
RESTRICTED MEASURABILITY 

TREVOR J. McMINN 

1. Introduction. I t is our aim to introduce into the general theory 
of measure a concept of restricted measurability1 and to establish 
certain conditions under which it is equivalent to measurability in 
the familiar Carathéodory sense. 

We follow the theory with two applications. 

2. Notations and conventions. If C is a sequence of sets and n is 
an integer, we agree that 

\}Ch ÖCy, and Ö C, 

are respectively 0, the union of terms of C numbered from 0 to n, 
and the union of all terms of C. 

We agree that a family II of sets is hereditary if each subset of 
each member of the family is a member of the family and is count-
ably additive if the union of members of each countable sub-family of 
H is a member of H. By aH we mean the union of all members of H. 

If A and B are sets, we agree that A~B is the set of points in A 
and not in B. 

Throughout this paper we consider S to be a fixed set with respect 
to which we make definitions. 

3. Restricted measurability. 
3.1. DEFINITION. 0 is a measure if and only if<f> is such a function 

on 

E (PCS) to £ ( 0 g / g o o ) 

that 

<t>{A) S E *(j8) 

whenever H is such a countable family that 

A O H C S . 

Since empty sums are zero, we see that, if <t> is a measure, then: 
W ( 0 ) ~ 0 ; 
II . 4>(A) £<t>(B) whenever A C B C S î 

Received by the editors November 6, 1947. 
1 A. P. Morse has contributed much to the development of this theory. 
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I I I . 4>{<TH) g X)p"£ #<£($) whenever H is such a countable family 
that aHCS. 

3.2. DEFINITION. A is <t> measurable F if and only if 0 is a measure 
and, for each member B of F, <t>(TB) =4>(TBA)+<I>(TB~A) whenever 

res. 
I t is rather evident that a set, <j> measurable F, is </> measurable Ff 

where F' is the family of subsets of members of F. 
In accordance with Carathéodory, we agree that A is <t> measurable 

if and only if A is <j> measurable 
E ( 0 C S ) . 
p 

Following the next definition is the principal theorem of this paper. 
3.3 DEFINITION. F is <f> convenient if and only if 0 is a measure, F 

is hereditary, and, corresponding to each T of finite <t> measure, there 
exists such a sequence C that 

<!>(T~ u cA = o, 

and, for each integer n, 

Cn C Cn+i G F, Cn is <j> measurable F. 

3.4. THEOREM. If F is<t> convenient, then A is <j> measurable whenever 
A is <j> measurable F. 

PROOF. If <£(T) = « , then, clearly, <j>(T) ~<I>(TA)+<I>(T~A). 
Suppose <f>(T)< oo. We secure such a sequence C that, for each 

integer n, 

CU = 0, and cj>(T ~ U CA = 0. 

Cn C Cn+i G JF, Cw is <j> measurable F. 

We note that, for each integer j , Cj~Cj~.iÇ:F. 

Now, for each integer n and TQ§, we have 

<t>(TCn) = *(rcwC»-i) + *(TC» - C - i ) = ^ T C ^ i ) + <t>(TCn ~ Cn_i). 

By induction we obtain, for each integer n, 

<t>(T) ^ 4>{TCn) = E<Krc,~(Vi) = Z<MnQ~C/-iM} 
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Hence, 

*(T) à E 4>{ne- ~ C^I)A } + £ * {ne, ~ c,-i) - ii] 

à * I ö r(Cy~Cf,i)ii| + ^ I U r(c,~c,-i) ~ii j 

= <*> jr^ u cA + 0 i(T ~ ii) 0 cA 

+ * jfil ~ Ü cX +<l>i(T~A) «> U C/l 

è<K2M) + tf>(r~,i) è*(r), 
where the third step follows from (1). 

The proof is complete. 
3.5. REMARK. The next definition and two obvious theorems fol­

lowing it enable us by using extant measure theory2 to avoid imita­
tive direct methods for proofs that the complement of a set <j> measur­
able F and the union and intersection of a countable family of sets 
<j> measurable F are <f> measurable F and consequently to establish 3.9. 

The notion of intersection measure is also useful in proving 4.2. 
3.6. DEFINITION, sect (<£, B) is the function ƒ on 

f (0CS) 
such that f (a) =cf>(aB) for « C S . 

3.7. THEOREM. If <£ is a measure, then, for each B, sect (<f>, B) is a 
measure. 

3.8. THEOREM. A is 4> measurable F if and only if <f> is a measure 
and, for each member B of F, A is sect (</>, B) measurable. 

3.9 THEOREM. If H is a family of sets <j> measurable F and B is the 
intersection of all countably additive, S complemental families which 
contain H, then each member of B is <f> measurable F. 

4. Applications. For Theorems 4.1 through 4.6 we assume that 
p metrizes S and agree that 

dist (A, B) = inf inf p(x, y). 

2 Measure theoretic results we use can be found in H. Hahn, Theorie der reellen 
Funktionen, vol. 1, Berlin, 1921, pp. 424-432. 
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Due to Carathéodory is the following well known theorem. 

4.1. THEOREM. If <f> is a measure and <f>(A\JB) =<£(<4) +<t>(B) when­
ever dist (A, B) >0, then each open set is <f> measurable. 

Stronger than 4.1 is 4.3 below. 

4.2. THEOREM. If F is hereditary and <j>{AKJB) ~<f>(A) +<t>(B) when­
ever A and B are such members of F that dist (.4, B) >0, then each open 
set is <j> measurable F. 

PROOF. Suppose dist (A\ B')>0. From the hereditariness of F 
we see that 

sect (0, T)(A' KJ B') « sect (0, T)(A') + sect (<£, T){B') 

whenever TÇ.F. By 4.1 each open set is </> measurable F. 

4.3. THEOREM. If F is <t> convenient and </>(AKJB) =<f>(A) +<}>(B) 
whenever A and B are such members of F that dist (A, B)>0, then each 
open set is <j> measurable. 

PROOF. Use 3.4 and 4.2. 

An application of the foregoing is the following theorem. 

4.4. THEOREM. If <j> is a measure and (f>(A\JB) ~<t>(A) +</>(B) when-
ever A and B are such bounded sets that dist (A, B) >0, then each open 
set is <t> measurable. 

PROOF. Let F be the family of bounded subsets of S. We establish 
the <j> convenience of F by taking a sequence of open spheres of integer 
radii the union of whose terms is S and inferring from 4.2 the <j> 
measurability F of these spheres. Reference to 4.3 completes the 
proof. 

4.5. REMARK. The above theorem, which was communicated to me 
by A. P. Morse, instigated the present investigation. Morse proved it 
directly using a method of alternate annular shells. 

I know of no correspondingly direct proof of the following applica­
tion of 4.3. 

4.6. THEOREM. If <f> is a measure, R is a sequence of non-dense sets, 

F = £ j 3 C S and 0 U R 4 is non-dense 1, 
fi\ J-o / 

<t>(AKJB) ~<t>(A)+<f>(B) whenever A and B are such members of F that 
dist (A, J3)>0, then each open set is <f> measurable. 

PROOF. Let C be such a sequence that, for each integer n, 
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Cn « U (closure Rj) \J {$ ~ U (closure J?/)}. 

Clearly, for each integer n, 

Ö C , » S . C n C C n + 1 e F , 

After checking the hereditariness of F, we infer from 4.2 that each 
open set is 0 measurable F. Hence, if we recall 3.5, Cnis</> measurable 
F for each integer n. Thus F is <j> convenient. Reference to 4.3 com­
pletes the proof. 

UNIVERSITY OF CALIFORNIA 

ON THE DISTRIBUTION OF THE VALUES OF |/(*)j 
IN THE UNIT CIRCLE 

ROBERT BREUSCH 

1. Summary. Let f(z)~l+aiz+ • • • be analytic for | s | <J1, 
f{z) ^ 1. Then \f(z) | will be greater than 1 at some points of the unit 
circle, and less than 1 at others. Calling A (ƒ) the area of the set of 
points within the unit circle, for which \f(z)\ g£l, let a and 0 be the 
two largest non-negative constants such that aSA(f)^ir—^f for 
every f (z). It is shown that a:=/? = 0; in other words, if € is arbitrarily 
small positive, there are f unctions ƒ (z) such that A(f) <e, and others 
such that A(f)>ir~ e. The same is true, if f(z) is restricted to poly­
nomials II?-1(3 — zv) with U ? « i W = L These statements will be 
proved in §2. §3 contains a few additional results, given without 
proofs. 

2. Proofs. The statements made in the summary are contained in 
the following theorem. 

THEOREM. Let P stand for the set of polynomials over the complex 
field of the form f(z) = H?m 1O3 -~2*) » w^ II?-11s" I ~ 1 î ^ A (ƒ) denote 
the area of the set of points in the unit circle, for which \f(z) | *£ 1 ; let e 
be an arbitrarily small positive number. Then P contains polynomials 
fi(z) andf2(z) such that A(fi) >r—€, and A(ƒ2) <e. 
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