
form a multiplicative subsystem <tA(Q, G) of £((), G). The extension 
(E, <£) with K — G is said to split provided there exists a homo-
morphism \p : Q—>E such <j>\p = identity. The splitting extensions con­
stitute an equivalence class. 

(4.2) The extensions with K — G form an abelian subgroup <zA(Q, G) 
of £(Q, G). The zero element of QA(Q, G) is also a zero element for 
£(Q, G) and is the equivalence class of the splitting extensions. 

The extensions (E, <j>) with K — G are called the group extensions 
of Q by G, and QA(Q> G) is called the group of group extensions of Q 
by G (with the prescribed operators of Q on G). The first result con­
necting group extension and cohomology is the following. 

(4.3) The group QA(Q, G) of extensions of Q by G is isomorphic with 
the second cohomology group H2(Q, G). 

The nature of this isomorphism will be explained in detail since it 
is typical of the method by which the cohomology theory enters into 
a problem of algebra. 

Let (£ , <£) be an element of an equivalence class of *A(Q, G). Then 
<t>:E—>Q maps E onto Q with G as kernel and with prescribed oper­
ators. In an effort to split the extension we consider an arbitrary map 
u:Q—>£ such that <j>u = identity. If the map u is a homomorphism 
the extension splits. In general u will not be a homomorphism and the 
deviation of u from a homomorphism is a function ƒ(#, ;y) defined by 

u(x)u(y) = f(x, y)u(xy) 

for x, yGQ. Clearly ƒ(x, y ) £ G so that f&C2(Q, G). A computation 
yields 

[u(x)u(y)]u(z) = f(x, y)f(xyf z)u(xyz), 

u(x)[u(y)u(z)] = [xf(yt z)]f(x, yz)u(xyz). 

Hence the associativity of E implies 

f(x, y)f(xyt z) = [xf(y, z)]f(xt yz) 

and since all the elements are in G we can pass to additive notation : 

*/(:y> z) - ƒ(*?, 2) + f(x, yz) - f(x, y) = 0 
that is, 
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8 / = 0 

and f(EiZ2(Q, G). Thus the deviation ƒ (called factor set) is a cocycle; 
the cohomology class {ƒ} of this cocycle is independent of the choice 
of the representative function u and also of the choice of the extension 
(£, </>) within its equivalence class. This yields a map <:A{Q, G) 
—>H2(Q, G) which is easily verified to be an isomorphism onto. The 
cohomology class {ƒ} = F2(E, </>) attached to the extension (£, <j>) 
may be regarded as the obstruction against splitting (E, <£) ; the ex­
tension splits if and only if F2(E, <£)=0. 

The study of extensions of Q by G also leads to an interpretation of 
the first cohomology group H1^, G) (Baer [2]). Let (£, <j>) be an 
extension of Q by G. In the group A (E) of automorphisms of E con­
sider the subgroup Ai consisting of automorphisms a which satisfy 
0 a = 0 . Then setting m(e) = a(e)e~1 yields a cocycle mE:Z1(Ef G) with 
E operating on G as inner automorphisms. In A\ consider the sub­
group A2 of all automorphisms which leave G pointwise fixed. If 
aÇzAz then there is a unique cocycle nÇ:Z1(Qi G) such that w$ = m. 
I t is easy to see that A2 is abelian and that the correspondence a—*n 
yields an isomorphism Ai**Z\Q, G). Under this isomorphism 
^(Q* G) corresponds to the subgroup A 3 of A 2 consisting of all auto­
morphisms e—>geg~x, g £ G . Thus A2/Az^H1(Q1 G). 

Before we proceed with the discussion of extensions whose kernel 
is not abelian, we must devote some attention to kernels. 

5. Kernels. A Ç-kernel is a pair (K, 0) where K is a group and 

e:Q->A(K)/I(K) 

is a homomorphism. If G is the center of K, then 0 induces a homo-
morphism 

that is, Q operates on G. We shall only consider Q-kernels with a 
fixed center G and fixed operators of Q on G. Equivalence of kernels 
is defined in the obvious way. Multiplication of equivalence classes of 
Q-kernels is defined as follows. Given kernels (Ki, 0i), (K2f 62) con­
sider the group K = KiXK2/G where G is the subgroup of GXG 
considered earlier. The group GXG/G, that we have identified earlier 
with G, is then the center of K. Let xÇzQ and let di(x) ^aJ{Ki) where 
aiÇzA(Ki), i = l, 2. Since a\ and a2 coincide on G it follows that 
(cei, a2) is an automorphism of K1XK2 which leaves G invariant. 
Thus (ai, a2) defines an automorphism a of K. We define d(x) =aI(K). 
The resulting kernel (K, 6) is the product (Ku 6i)®(K2, 02). 
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(5.1) The multiplication of equivalence classes of Q-kernels is com­
mutative and associative. The kernel (i£> 0) with K~G acts as a unit. 

We have observed in §4 that each extension (£, <£) of Q belonging 
to the center G determines a Q-kernel (K, 0). However not every 
kernel is the kernel of an extension. This defines a subclass of ex­
tendible kernels, that is, of those Q-kernels which are kernels of ex­
tensions. Two Q-kernels (Ki, 0i) and (K2l 02) are called similar pro­
vided there exist extendible Q-kernels (Li, 71), (L2> 72) such that 
(Ku 0i)®(Li, 71) is equivalent with (K2, 02)®(L2, 72). Since the 
product of extendible kernels is extendible, similarity classes of 
kernels can be multiplied. 

(5.2) The similarity classes of Q-kernels with center G {and prescribed 
operators of Q on G) form an abelian group KXQ> G). The zero element 
of this group consists of the class of extendible Q-kernels. 

The main result concerning kernels is the following (Eilenberg-Mac-
Lane [16]). 

(5.3) The group JR^iQ, G) is isomorphic with the 3rd cohomology 
group HZ(Q, G). 

This isomorphism is established by a method similar to that used 
for (4.3). Let (K, 0) be a Q-kernel. For each # E Q select a(x)ÇzA(Q) 
such that 0(x) =a(x)I(K). Then 

a(x)a(y) = j8(#, y)a(xy) 

where fi(xy)(EzI(K). Select h(x, y)G.K so that 

h{x, y)kh(x, j ) " 1 = P(xy)(k). 

Finally define ƒ (x, y, z) by 

[a(x), h(y, z)]h(xy yz) —fix, y, z)h(xf y)h{xy, z). 

In the noncommutative sense ƒ is then the coboundary of h. A com­
putation shows that ƒ is in the center of K, that is, in G, and that ƒ is 
a cocycle fÇiZz(Q, G). The characteristic cohomology class {ƒ} 
= JF

8(i£, 0) is independent of the choices made in the definition of/, 
and of the choice of (K, 0) within its equivalence class. 

(5.4) A Q-kernel (K, 0) with center G is extendible if and only if its 
characteristic cohomology class FZ(K, 0 )£ i I 3 (Q, G) is zero. 

Since the characteristic cohomology classes add when kernels are 
multiplied it follows that (K> 0)—>Fz(K, 0) is a homomorphism 
K>(Q* G)—>HZ(Q, G). Proposition (5.3) is proved by showing that this 
map is an isomorphism onto. 

A remark should be made concerning the normalization of the 
cocycles considered in §4 and this section. The cocycle of §4 will 
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be normalized if and only if we select the representative function 
u so that u{\) = 1. In order to insure that the 3-dimensional cocycle 
of a kernel be normalized we select a ( l ) = 1 so that j8(l, y) =)3(^, 1) = 1. 
Then select h so that A(l, y) ~h{x% 1) = 1. 

For further results concerning kernels see MacLane [32]. 

6. Extensions with a non-abelian kernel. Let (K, 0) be a Q-kernel 
with center G. Assume further that F*(K, 0)—0 so that there is at 
least one extension (EQ, <f>o) of Q with (K, 0) as kernel. Let [£o, <£o] 
be the element of 6(Q, G) determined by (E0, <£o). The main results 
then are (Eilenberg-MacLane [16]): 

(6.1) The map (Et <f>)~-»(£<» 0o) ® (E> <£), where (£, <j>) is any exten­
sion of Q with G as kernel, establishes a 1-1 map of the group *A(Q, G) 
onto the totality of equivalence classes of extensions of Q with kernel 
equivalent with (K, <f>). The latter form then a coset [Eo, <£o]®<^(0, G). 

Combining (6.1) with (4.3) yields: 
(6.2) If the Q-kernel (K, 6) is extendible then the equivalence classes 

of extensions (Ef </>) of Q with kernel (Kt 6) are in a 1-1 correspondence 
with the elements of the group H2(Q, G) where G is the center of K and 
the operators of Q on G are induced by 0. 

7. Non-associative systems. The fact that the deviation ƒ defined 
in §4 by the equation u(x)u(y) :=f(xiy)u{xy) is a 2-cocycle is equiva­
lent with the associativity law in the group £ . This suggests that 
higher-dimensional cocycles may be obtained as deviations from the 
associativity law in suitable multiplicative systems. This point of 
view has been explored (Eilenberg-MacLane [17]) and leads to 
theorems generalizing (4.3) and employing the higher cohomology 
groups. 

Let L be a loop (that is, a non-associative group). Given a, b, cÇ^L 
define the associator A {a, b, c) £ L by the equation 

a(bc) = A(a, b, c)[(ab)c]. 

The associator is then a measure of the deviation from associativity. 
To illustrate the tendency of the associator to behave like a 3-co-
cycle assume that L is commutative and that the associativity law 
holds whenever one of the three elements is itself an associator. Then 

a[i(cd)] = A (a, b, cd)(ab)(cd) = A(a, b, cd)A(ab, c, d)[(ab)c]d, 

a[b(cd)] = A(b, c, d)a[(bc)d] = A(b, c} d)A{a1 be, d)[a(bc)]d 

= A(b, cy d)A(af be, d)A(a, b, c)[(ab)c]d. 

Thus (using additive notation) 
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A(b, c, d)—A(ab, c, d)+A(a, be, d)—A(a> b, cd)+A(a, b, c)=0 

which shows that A is a suitable generalization of a 3-cocycle. 
Higher associators are defined inductively as 

A(a\t • • • , Ö2n+l) = A(au • • • , 02»-2, A(a2n-U #2n, 02n+l)) 

and also have a tendency to behave like cocycles. 
The generalization of (4.3) is achieved by the study of prolonga­

tions. A prolongation of Q by G (with given operators of Q on G) is a 
pair (L, <f>) satisfying the following five conditions: 

(i) L is a loop containing G as a subgroup, 
(ii) 0 is a homomorphism of L onto Q with a kernel K containing 

G, 
(iii) -4(&, a, &) = 1 ==-4 (a, &, b) for a, &££, &£i£, 
(iv) kA =Ak for any k^K and any associator -4 =A(a, b, c), 
(v) ag=* (<j>(a)g)a for aGL, g£G. 
The equivalence and multiplication of prolongations is defined as 

in §4. The equivalence classes of prolongations of Q by G form then 
a commutative and associative system ^(Q, G). The splitting exten­
sion of Q by G acts as a unit for ^(Q, G). 

The non-associativity of L in a prolongation (L, 0) is further con­
trolled by the consideration of the following four classes defined by 
the following conditions 

A(au - • • , a2n, a) = 1, 

A(ah - - • , 0 2 n , &) = 1, 

A(ah • • • , 0 2 n , a ) — G, 

-4(*1, • • • , 02 n , *) = G , 

where w>0, ai, • • • , a2», a £ £ and kÇzK. In addition we define the 
class 2?« consisting of those prolongations (L, <£) of Q by G which 
contain a prolongation (L\ 4>')olQbyG (that is, L'QL and#' agrees 
with 0 on I ' ) of class 0*. We also define the class GQ by the condi­
tion K = G. 

Next we consider the class O^C\G^. This class contains both 0% 
and G -̂x and therefore contains the class Q» ®(J£-I of products of 
prolongation in &n and G^x. We then define as in §5 the similarity 
classes of OlC\Gh

n modulo Q&®G%-V 

(7.1) The similarity classes of 0%C\G^ modulo 0% ® G*_ X form a group 
0^r\Gn/0^®Gn^i which is isomorphic with the cohomology group 
H2»~1(Q,G),n>0. 

Similarly 

0n: 

0K
n: 

<& 

G„: 



16 SAMUEL EILENBERG [January 

(7.2) The similarity classes of On-iC\G*modulo Rn®G^ form a group 
On-ir\G^/Rn®Gn isomorphic with the cohomology group H2n+2(Q, G), 
n>0. 

In the case n=*0 the various classes can be interpreted so that this 
result reduces to the group extension case (4.3). 

Let us consider the case n = 1 of (7.1) in more detail. A prolongation 
(L, <j>) is in the class ÓfC\G\ if A (a, 6, Jfe) = l and if A (a, &, c)EG. 
Thus we obtain the class 0fP\Gi by replacing conditions (iii) and 
(iv) by 

(iii)' A(k, a, b)=A(a, k, b)—A(a, b, k) = l for a, £ £ L , k£:K, 
(iv) ' all associators of L are in G. 

The class 0\ consists of those prolongations (L, <£) for which L is 
associative, that is, a group, while GQ is defined by the condition 
K = G. The similarity classes of O^C\G\ modulo Oi ®G% form then a 
group isomorphic with IP(Q, G). This characterization of IP(Q, G) 
is quite different from the characterization of IP(Q, G) as the group 
of Q-kernels ^ ( (? , G) asserted in (5.3). I t is very likely that some sort 
of nonassociative generalization of the concept of a kernel and of the 
group KjiQy G) exists, that will give a characterization of the cohomol­
ogy groups Hq(Q, G) for q>3. 

8. Connections with Galois theory. Let P be a field, N a finite, 
separable, and normal extension of P , and Q the Galois group of N 
over P . Each element XGQ is then an automorphism X: N—>N leaving 
P pointwise fixed. Thus Q acts as a group of operators on both the 
additive group N+ of N and the multiplicative group Nx of the ele­
ments of N different from zero. Thus we are in a position to study the 
cohomology groups Hq(Q, N+) and Hq(Q, Nx). I t is easy to verify 
that Hq(Q, JV+)=0 for all dimensions q. Thus our attention will be 
centered on the group Hq{Q, Nx), from now on written as iï3((?, N). 
The base field P is not indicated in this notation as it simply is the 
field of all fixed points of N under the automorphisms of the group Q. 

The "principal genus theorem in the small" asserts that 

(8.1) HKQ,N) = 0 . 

The cohomology groups H2(Q, N) and H3(Q, N) enter the picture 
in connection with the theory of simple algebras and crossed prod­
ucts. 

Consider the totality of all central simple algebras A over P with 
the Kronecker product over P as multiplication. The similarity 
classes modulo algebras which are full matrix algebras over P form a 
group zA(P) called the Brauer group of algebra classes over P . 
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Let N be a finite separable and normal extension of P. For each 
algebra A over P construct the scalar extension A N^A XPN which 
is an algebra over N. If A is central simple over P then AN is central 
simple over N. The correspondence A-*AN yields a homomorphism 

(*) *A(P)-**A(N). 

The kernel of this homomorphism will be denoted by <zAN(P) and 
consists of the algebra classes over P for which N is a splitting field. 

(8.2) The second cohomology group H2(Q, N) is isomorphic with the 
group aAN(P) of algebra classes over P split by N. 

This is a reformulation of a classical result and is obtained by 
constructing for each fÇ.Z2(Q, N) a crossed product algebra 
il = (f, Q, N) as follows. A is a vector space over N generated by 
symbols u(x) corresponding to elements #£(X The multiplication 
table is given by 

[au(x)][bu(y)] = a(xb)f(x, y)u(xf y), 

or equivalently 

u(x)b = (xb)u(x)f u(x)u(y) = f(xf y)u(xy). 

With ƒ assumed normalized, u(l) is the unit element of A, The alge­
bra A is central simple over P and has N as splitting field. Further 
every central simple algebra over P which is split by N is similar to 
a crossed product (ƒ, Qy N) with ƒ determined uniquely modulo co-
boundaries. This leads to (8.2) (see for instance Artin-Nesbitt-
Thrall [1]). 

The image of the homomorphism (*) will be denoted by <IAN(P) 
and will be used presently. 

A central simple algebra A over N will be called Q-normal pro­
vided every automorphism in the group Q can be extended to an 
automorphism of the algebra A. Teichmiiller [33] has studied such 
algebras and has shown that if A is Q-normal then any algebra similar 
to A is Ç-normal. Thus the Ç-normal algebras determine a sub­
group No(iVr) of <iA(N). I t is easy to see that 

*AN(P)C HQ(N). 

The connection between Q-normal algebras and the cohomology 
group £P(Qt N) was introduced by Teichmiiller who has defined a 
homomorphism 

T*:HQ(N)->H*(Q, N). 

This correspondence could be described in the language of §5 as follows. 
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Let A be Q-normal and let K be the group of regular elements of A. 
Then Nx is the center of K. Since each automorphism x£Q can be 
extended to an automorphism of A each x £ Q gives rise to subset 
6{x) of the automorphism group A(K). Since A is central simple over 
Nf any two extensions of x differ by an inner automorphism and 
0(*) is an element of A(K)/I(K). Thus 0:Q->A(K)/I(K) and the 
pair (K, 0) is a Ç-kernel with Nx as center. The cohomology class 
TZ(A) is then the characteristic cohomology class of the kernel (K, 6) 

T\A) = F\K, 6) E B*(Q, N). 

Teichmüller [33] has proved that <IAN{P) is the kernel of the homo-
morphism Tz

f and thus that the group J^QÇN)/QAN(P) is isomorphic 
with a subgroup of EP(Q9 N). This subgroup was subsequently de­
termined by Eilenberg-MacLane [18] as follows. 

Let K be a finite normal and separable extension of P such that 
PQNC.K and let G be the Galois group of K over P . Each a £ G de­
fines then an element 0(a) £(? . Given a cochain fÇzCq(Q, N) define 
the "lifted" cochain AKf£Cq(G, K) by setting 

Ax/(«i, • • • , ag) = /(0(ai), • • • , 0(o^)). 

This lifting operation defines a homomorphism 

A cohomology class in the kernel of A^ is said to be split by K or to 
have ceiling K. The cohomology classes in Hq(Q, N) which have a 
ceiling form a subgroup HQ(Q, N). For q = 2 this group can be shown 
to be trivial. 

(8.3) The homomorphism Tz maps the group of Q-normal algebra 
classes over P onto the subgroup Hl(Qy N) of Hq(Q, iV). The kernel of 
Tz is the group ZAN(P)» Thus 

HQ(N)/ZAN(P) « HÎ(Qf N). 

The proof of (8.3) requires a detailed analysis of the Ç-normality of 
crossed products. The computations are considerable and the 
normalization conditions discussed in §2 are used extensively. See also 
MacLane [3l] for an alternative proof of a main lemma. 

In the case when P is an algebraic number field, MacLane [30] has 
proved (without appeal to cohomology theory) that the group 
HQ(N)/c/fjv(P) is cyclic of order 5 where 5 is determined by the arith­
m e t i c properties of the extension N of P . Examples can be found 
with s>l; therefore H\{Q} N)?*0 in this case. 

9. The first reduction theorem. We now turn to the intrinsic prop-



i949l TOPOLOGICAL METHODS IN ABSTRACT ALGEBRA 19 

erties of the cohomology groups of groups. The main problem con­
sists in devising a method for computing the cohomology groups. In 
this connection the so-called "reduction theorems" are of great 
assistance. We call a "reduction theorem" any theorem that asserts 
that the cohomology group Hq(Q, G) is isomorphic with a lower 
dimensional cohomology group of Q with a suitably altered coefficient 
group G. 

In the reduction theorem that we are about to state it is con­
venient to use two-sided operators and normalized cochains. We first 
define Q as a group of two-sided operators on the group of cochains 
Cn(Q, G) as follows 

(xf)(Xi, • • • , %n) = x[f(Xi, « • • , Xn)], 

(fx)(xh ' • ' , Xn) = x[f(Xi, • " - , « « ) ] — (df)(x, * ! , • • • , Xn). 

Next we establish an isomorphism 

WC«(G,C»(G,G)) ~C«+"(Q,G) 

by setting 

(rf)(xh • • • , xqt yh • • • , yn) = [f(xh • • • , xq)](yh • • • , yn) 

for fGCq(Q, Cn(Q, G)). A computation shows that rq,n is an operator 
isomorphism and that it commutes with the coboundary operator 

Consequently we obtain isomorphisms 

(9.1) rqtn:H«(Q, 0(Q, G)) « ff*-(Q, G), g > 0. 

This is the first reduction theorem (Eilenberg-MacLane [15]); it 
was originally discovered by Hochschild [22] for cohomology groups 
of associative algebras. 

If Q operates on G only on the left (that is, the right operators of 
Q on G are simple) we may combine the map Tq,n with the map <j> of 
§2 and express the reduction theorem in terms of left operators only. 
Explicitly the formulae take the following form : 

(xf)(xi, •••,#») = f(xi, ••-,*») — x(df)(xr\ xi, • • •, Xn), 

(Tq,nf)(xi, • • •, xq, yi, • • • , yn) = xi • • • xg[f(xh • • • , xq)(yh • • • , yn)] 

- à[f(xu • • • , *«)](*i, • • • xq, yh • • • , yn). 

For w = 1 the above formulae give 

(*/)(y) = xf(*rly) - *ƒ(*"*), 



20 SAMUEL EILENBERG [January 

(r<J)(*i, • • •> *«> y) = Àxh " • , *«)(*i, • • • , *«y) 
~ jf(*l • • • , Xq)(X\ • • • *fl) 

and yield an isomorphism 

(9.2) 7,: £T«(e, C»(Ö, O) « *«-KQ, Ö) î > 0, 

with left operators only. 
As an application of the reduction theorem we prove: 
(9.3) If Q is a free group then H«(Q, G) =0 for gè2. 
In view of the reduction theorem it suffices to prove that H2(Q} G) 

= 0. This amounts to proving that every extension (E, </>) of Q by 
G splits. Let {#«} be a base for Q; select ̂ (x«)G£ so that 0^(x«) =x«. 
The map \[/ can be extended to a homomorphism ^ :()—»£. Since 
0^ = identity, the extension splits. 

10. The cup product reduction theorem. Let Gi, G2, G be additive 
abelian groups. We shall say that G\ and G2 are paired to G, if for 
each gi£Gi and g2£G2 an element giVJg2£G is given such that 

(«i + gi) V g2 = ft U ft + ft' U ft, 
ft U (ft + gi) = ft VJ ft + ft U ga'. 

If in addition Ç acts as a group of left operators on Gu G2, G then we 
also require that for all x£<2 

x(gi U ft) = #ft W #ft. 

Given cochains fiÇzCp(Q> Gi), /2GGff(Ç, G2) we define a cochain 
fiVf2eCp+a(Q, G) as follows: 

(fiVf*)(xh • • • , ^+Q) 

= / i (* i , • • • • *p) U xi • • • ^ / 2 ( ^ + i , • • • , *p+«). 

This yields a pairing of the groups 0(G, Gi) and Cq(Q, G2) to the 
group Cp+q(Q, G) with the following property 

Kh u /2) = (8/0 u / 2 + ( - i ) ^ u Ô/2. 
This yields 

cocycle U cocycle = cocycle, 

cocycle VJ cobound. = cobound., 

cobound. U cocycle = cobound., 

and thus leads to a pairing of the cohomology groups HP(Q, G±) and 
H«(Q, G2) to the group H»+«(Q, G). 
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In the case of two-sided operators we also require that (giWg2)# 
— giX^Jgtfc and define/iU/2 by 

(/l W * ) ( * l . • • • , Xp+g) 
= = Jl\%h * * * » # 2 y # p + l * * * #p+g ^ # 1 * * * %pj2\%p+h * * * » %P+Q/* 

Suppose now that Q is given as a factor group F/i? where F is a 
free group (this amounts to describing Q by generators and relations). 
More precisely, consider an extension (F, \p) where xf/lF-^Q maps F 
onto Q and has kernel R. Let [R, R] denote the commutator group of 
R; then [R, R] is an invariant subgroup of both R and F. Define 

Fo=F/[R,R], R0 = R/[R,R]. 

The extension (F, \p) then defines an extension (Fo, \[/Q) with \l/o'Fo—>Q 
mapping T̂o onto G with the abelian kernel Ro* According to §4 this ex­
tension leads to left operators of Q on i?0 and yields an element 
/o£Jy2((?, Ro) which describes the extension. 

Now consider the group Horn (R0, G) of all homomorphisms 
<l>:Ro—»G; since RQ = R/[R, R] this group may be identified with the 
group Horn (R, G). Define Q as a group of left operators on 
Horn (i?o, G) by setting for xG(?, <t>:Ro—>G 

(a*)(r) = * [*( t f -V)] , r G JRo. 

With these operators, the formula 

r \J $ = 0(r), f g JRO, * G Hom (i?0, G), 

yields a pairing of the groups i?0 and Horn (R0} G) to the group G. 
This in turn" leads to a pairing of the cohomology groups H2(Q, Ro) 
and H«(Q, Horn (i?0, G)) to the group H*+2(Q, G). The cup product 
reduction theorem (Eilenberg-MacLane [IS]) then asserts 

(10.1) The homomorphism 

A«:ff*(Q, Horn (R0, G)) -* #«+2(Ö, G) 
defined by 

X a ( / ) = / o W / 

for fÇzHq(Qy Hom (i?0, G)) is a» isomorphism onto f or q>0 and a 
homomorphism onto for # = 0. 

The kernel of Xo can be described as follows. The group 
H°(Q, Horn (Ro, G)) consists of the elements of Hom (2?0, G) which 
are invariant under the operators of Q. This is precisely the group 
Ophom (R0l G) of all operator homomorphisms <J>:RQ-J>G (that is, 
homomorphisms satisfying x(</>(r)) ~<f>(xr) for all #G(?). Next define 



22 SAMUEL EILENBERG [January 

Fo as a group of left operators on G by setting ag=^0(öOg for aÇzF, 
gÇzG. Then every cocycle fEZ1(Fo, G) when considered on R0 yields 
an element Ophom (R0, G) while every coboundary fÇzBl(F, G) is 
zero on R0, Thte yields a homomorphism 

rj:Hl(F0, G) -> Ophom (R0, G) = H°(Q, Horn (R0, G)). 

(10.2) jTAe kernel #ƒ Xo is the image of 77. 
For an alternative proof of (10.1) see Lyndon [29]. 

11. Cohomology groups of cyclic groups. The cup product reduc­
tion theorem is particularly adaptable to the computation of the 
cohomology groups Hq(Q, G) in the case of a cyclic group Q. Indeed if 
Q is cyclic of order h then Q^J/hJ and the group Horn (R0, G) in the 
reduction theorem is isomorphic to G. This method of computation 
is adopted in [IS]. In view of the frequency with which cyclic groups 
occur in the applications it may be of interest to have a more direct 
method for computing the cohomology groups of cyclic groups. The 
following, hitherto unpublished, discussion has been obtained by the 
author jointly with S. MacLane. 

Let Q be a cyclic group of order h and y a generator of Ç. Let G be 
an abelian group with Q as left operators. We set 

h-i 

Dg = y g - g, Ng = 2 7% for g EG, 

DG= {allZ)g,gGG}, GD = {all g with Dg = 0}, 

NG = {all Ng, g EG}, GN = {all g with Ng = 0}. 

We verify readily that 
NGCGDt DGQGN, 

and that these subgroups are independent of the choice of y. Clearly 
H\Q,G)~GD. 

For each cochain f£Cq+2(Q, G) define the cochain <rf£Cq(Q, G) 
by setting 

(*/)(*!, • • • ,*«) = £ y~(i+1)f(y, y\ *u • • • , *«). 

A direct computation shows that 

«M = *(«/) 
so that <r defines homomorphisms 

<r:H«+*(Q,G)->H«(Q,G), q > 0. 

By iterating <r we obtain homomorphisms (w^O) 
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<r«:H*»*(Q,G)-+H*(Q9G), q > 0. 

(11.1) Let Q be a cyclic group of order h with generator 7. Then 

#2»+2(£, G) « GD/NG, n£0, 

where the isomorphism is obtained by assigning to each cocycle fÇ-Z2n+2 

the element an+lf of G. Further 

H2n+1(Q, G) « GN/DG, n = 0, 

where the isomorphism is obtained by assigning to each cocycle fÇzZ2"*1 

the element (<rnf) (y) of G. 
In the argument the following lemma is useful. 
(i) If fGZ*(Q, G) and f(yt x2, • • • , xq)=0 then ƒ = 0 . 
Indeed, developing (of) (7, 7*, q) yields 

f{yi+li *%t • • • , xq) = f(y\ *2, • • • , xq) 

and the proposition follows by induction in i. 
We shall consider the group of integers J (with Q operating 

trivially) as paired with G to the group G by setting 

m U g = mgy m G / , g G G. 

Further, define a cochain syÇ.C2(Q, J) by 

*r(7', TO = 0 if i + i < A, 0 = i , i < A9 

^ M 70 = 1 iii+j^h,0£ i, j < h. 

(ii) sy is a cocycle. 
This may be shown by a direct computation, using (i) to simplify 
the argument. Alternatively sy may be realized as the deviation 
( = factor set) of a group extension (£, <j>) with E the additive group 
of rational numbers with denominator h, and <£:£—>() the homo-
morphism <j>(m/h)~ym. The kernel of this extension is the group J . 
For each 7*G(?> 0 = i < A , choose u(y{)=i/h as representative. Then 
^(7*)+w(70=^(7% 70+^(7*+0» so that 5 is indeed the deviation 
and thus a cocycle. Since E is free this argument also shows that the 
cohomology class of sy is a cohomology class of the type used in the 
cup product reduction theorem. 

A direct computation shows that 

(iii) <r(syVf)=f, feC*(Q,G). 

Setting for/GC«+2((?, G) and0£i<h 
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i-1 

we also find by direct computation (using (i)) that 

(iv) ƒ + dg = s7 \J *ƒ, f G Z*+*(Q, G). 

Formulae (iii) and (iv) show that for q>0, <r maps Hq+2(Q, G) 
isomorphically onto Hq(Qf G). The inverse isomorphism is given by 
the correspondence ƒ—>s7VJ/. This reduces the proof of (11.1) to the 
cases when w = 0. 

For each g £ G define ^ G C H Q , G) by 

Then, by direct computation (using (i)), 

(v) i(gy) = syKJ Ng. 

For each ƒ £ # ( ( ? , G) define g=f(y). Since / ( 7 m ) = 7 / ( 7 i ) + / ( T ) it 
follows that g7 =ƒ. Further by (v) 

0 = df = ôgy = s7 U tf « 

so that Ng = 0 and g£Gj\r. Conversely, g 7 (7)=g and (v) shows that 
if Ng = 0 then gy is a cocycle. Thus the correspondence ƒ—»ƒ(7) yields 
an isomorphism Zl(Q, G)~GN. If f=hh then ƒ(?) =yh-h = DhGDG 
and vice versa. Thus 5X(Ç, G) corresponds to DG. Thus HKQ» G) is 
shown to be mapped by ƒ—>ƒ(7) isomorphically onto GN/DG. 

For each /£Z2(<2, G) we have afEZ°(Q, G)=GD. If g6Gi> then 
s 7 ^ g £ Z 2 ( ( ) , G) and by (iii) <r(s7VJg)=g. Thus a maps Z2 onto GD. 
If f—8h for hGC1(Qf G) then <rf=<xôh which computes to be Nh(y), 
thus crfÇzNG. Conversely if <r/£2Vg then by (v) 

Sy\J af= SyU Ng = 6(gy). 

Since by (iv) ƒ is cohomologous to Sy^Jaf, it follows that ƒ is a co-
boundary. Thus fEB2(Q, G) if and only if afENG. Thus H2(Q, G) is 
shown to be mapped by jf—xr/ isomorphically onto GD/NG. 

This concludes the proof of (11.1). Incidentally we have shown 
that every cocycle ƒ £Z2 w + 2((), G) is cohomologous to a cocycle 

s7 VJ • • • U sy U g 

where gÇzGi> is uniquely determined modulo iVG; and that every 
cocycle ƒ £Z2 n + 1(() , G) is cohomologous to a cocycle 
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Sy\J - ' ' KJ SyVJ gy 

where gÇHGN is uniquely determined modulo DG. 
If G = J is the group of integers with Q as trivial operators the 

result takes the following form : 
(11.2) H2n+1(Qy J) = 0. The group H2n(Q, J) is cyclic of order h and is 

generated by the cohomology class of the n-fold cup product s2n = sy\J • • • 
KJsy. Every cocycle /EZ 2 n (Q , J) is cohomologous to <rn(f)s2n. If the gen­
erator y of Q is replaced by a where y =<**, (k, h) = 1, then s2? is cohomo­
logous to kns2

y
n. 

The last proposition requires verification. Observe that 

h-l h-l 

*(sa) = Z Sab, TO = Z S«(<*k> «'*) 

Thus, by (iv), sa is cohomologous sy^Jk = ksy. 

12. Abelian extensions. We return to the interpretation of the 
cohomology group H2{Q, G), given in §4 as the group <tA{Q, G) of 
equivalence classes of group extensions (E, c/>) with Q as quotient and 
G as kernel and with prescribed operators of Q on G. Assume now 
that Q is abelian and that the operators of Q on G (which is also 
abelian) are simple. This does not in general imply that E is abelian. 
In order that E be abelian it is necessary and sufficient that the 
deviation (or factor set) fÇzZ2(Q> G) associated with the extension 
satisfy the additional symmetry condition 

ƒ(*» y) = f(y> *)• 

This leads to the definition of the symmetric subgroup Zj(Q, G) of 
Z2(Q> G). Since every coboundary hhÇ.B2(Q, G) is symmetric we 
obtain a subgroup H2

S(Q, G) of H2(Q, G). This subgroup is isomorphic 
with the subgroup of <^(Ç, G) given by extensions (£, <j>) with E 
abelian. Thus H2(Q, G) may be called the group of abelian group 
extensions of Q by G. I t is usually written as Ext (Q, G). 

Suppose now that Q = F/R where F is a free abelian group. Con­
sider the homomorphism 

Horn (F, G) -» Horn (R, G) 

obtained by restricting each homomorphism of F to the subgroup R. 
Let Horn (F, G)\R denote the image subgroup in Horn (R, G). Then 

(12.1) Ext (Q, G) « Horn (R, G)/Hom (F, G) \ R. 
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This isomorphism is a consequence of the cup product reduction 
theorem, but can also easily be proved directly. It was proved in 
Eilenberg-MacLane [ l l ] in connection with the following applica­
tion to homology theory: 

(12.2) In any closure finite abstract complex K the cohomology group 
Hq(K, G) can be expressed by means of the coefficient group G and the 
integral homology groups Hq-\(K) and Hq(K) as the direct sum 

H«(K, G) « Horn (#,(£), G) + Ext (Hq^(K)f G). 

A similar result for homology groups has the form 

Hq(K, G) « Hq(K) ®G + Hq^(K)*G 

where ® stands for the tensor product while * denotes a product called 
the udual product" that will be discussed in §13 (H. Cartan and 
Eilenberg [4]). 

13. Homology groups of groups. So far our discussion was con­
cerned with the cohomology groups Hq(Qt G) and their relations with 
other concepts of algebra. We now pass to the connections of these 
groups with topology. For the purpose of this discussion it is useful 
to have the homology groups Hq(Q, G), G discrete abelian. We shall 
assume throughout this section that Q operates simply on the coeffi­
cient groups. 

There are at least two methods of introducing these groups. One is 
based on Pontrjagin's duality theory of abelian groups. Consider a 
compact abelian group G. The group Ca(Q, G) of cochains, which 
is isomorphic to a product of many copies of G, can then be topolo-
gized in a natural fashion so as to become a compact abelian group. 
In this way the cohomology group Hq(Q, G) becomes a compact 
abelian group, if G is compact. Given now a discrete abelian group 
G consider the character group ChG which is compact and define 

HQ(Q, G) = ChW(Q, ChG), 

A more direct method of obtaining the homology groups proceeds 
through the construction of an abstract complex K(Q) associated 
with the group Q. A g-dimensional "simplex" of K(Q) is an ordered 
g-tuple a**(xit • • • , xq) of elements of Q. For each O^iSq. we define 
the ith. "face" <7(0 of cr as follows 

(T<°> = (>2, " • • * « ) , 

<r(i) = (xh • • • , XiXi+u * • • > ffg)> 0 < i < q, 

<r(Q) = (Xh • • • , ffg-l). 
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This complex K(Q) has sufficiently many properties of a simplicial 
complex to allow for the usual definition of chains, cochains, homol­
ogy and cohomology groups. For instance a g-cochain with coefficients 
in G is a function ƒ which to each g-simplex <r assigns an element ƒ{&) 
£G. The coboundary 5/is defined by 

Q+l 

for every (g+l)-simplex <r. It thus becomes apparent that the co-
chains in K(Q) are simply the cochains of Q in G. With Q operat­
ing simply on G, the coboundary operators also coincide so that 
Hq(K(Q), G)~Hq(Q, G). Now we can define the homology group 
Hq(Q, G) to be the group Hq(K(Q), G) of K(Q). 

The second method has the added advantage in that it shows that 
the various theorems concerning the relations of the various homol­
ogy and cohomology groups of groups in an abstract complex also 
hold for the homology and cohomology groups of groups. In particu­
lar the isomorphisms 

(13.1) ff«(Q, G) « Horn (ff,(Q), G) + Ext (Hq^(Q), G), 

(13.2) Hq(Q, G) « Hq(Q) <g> G +H9-1(Q)*G 

hold, where Hq(Q) ~Hq(Q, J) is the integral homology group. 
The "Künneth relations" in the cartesian product of two complexes 

are also applicable to the direct product of two groups and yield an 
isomorphism (H. Cartan and Eilenberg [4]) 

(13.3) Hr(Q X R) « E H9{Q) ® Hg(R) + E Hp(Q)*Hq(R). 
p+q=*r p+q+k=r 

Formulae (13.1)—(13.3) allow for a complete computation of the 
groups Hq(Q, G) and Hq(Q, G) for Q an abelian group with a finite 
number of generators and with Q operating trivially on G. This was 
done using a more explicit method by Lyndon [28]. 

The integral homology group H2(Q) can be given an alternative 
description. Let Q = F/R where F is a free group. In addition to the 
commutator group [F, F], consider the group [F, R] spanned by 
the elements ara"mlr""1

t aÇzF, r&R. Then 

(13.4) H2(Q) « (JJ H [F, F])/[F, R]. 

This isomorphism is an easy consequence of the cup product reduc­
tion theorem. Hopf [25] used this isomorphism as a definition of 

An alternative description of the groups Hq(Q, G) in the case G is 
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a ring with a unit element (and Q operates simply on G) was given 
by Hopf [26]; the proof that Hopfs definition agrees with ours can 
be found in [9]. 

Assume that Q is abelian. The homology group H\(Q, G) is then 
symmetric in Q and G and is actually the tensor product Q®G. The 
dual product Q*G may be obtained as follows. Adjoin to the complex 
K(Q) the symmetry relations 

(# i , #2) = (#2, %i) 

(in dimension two only) and denote the thus modified complex by 
K'(Q). Then H2(K'(Q), G) is symmetric in Q and G and may serve as 
one of several alternative definitions of the dual product Q*G (H. 
Cartan and Eilenberg [4]). 

14. Relations between the fundamental group and homology 
groups. Let X be an arcwise connected topological space and # * £ X . 
Relative to x* as base point we define the fundamental group 
7Ti«7ri(X) and the higher (abelian) homotopy groups 7r» =7r t(X), i>\. 
The homology and cohomology groups Hq(X, G) and Hq(Xy G) are 
defined using singular simplexes, that is, maps T:s-^>X where 5 is a 
euclidean simplex with ordered vertices. Since X is arcwise connected, 
we may without loss of generality assume that T maps all the vertices 
of s into the point x*. 

The homotopy group irq(X) has a natural homomorphism into the 
integral homology group Hq(X), the image of this homomorphism is 
denoted by Xq(X) and is called the spherical subgroup of Hq(X). The 
spherical subgroups Sfl(X, G) of Hq(X, G) can also be defined for an 
arbitrary coefficient group G. In the cohomology group Hq(X, G) we 
distinguish the subgroup Aq(Xt G), called the group of spherical 
annihilators, which is the annihilator of 2q(X) under the natural pair­
ing of Hq(X, G) and Hq(X) to the group G. 

Let now T:s—>X be a singular g-simplex where s is a simplex with 
ordered vertices VQ< • • • <vq all of which are mapped by T into the 
base point x*. The map of the edge v^iVi into X is then a closed path 
about x* in X and determines an element Xi of the fundamental group 
xi. We assign to the singular simplex T the g-tuple (xi, • • • , xq) of 
elements of 71*1. If T(i) is the ith face of T, that is, the face obtained 
by omitting the vertex Vi of s, i = 0, • • • , q> then T(i) corresponds 
respectively to the (g — 1)-tuples 

(x2, • • • , xq) if i = 0, 

(xi, • • • , XiXi+i, • • • , xq) if 0 < i < q, 

(xi, • • • , xq-i) if i = q. 
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If we compare this with the definition of the complex K(TI) in 
§13 we notice that the correspondence K:T—>(XI, • • • , xq) maps the 
singular chains of X into chains of K(xi) and that this correspondence 
commutes with the boundary operator. This leads to homomorphisms 

K:Hq(X,G)->Hq(whG). 

Similarly we obtain a map for cochains K: Cq(Ti, G)-j>Cq(X, G). In­
deed, i f / eC«0r i , G), define 

where T-*(xu • • • , xq). This map yields homomorphisms 

*: £T«(xi, G) -> #*( X, G). 

The main result may now be stated 
(14.1) In an arcwise connected space X with vanishing homotopy 

groups Tifor Ki<q the following isomorphisms hold: 

Hi(X, G) « Eifa, G), H*{Xt G) « H*(rh G) for i < q, 

Hq(X, G)/2g(X, G) « Hq(wh G), A*(X, G) « H*(iru G). 

This theorem shows the extent to which the group wi determines the 
homology structure of X. All the isomorphisms are achieved by the 
correspondences K described above. The correspondence K for cochains 
commutes properly with the operation of constructing cup products 
(in 7Ti and in X). More precisely if G\ and G2 are paired to the group 
G and hEHh(wu Gi), feGfl^Ori, G%) then 

« ( i i U f c ) = K ( A I ) U * ( * 0 . 

Thus for i\-\-H Ŝ<7, the group 7ri also determines the cup products in X. 
In (14.1) the groups £T<(TI, G) and H^TI, G) are understood with 

7Ti operating trivially on G. If we consider homology and cohomology 
groups with so-called "local coefficients," that is, coefficients G ad­
mitting 7Ti as a group of operators, the isomorphisms (14.1) remain 
valid, provided the various groups are suitably interpreted. 

As a very special case of (14.1) we obtain the relation 

H2(X)/MX) « tfifcr,). 

This result (with X a connected simplicial complex and H2(iri) de­
fined by (13.4)) was proved by Hopf [25] in 1942 and was the starting 
point of this whole investigation. Theorem (14.1) was first published 
by Eilenberg-MacLane [12; 13] and independently and in slightly 
different forms by Hopf [26], Freudenthal [21 ], and Eckmann [6]. 

The isomorphisms (14.1) have been combined with the cup-prod-
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uct reduction theorem to yield some, not yet fully understood, rela­
tions between the cohomology groups (with local coefficients) in a 
simplicial complex (Eilenberg [l0]). 

15. Generalizations of (14.1). Theorem (14.1) has been extended 
in several directions. 

In the situation of (14.1), the group TV\{X) determines the factor 
group Hq(X)/Xq(X) of the integral homology group, while the sub­
group 2q(X) is a factor group of the qth homotopy group. This leads 
one to conjecture that perhaps 7ri, wg and the operators of ir\ on 7ra 

jointly determine Hq(X) (assuming 7r, = 0 for Ki<q). This is not 
the case as can be shown by examples [19; 34]. In order to obtain a 
description of Hq(X) in terms of homotopy invariants, a new invariant 
seems to be necessary. This new invariant (Eilenberg-MacLane [14; 
19]) is an element kq+1(X) of the (algebraic) cohomology group 
HQ+1(TU Tq), with 7Ti operating on wgf and is defined whenever 7r t=0 
for Ki<q. The invariant kq+1(X) suffices to describe the groups 
Hq(X, G) and Hq(X, G) in a purely algebraic manner. The theorem to 
this effect yields (14.1) as a special case. The definition of kq+1(X) 
may be roughly described as follows. Consider the function K which 
maps the singular chains of X into those of K(TI). In order to prove 
(14.1),an "inverse" function R mapping the chains of Kfa) is defined 
such that il commutes with d and KK is the identity. The definition of 
K utilizes the fact that 7J\ = 0 for Ki<q and can therefore be carried 
out only up to the dimension q inclusive. The invariant kq+1(X) is 
obtained by measuring the obstruction against the continuation of 
k to the dimension q-\-l. 

The invariant k*(X) ÇzH*(wit 7r2) is defined for every (arcwise con­
nected) topological space. Suppose now that X is a simplicial com­
plex containing at least two 2-simplices. Let S be the 1-dimensional 
skeleton of X and assume that the base point x* has been chosen in S. 
The group 7r2(X) then maps isomorphically onto the center of the 
relative homotopy group 7r2(-X", 5) and there also is a natural homo-
morphism 7n(X)-^(7r 2(X, S ) ) / J ( T T 2 ( X , S)) (see §5). Thus TT2(X, S) 
may be regarded as a 7Ti(X)-kernel. The characteristic cohomology 
class of this kernel is precisely kz(X) (MacLane [32]). 

Theorem (14.1) has also been extended by replacing the funda­
mental group by some higher homotopy group. In this order an ab­
stract complex K(Q, n) is defined for an abelian group Q and an in­
teger n>l. The homology and cohomology groups of K(Q, n) over 
G are denoted by Hq(Q, n, G) and Hq(Q, nf G). Then (14.1) generalizes 
as follows : 

(15.1) In an arcwise connected topological space X with vanishing 
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homotopy groups irifor i<n and n <i<q the following isomorphisms 
hold: 

Hi(X, G) « Hi(irn, n, G), H*(X, G) « £?<(*•». », G) for i < q, 

Hq(X, G)/2q(X9 G) « Hq(wn, n, G), A«(X, G) « H ^ T » , fif G). 

Again in this case an invariant k^1(X) belonging to the group 
Hq+1(wm n, irq) is defined and this invariant completely determines 
the groups Hq{X, G) and Hq(X, G) (Eilenberg and MacLane [19; 
20]). 

There are many indications that the study of the groups iï5((?, w, G) 
will cast light on some of the unsolved problems of homotopy theory. 
Interesting results have been obtained by G. W. Whitehead [35] for 
the case q^n+3, by constructing a space X satisfying the conditions 
of (15.1) with irn(X)œQ. A purely algebraic study of the groups 
Hq(Q, n, G), falling back on the algebraic complex K(Q, n), has been 
undertaken by the author and S. MacLane, and is in progress. So far, 
complete results were obtained only for q^n — 2. 

Extensions of (14.1) and (15.1) to the case of relative homotopy 
and homology groups have been made by Blakers [3]. 

16. Equivariant groups of complexes with operators. The construc­
tions leading to the proof of (14.1) were carried out in the space X, 
Instead one might carry out these constructions in the universal 
covering space X of X and treat ir\(X) as a group of homeomorphisms 
operating on JT. One is thus lead to the study of complexes and spaces 
with a group of operators (Eckmann [6], Eilenberg [9]) which fur­
nishes generalizations of (14.1) in a different direction. 

Let K be an abstract complex. We shall say that Q operates on K 
if, for every q> the group Q operates (on the left) on the group of q-
chains Cq(K) in such fashion that the boundary operator d\Cq(K) 
-+Cq-i(K) is an operator homomorphism. Let G be an abelian co­
efficient group with Q as a group of (left) operators. A g-cochain ƒ of 
K over G, that is, a homomorphism ƒ : Cq(K)—^Gt will be called equi­
variant provided 

f(xc) = %f(c\ xGQ,ce Cq(K). 

The coboundary of an equivariant is equivariant and therefore 
using equivariant cochains throughout we arrive at an equivariant 
cohomology group Hq

6(K, G). This group admits a natural homo­
morphism 

H\(K, G) -> H\K, G) 
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into the ordinary cohomology group of K. 
The complex K is called acyclic in dimensions less than q if the 

integer homology groups Hi{K) vanish for i<q, with H0(K) inter­
preted as the reduced homology group. We shall say that Q operates 
on K freely provided for each g^O, the group Cq(K) contains a 
set Otf such that the elements xw (#£(?, <o£&«) form a free base for 
the abelian group Cq(K), I t can be shown quite easily that if K is 
acyclic in dimensions less than q and Q operates freely on Kt then 
the equivariant cohomology groups Hl(Kf G)t i<q, are completely 
determined by Q, G and the operators of Q on G. In order to find 
precisely what these groups are, associate with the group Q an abstract 
complex KQ as follows : 

A ^-dimensional "simplex" of KQ is an ordered (g+l)- tuple 
<r=(#o, • • • , xq) of elements of Ç. The ith face of <r (O^i^q) is 
(r(*) = (xo, • • • , # » , • • • , # « ) , where the circumflex indicates that x% 
is omitted. The operators of Q on KQ are given by x(xo, • • • , xq) 
= (#xo, • • • t xxg). The complex K is acyclic in all dimensions and 
Q operates freely on K. A ^-dimensional cochain of K over G is simply 
a function ƒ of g + 1 variables in Q with values in G. The coboundary 
3/ is defined by 

bf(xo, • • • , xq+1) = X (-l)*/(*o, • • • , & , ' • - , Sfl+i) 

while the equivariance condition is 

ƒ(##<), * • • , XXq) = #ƒ(#<), ' ' * , #«). 

With each such equivariant cochain ƒ we associate a cochain 
feC«(QtG) by setting 

/ ( # 1 , ' • • , # « ) = / ( l , « I t * 1 * 2 , ' ' * , #1*2 • • • Xq). 

Conversely ƒ defines ƒ by 

f(Xo, • • • , * « ) = #o/(ffO « ! , • • • , X^lXq). 

Moreover 3/=5/. Thus the equivariant cohomology groups HI(KQ, G) 
simply yield an alternative definition of the cohomology groups 
Hq{Qj G). We refer to this definition as the "homogenous definition" 
in contrast with the original "nonhomogenous definition". If in the 
complex KQ we introduce the relations x(x0, • • • ,xq) = (xxo, • • • txxq) 
we obtain a complex isomorphic with K(Q) as defined in §13. Thus KQ 
may be regarded as a "univeral covering" of K(Q). 

The precise theorem is then the following. 
(16.1) Let K be a complex acyclic in dimensions less than q with the 
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group Q operating freely on K. For every abelian coefficient group G 
with Q as (left) operators, the following isomorphisms hold: 

n\Q, G) « H\(K, G) for i < q, 

H9(Q, G) « kernel of H\{Ky G) -> Hq{K, G). 

In particular if Q operates without fixed points on a topological 
space X, acyclic in dimensions less than q, then Q operates freely on 
the singular complex S(X) of X and (16.1) can be applied. 

In order to derive (14.1) (for cohomology only) from (16.1) the 
following facts are needed: (1°) iri(X) operates on the universal cover­
ing space X without fixed points, (2°) the condition 7r*(X)==0 for 
l<i<q is equivalent with the acyclicity of X in dimensions less than 
q, (3°) under the natural projection X—>X, the group Hl(%> G) maps 
isomorphically onto the group H*(X, G), to be taken with local 
coefficients if TTI(X) operates on G, (4°) if Tn(X) = 0 for 1 <i<q then 
the kernel of iïf(JP, G)—>Hq(JC, G) is mapped isomorphically onto 
the subgroup A*(X, G) of H*(X, G). 

In addition to the ordinary and equivariant cohomology group 
Hq(K, G) and Hq

e(K, G) we may introduce a residual cohomology 
group HQ(K, G) which is obtained by calculating modulo equivariant 
cochains. More precisely IPf**Z\IB\ where / E Z £ if and only if 3/ is 
equivariant, w h i l e / G ^ J if and only if f~ôg+h with h equivariant. 
The three kinds of cohomogy groups are connected by homomor-
phisms 

• H\(K, G) -> Hq(Ky G) -> H*r(K, G) -* H?\K, ( ? ) - > • • • 

and form an exact sequence in the sense that the image of each 
homomorphism is the kernel of the next one. 

In the residual group H%(K, G) a subgroup Dq
r(K, G) is distin­

guished by considering cochains f£:Cq(K, G) such that f{xz)=xf(z) 
for any xÇzQ and z(E:Cq(K) with dz — 0. 

Proposition (16.1) may then be supplemented as follows (Eilenberg 
[9]): 

(16.2) Under the conditions of (16.1) the following isomorphisms hold: 

Hi+\Q,G) ~Ht(K,G) f o r i < g , 

H9+\Q,G) ~Dq
r(K,G). 

This last isomorphism, expressed in the dual language of homology, 
leads to the following result due to Hopf [27]. 

(16.3) Let X be a q-dimensional connected polyhedron with Wi(X) = 0 



34 SAMUEL EILENBERG [January 

for 1 <i<q. Denote by yq the kernel of the natural homomorphism Tq(X) 
—>Hq(X), and by 7rg,0 the subgroup of irq spanned by all elements a — xa 
with aCiTTq, XÇZTTI- Then TT^OCT and 

An analogous discussion of equivariant and residual homology 
groups is possible without interesting variations. 

17. Generalizations. In analogy to the invariant kqU(X) 
eH«+1(wu Tq) indicated in §15, an invariant lq+\K) G#*+1((?, Hq{K)) 
may be defined for every complex K acyclic in dimensions less than q 
with C a s a group of operators. I t was shown by the author and S. 
MacLane [19] that this invariant lq+l(K) determines the group 
H%(K, G) in its entirety as well as the homomorphism Hq

e(K, G) 
—>Hq(K, G). Further it was proved by the author (unpublished) that 
lq+1(K) determines also the group Hl(K, G) and the homomorphism 
Hq(K, G)^H9

r{Ky G). This implies that lq+l(K) also determines the 
kernel of HQ

e
+1(K, G)-^Hq+1(K1 G). 

Applying these results to the universal covering X of a space X 
leads to the following result, supplementing (14.1). 

(17.1) Let X be an arcwise connected space with vanishing homotopy 
groups TTi for l<i<q. The invariant kq+1(X)ÇzHq+1(iri, irq) then de­
termines the homology groups Hq(X, G) as well as the factor group of 
Hq+i(X, G) by the image of Hq+i(X, G) under the natural projection of 
the universal convering X into X. For integer coefficients kq+1(X) deter­
mines Hq+i(X)/HQ+1(<X). For cohomology kq+1(X) determines Hq(X, G) 
and the kernel of H^iX, G)^Hq^(X, G). 

An interesting generalization of the equivariant theory has been 
recently introduced by Eckmann [7; 8] . Let K be a complex with 
C a s a group of operators and let G be any abelian coefficient group 
(not necessarily with Q as operators). Let \[/ be any subgroup of the 
group of all functions Q—>G. A cochain/£C g ( i£ , G) is called ^-cochain 
if for every cÇzCq(K) the expression ƒ (xc) treated as function of x £ Q 
belongs to ^. Replacing the equivariant cochains by ^-cochains the 
^-groups H$(K, G) and the corresponding residual groups are defined. 

In order to obtain the equivariant theory assume that Q operates 
on G and take \f/ to be the group of all functions x-+xg, g(~G. 

The next important case is the "almost zero" theory where \[/ is 
taken to be the group of all functions Q—>G which are zero except for 
a finite number of elements of Q. This choice is especially important 
if K is a locally finite simplicial (or cellular) complex which has a finite 
fundamental domain relative to the operators of Q. In this case the 
^-cochains are the finite cochains of Q so that H$,(Q, G) is the coho-
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mology group of K based on finite cochains. I t is independent of the 
group Q. 

The group H$(KQ, G) in the "almost zero" theory is denoted by 
ILq(Q,G). More directly, consider as g-cochains, f unctions ƒ (x0, • • ',%g) 
£ G , defined for #o, • • • , #«£(? such that for each system Xo, • • • , xq 

f(xx0, • • • , xxq) = 0 

for all, except for a finite number, of #£ (? . Define the coboundary 
8/as 

(ôf)(Xo, • • • , Xq+i) = ]T) (-l)y(ffo, • • • » &i, • ' ' » %i-l)-

Then IIg(Ç, G) may be defined using the usual procedure for defining 
homology and cohomology groups. 

All the results discussed in §16 remain valid for any choice of \[/. 
The same holds for the results involving an invariant lqn(K). Curi­
ously enough, this invariant remains in the group Hq+1{Q, G), which 
is the equivariant group of KQ. This shows that the equivariant 
theory has some features of universality. 

Using the "almost zero" theory Eckmann has proved the following 
theorem due to Specker (unpublished). 

(17.2) In an orientable 3-dimensional manifold the fundamental 
group 7Ti determines the homotopy group 7r2: 

7T2 « n^iri, / ) 

where J is the additive group of integers. 
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