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It has been observed1 that constructions so apparently different 
as Kronecker products, extension of the ring of operators of a module, 
field of quotients of an integral domain, free groups, free topological 
groups, completion of a uniform space, Cech compactification enter 
in the same frame. We intend in this paper to explain a rather general 
process of construction which may be applied to most of the examples 
quoted above. 

This paper will proceed axiomatically. In fact the problem under 
question (problem of a "universal mapping") can be only stated after 
a certain number of axioms. When the method of construction has 
been explained we shall illustrate it by the classical example of the 
completion of a uniform space. For more examples the reader is re­
ferred to a forthcoming book of N. Bourbaki. The same method gives 
also necessary and sufficient conditions for many imbedding prob­
lems. Both topological and algebraic examples will be given. In the 
last part of the paper our method of construction will be applied to 
MarkofFs theory of free topological groups.2 

1. Problems of universal mappings. Given a set E it is possible to 
define on it certain kinds of structures, that is structure of ring, field, 
topological space.3 We shall denote by S or T certain kinds of struc­
tures. A set with a structure T will be called a T-set: if T is the struc­
ture of group the T-sets are the groups. An isomorphism for the struc­
ture T will be called a T-isomorphism : 

T-mappings. Induced structures. Given a kind of structure T it 
happens very often that, for every pair E1E2 of T-sets, there has been 
defined a family of mappings of Ex into £2 satisfying the following 
axioms : 

Ai. Every T-isomorphism is a T-mapping. 
A2. If f:Ei—>£2 and g:E2—>Es are T-mappings, then the composite 

Received by the editors August 12, 1947. 
1 Unpublished manuscripts of N. Bourbaki. 
2 Markoff, Bull. Acad. Sci. USSR. vol. 9 (1945) pp. 3-64. 
3 For precise definitions of the words "structure,n "kind of structure," "iso­

morphism " see N. Bourbaki, Theorie des ensembles {Résultats), Part 10, Paris, Herr­
mann, 1939. 
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mapping g o /:£i—>£3 is a 7"-mapping. 
A3. A necessary and sufficient condition for a one-to-one mapping f of 

Ei onto £2 to be a T-isomorphism is that f and f*"1 be T-mappings. 
EXAMPLE. If T is the structure of group the T-mappings are the 

homomorphisms; if Tis the structure of topological space the T-map­
pings are the continuous ones. 

Let now a and <r' be two structures T defined on E and E'QE 
respectively. We shall say that a' is induced by a when: 

Ii. The injection of E1 into E is a T-mapping. 
I2. Iff:F—*E is a T-mapping and if f(F)C.E', then f considered 

as mapping of F into Ef is a T-mapping. 
Ii, I2 and A8 show immediately the uniqueness of the induced struc­

ture. 
If E'QE is capable of an induced structure we shall say that E' is 

T-closed. We suppose that the following axioms hold : 
Si. A subset of E composed of all the elements where a family of 

T-mappings takes the same value is T-closed. 
52. Any intersection of T-closed sets is T-closed. 
S2 is a consequence of Si if we allow mappings which are not every­

where defined : The notion of T-closed set is obviously transitive. S2 

allows us to define the T-closure E' of a subset E'QE as the inter­
section of all T-closed subsets containing E'. We shall suppose: 

53. Cardinal (Ef) gcertain function of cardinal (£')> a function 
which depends only on the structure T. 

In most cases the function «2*-Idc")" will be sufficient. 
Axioms for the cartesian products. In many important cases it is 

possible, given a family (£«) of T-sets, to define on the cartesian 
product Ho£« a structure T which satisfies the following conditions : 

Pi. The projections (on the components) are T-mappings. 
P2. If the ƒ«:£—>£« are T-mappings, the product mapping f:E 

->H*Ea (defined by f(x) = (ƒ«(#))) is a T-mapping. 
As easy consequences: the projections on the partial products are 

T-mappings; these partial products are T-closed; the given structure 
of the "coordinate axis" is induced by the product structure. Applying 
As we see also that the product structure is unique. 

Remark. The example of the structure of topological space shows 
easily that the axioms A, S, P are independent. 

Statement and solution of the problem of universal mappings. Given 
two kinds of structures S and T, suppose we have defined the T-map­
pings, and also mappings of 5-sets into T-sets, called the (S-T-
mappings, denoted by greek letters, and satisfying: 

(S-T)i. The composite mapping f o <j> of an (S-T)-mapping <£ and of 
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a T-mappingf is an (S-T)-mapping. 
(S-T)2. The product mapping of a family of (S-T)-mappings is an 

(S-T)-mapping. 
The structure T is supposed to satisfy the axioms A, S and P. 
The problem we have in view ("problem of universal mappings" 

or "problem U") is the following: given any S-set E to find a T-set 
F0 and an (S-T)-mapping 0o of E into F such that: 

(Ui). Every (S-T)-mapping 0 of E into any T-set F has the form 
0 =ƒ o 0o where ƒ is a T-mapping of Fo into F. 

It is clear that, if such an Fo exists, the T-closure of 4>o(E) in Fo 
will also satisfy (Ui). Therefore (Si) there will exist a pair (Fo, 0o) 
such that: 

(U2). Two T-mappings of Fo into F which coincide on 0o(£) are 
identical. 

We deduce immediately from A3 that a pair (Fo, 0o) satisfying (Ui) 
and (U2) is uniquely determined up to isomorphisms. 

We now come to the construction of a pair (JFO, #0) satisfying (Ui). 
Consider the set of all (S- T) -mappings of E into all T-sets whose 
cardinal does not exceed the one indicated in S3 (22 in most 
cases). Let {#«} be this set, 0« mapping E into Fa. Let Fo—UiaFa, 
and 0O be the product mapping x—>(</>a(x)) of E into Fo* Fo is a T-set 
(P), and 0o an (S-T)-mapping ((5-T)2). Let 0 be an (5-remapping 
of E into F, F' the T-closure of <t>(E) in F, i the injection of F' in F. 
By S8, I2 and (S-T) the contraction 0' of 0, mapping of E into Ft is 
among the 0«, say 0«o. Let po be the projection of ü a ^ » o n*° «̂o* 
We may write 0 —i o 0 ' = i o 0«o=i o po o 0O. Since i o po is a T-map­
ping of JJiaFa into F, the pair (F0i 0o) satisfies (Ui). Q.E.D. 

EXAMPLE. The preceding construction applies to all the examples 
quoted in the introduction except the field of quotients of an integral 
domain (a product of fields being not a field). For these examples the 
reader is referred to a forthcoming book of N. Bourbaki. 

We shall give only the example of the completion of a uniform 
space.4 S is the structure of separated uniform space, T the structure 
of complete separated uniform space. The T- and (5-7")-mappings are 
the uniformly continuous ones. All our axioms are verified. Therefore, 
given a separated uniform space £, the preceding construction pro­
vides with a complete space F0 and a uniformly continuous mapping 
0o of E into F such that every uniformly continuous mapping of E 
is "induced" by a uniformly continuous mapping of F0. 

We shall prove that, in this case, 0o is a uniform structural iso­
morphism of E onto 0o(-E). In fact consider the family (£ of all uni-

4 N. Bourbaki, Topologie générale, chap. 2, Paris, Hermann, 1940. 
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formly continuous distances (not necessarily satisfying the separa­
tion axiom "d(xt y)=0 implies x~y") on E. Since the real line is a 
complete space the function ƒ defined by fixing one of the arguments 
in the distance d is among the ƒ«. Since the uniform structure of E 
may be defined by the family (g,6 we see immediately—denoting by 
{fp} the subset of {ƒ«} composed of all mappings deduced from 
distances, and by IT the projection of Hoi7» onto H/3F/3—that T O <£0 

is an isomorphism. Hence <£0 is one-to-one and <ft5"1==(7r o ^o)^1 o ir 
is uniformly continuous. Hence #0 is an isomorphism. 

By definition of the T-closure (smallest complete, that is, closed 
subspace), we see that <t>o(E) is dense in F. We have therefore proved 
the existence and the uniqueness of the completion of a uniform space 
(provided we have defined the real line without completion, for ex­
ample by the cuts process). If E is not separated one verifies easily 
that <j>o(E) is the associated separated space. 

2. Imbedding problems. It often happens that the structure T is 
"richer" than the structure 5, that is, that there exists a canonical 
process for giving a structure S to a T-set. In an example where 
<£oOE) is, in the 5-set F0, capable of an induced structure 5, arises, 
with the problem (U), an "imbedding problem": may we consider E 
as a subset of a set F, subset whose structure S is induced by the 
structure S of F canonically deduced from a structure T? We shall 
suppose that a T-mapping is also an 5-mapping for the deduced 
structures 5. As a consequence (A3 for S) the operations "induced 
structure" and "deduced structure" commute. 

If <l>o(E) is capable of an induced structure 5, and if #0 is an 
S-isomorphism, the imbedding problem is solved by (FQ, #0). Let 
conversely (F, <j>) be a solution of the imbedding problem, <j> being an 
(5-T)-mapping. We can write #=ƒ o 0O, ƒ being a T-mapping of FQ 
into F. Since <£ is an 5-isomorphism, and since f\<t>o(E) and $0 are 
5-mappings, it follows from A2 and A3 (for 5) that ƒ | #o(-E) and 0o are 
5-isomorphisms. Therefore (Fo, <j>o) gives also a solution of the im­
bedding problem. 

We may therefore consider JF as a set of equivalence classes in Fo, 
the sets {a} (aÇz4>o(E)) being equivalence classes. The fact that this 
identification is not always trivial (and that the imbedding problem 
does not admit a unique solution) is shown by the example of the 
compactifications of a uniform space (T̂ o being the Cech compac-
tification). Therefore: A necessary and sufficient condition for the im­
bedding problem of E to be possible is that <t>o be an S-isomorphism. 

6 N. Bourbaki> Topologie générale, chap. 9, part 1, Theorem 1, 1948. 
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EXAMPLES. (1) Characterization of uniformizable spaces.* The struc­
tures S and T are the structures of topological space and of compact 
space respectively. The 5-, T-, (S-T)-mappings are the continuous 
ones. Let X be the given topology on E> X' the one induced on 0oOE) 
by the product space topology. X' and Xo~4>ôl(%') are uniformizable. 
In general X is finer than XQ. A necessary and sufficient condition for 
X to be uniformizable is that X = XQ. Then Fo is the Cech compactifi-
cation of E. Using the fact that every compact space may be im­
bedded in some, finite or transfinite, cube, one shows easily that the 
condition "X—Xo" is equivalent with the complete regularity of E. 

(2) Alexandroff's Ti-space? S is the structure of topological space, 
T the structure of TVspace, tlie *S-, T-, (.S-TO-mappings are the con­
tinuous ones. Then <t>o(E) is the "greatest possible" identification 
space of -E which is a TVspace. 

Remark. I t may happen, in some cases where our axioms are not 
all fulfilled (in particular S2 relative to intersections of ÜT-closed sets), 
tha t one can however construct #0, while Fo is "too big." 

(1). Let S be the structure of ring, T the structure of semi-simple 
ring. The 5-, ÜT-, (S-T)-mappings are the homomorphisms into. 
In this case </>^x({0}) is the extension radical 9t of the ring E.8 If 
9Î = 0, E may be imbedded in a semi-simple ring and conversely. 
The structure of 9Î may be obtained by studying a sufficient number 
of homomorphisms of E into semi-simple rings. Let a be the two-
sided ideal TC\{\ppE (T: ideal of the elements of finite order in the 
additive group of E\ p: prime number). Every semi-simple ring 
being contained in a product of full matrix rings over s-fields, it 
is clear that 0(a) = 0 for every homomorphism 0 of E into a semi-
simple ring. Hence &C9Î. On the other hand the rings E/pE and 
the Kronecker product E/T®Q of E/T by the rational field Q are 
algebras over the prime fields. But every algebra is a subalgebra of 
a full matrix algebra (adjoin a unit element, and consider the left 
regular representation). Hence VKZpE, $MZT. Therefore 9i = ct. 

(2) If we restrict the (5- T)-mappings to be the homomorphisms 
onto semi simple rings, it is easily seen that 0oTx({o}) is the radical 
of E.9 

6 P. Samuel, UUrafilters and compactification of uniform spaces, Princeton thesis, 
1947. 

7 P. Alexandroff, Bikompakte Erweiterungen von Râumen, Rec. Math. (Mat. 
Sbornik) N.S. (1939). 

8 O. Goldman. Semi-simple extensions of rings, Bull. Amer. Math. Soc. vol. 52 
(1946) pp. 1028-1032. 

9 N. Jacobson, Radical and semi simplicity for arbitrary rings. Amer. J. Math, 
vol. 67 (1945) pp. 300-320. 



596 P. SAMUEL [June 

3. Free topological groups. As a more elaborate example of our 
general method of construction, we shall give a sketchy treatment of 
Markoff's theory of free topological groups. Only very easy proofs 
have been omitted. 

S is the structure of topological space, T the structure of separated 
topological group (abelian, or precompact, if desired). The (S-JT)-

mappings are the continuous ones, the T-mappings are the continu­
ous homomorphisms. All the axioms A, S, P are satisfied. Applying 
the general construction to the topological space E, we get for FQ a 
separated topological group (abelian, or precompact, if desired) 
denoted G(J5), (GA(E), GC(E)). By construction G(E) is such that: 

(1) For every continuous mapping <t> of E into a topological group G, 
there exists a continuous homomorphism g of G(E) into G such that 
0 = g o 0o. 

(2) Two continuous homomorphisms ofG(E) into a topological group 
H which coincide on <j>o(E) are identical; <t>o(E) generates G(E)\ G(E) 
is uniquely determined by E. 

Similar properties hold for GA(E) and GC(E). The uniqueness 
shows that GA(E)œG(E)/C, C being the closure of the commutator 
subgroup of G(E). If E is discrete, G(E) and GA(E) are the classical 
free group and free abelian group generated by the set E. 

THEOREM 1. A necessary and sufficient condition for <£0 to be a 
homeomorphism is that E be completely regular. The uniform structures 
induced on the <l>o(E) are the universal uniform structure (for G(E) and 
GA(E)), and the Cech uniform structure (for GC(E)). 

The necessity is clear. The sufficiency comes easily from the fact 
that one has sufficiently many mappings continuous of E into the real 
line R or the unit circle T. 

THEOREM 2. If E' is a subspace of the completely regular space £, 
G(E'), GA(E') and GC(Ef) are algebraically isomorphic to subgroups of 
G(E), GA(E) and GC(E), and have finer topologies. 

If we extend the injection i:E'-*E—>G(E), we get a continuous 
homomorphism g:G(E')-*G(E). g is shown to be one-to-one by 
proving that, given a wordJXa?1 (a* €:£')> there exists a topological 
group G and a continuous mapping ƒ of £ ' into G such that 
IX» f(ai)ni7^I. One may take for G the unimodular orthogonal group 
Os[i?] which contains free groups with as many generators as desired, 
and which is arcwise connected. For GA(Ef) an Rn is good enough. 

As corollaries, we have: 
(a) G(E) and GC(E) (resp. GA(E)) have the algebraic structure of 
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the free (resp. free dbelian) group generated by the underlying set of E. 
(b) The commutator subgroup C of G(E) is closed; G A (E) **G(E)/C< 
(c) (j)o(E) is a closed subset ofG(E) (resp. GA{E)} GC(E)). 
((c) is proved by imbedding £ in a compact space.) 
(d) Every free group is algebraically isomorphic with a subgroup of 

a compact group. 
(e) The topology of G(E) is finer than the topology of GC(E). 
When E is connected, the subgroup A of G(E) (resp. GA(E)t 

GC(E)) composed of all the words of total degree zero is the con­
nected component of the identity. If E is compact, A is a countable 
union of compact sets. 

If E'QE, G(E') is topologically isomorphic with a subgroup of G(E) 
in the following cases (where continuous mappings of E' into suffi­
ciently many groups can be extended to E) : 

(a) E' is a retract of E. 
(b) E is the completion of E' for the universal uniform structure. 
(c) E is normal and E' is a closed subset of E. 
A counter-example is the following: E' is a discrete noncountable 

space, and E is its Cech compactification (consider the subgroup 
composed of the words of total degree zero). 

The Markojf's schemes. By a scheme is meant a set © of words 
formed from elements of E. We shall consider the continuous map­
pings {fy} of E into topological groups such that T[ify(ai)ni — I for 
every wordIXa?*'£©. Such an fy is called a realization of the scheme ©. 

We apply the general construction to the mappings fy (with the 
usual restriction on cardinal numbers) : we form the partial product 
H?G7 of IJaG«, and construct the subgroup G©(£) generated by the 
elements (fy(x)) (#££) . Let #@ be the mapping x—>(fy(x)). It is 
clear that every realization of the scheme © may be written ƒ = g o <£@, 
where g is a continuous homomorphism of G©(£). On the other hand 
such a pair (G©(£), <t>@) is unique. If H denotes the closure of the 
invariant subgroup of G(E) generated by ©, (?©(£) is isomorphic 
with G(E)/H (because of the uniqueness). 

EXAMPLES, (a) G(E) is defined by the empty scheme, GA(E) by the 
set of commutators. 

(b) If E has a structure of topological group, we may take for 
© the "multiplication table" of E. A pair having the properties of 
(G©(£), 0@) being (£, identity), we deduce from the uniqueness that: 

Every topological group E is isomorphic with a factor group of the 
free topological group generated by the underlying topological space of £ . 

(c) Taking for E the topological sum of two topological groups 
(with identity elements identified), and for © the union of their multi-
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plication tables, one gets the free topological product of the two groups. 
The referee has pointed out to me that S. Kakutani (Free topo­

logical groups and infinite direct products of topological groups, Proc. 
Imp. Acad. Tokyo vol. 20 (1944) pp. 595-598) gives substantially 
the same proof of Markoffs theorem as I do. 

Notice also that Nakayama's results (A note on free topological 
groups, Proc. Imp. Acad. Tokyo vol. 19 (1943) pp. 471-475) can be 
obtained by our method: his topology for G(E), deduced from the 
continuous representations, is that of our GC(E). If £ is a uniform 
space, Nakayama's uniform free topological group is obtained by 
taking, as (5-T)-mappings, the uniformly continuous ones. 

GRENOBLE, FRANCE 


