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1. Statement of the problems. Let S be a tr-field1 of subsets (meas­
urable sets) of an abstract group G. What can be said about the 
structure of S if there is a unique measure defined on S and invariant 
under the group operation? What are the conditions for the unique­
ness of an invariant measure? These are the problems studied in this 
note by means of a simple lemma. 

2. Definitions and results. 
DEFINITION 1. "Measure" means in this paper a non-negative, 

countably additive function of the set J £ 5 such that G is not of 
measure 0 and is the union of a sequence of measurable sets of finite 
measure. For any two measures m and n we denote by Sm,n the cr-field 
of subsets of GXG, defined so as to allow the application of the 
generalized theorem of Fubini [l, p. 87].2 

DEFINITION 2. A measure m is called invariant if A £ 5 , g£G im­
plies gAÇiS and m(gA)—m(A). An invariant measure is called 
unique if it differs from any other invariant measure only by a multi­
plicative constant. 

FUNDAMENTAL ASSUMPTION. It is assumed that g£G, A £ S implies 
A g G 5 and that any two invariant measures m, n satisfy the follow­
ing condition Mi: The transformation [(#, y)—>(y""1 ,̂ y)] sends every 
set A XG with A £ S into a set of 5W,W. 

DEFINITION 3. A measurable set A is called almost congruent by 
finite (resp. denumerable) partition with the measurable set A ' if there 
is a finite (resp. infinite) sequence of disjoint measurable subsets Ak of 
A with m(A — UA^A,) =0 and a corresponding sequence of elements gk 
of G such that the sets g*lAh are disjoint subsets of A' and 
mW-Vkg^AU^O. 

The answer to our first problem is given by the following theorem. 

THEOREM 1. If the measure is unique invariant then any measurable 
set A, whose measure is not greater than that of a measurable set B or 
equal to it, is almost congruent by finite or denumerable partition 
with some measurable subset of B or with B, respectively. 

Presented to the Society, November 29, 1947; received by the editors July 25, 
1947, and, in revised form, August 18, 1947. 

1 That is, a class of sets containing G and closed under complementation and the 
formation of countable unions. 

2 Numbers in brackets refer to the bibliography at the end. 
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COROLLARY. A unique invariant measure m accepts any of its values 
that are less than m(B) on some subset of B? 

The answer to our second problem is contained in the following 
theorem. 

THEOREM 2. In order that an invariant measure m be unique, it is 
necessary and sufficient that m(Xg) be an absolutely continuous f unction 
of the measurable set X for every g in G. 

COROLLARY. A bi-invariant measure is tonique. 

To formulate two easy consequences of Theorem 2 we introduce 
the following definition. 

DEFINITION 4. The measure m satisfies the condition M2 (resp. M2*) 
if the transformation [(x, y)—>(yx, y)] (resp. [(#, y)—*{xy, y)]) sends 
every set A X G with A G S into a set of 5m,w. 

THEOREM 3. Every invariant measure which satisfies the condition M> 
is unique. 

THEOREM 3*. Every invariant measure which satisfies the condition 
M2* is unique. 

Theorem 3 has been found before by A. Weil [2, pp. 140-149]. Its 
new proof given here seems to be simpler and more natural than that 
of Weil. Theorem 3* is new and completes Weil's result. 

3. Two lemmas. The proof of the above theorems relies upon 2 
lemmas. 

LEMMA 1. Let n and m be measures satisfying the condition Mi, and 
A and B measurable sets. Then we have 

(3.1) f m(Ax~l)dn(x) « f n(y~lA C\ B)drn(y), 

(3.2) f m{x-U)dn{.x) - f n{.Ay-x f\ B)dm(y). 
J B J G 

Indeed, let H be the image of the set A XG by the transformation 
[(x, y)-^(y~1Xy y)] and fi(x, y) resp. ft{x, y) the characteristic func­
tions of HC\BXG resp. HC\GXB. 

Then the above relations result from the evaluation of the integrals 

8 It follows from [4] that these values either are multiples of a positive number or 
fill a closed interval (which can be infinite). 
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of fi(x, y) resp. fz(xf y) over GXG by the generalized theorem of 
Fubini [2, p. 87]. 

Remark. The relations (3.1), (3.2) remain valid for the group 
operation x*y =*y-re.4 So do the theorems 1 and 2, as they will be 
deduced from Lemma 1. 

LEMMA 2. Let m be a measure such that m(Xg) is an absolutely con-
tinuous function of the measurable set X for every g in G. Then: 

(a) For any two measurable sets At B of positive measures there is an 
element g such that g~lA meets B in a set of positive measure, provided 
that the measures m, m satisfy the condition Mi ; 

(b) w(Z)=0 implies w(g~1Z)=0 for almost all elements g of G, 
provided that n is a measure such that n and m satisfy the condition Mi. 

PROOF. If m is substituted for n in (3.1), then the left side of (3.1) 
is positive. Therefore the integrand of the right side can not vanish 
identically, which is the assertion (a). If Z is substituted for A and G 
for B in (3.1), then both sides of (3.1) are zero, which implies the 
assertion (b). 

4. Auxiliary theorem and proof of Theorem 1. 

AUXILIARY THEOREM. Let m be a measure such that m{Xg) is an ab­
solutely continuous function of the measurable set X for every g in G. 
Let A and B be measurable sets and let B be of finite measure. Then one 
of these two sets is almost congruent by finite or denumerable partition 
with some subset of the other. 

PROOF. Assume that no subset of one of these sets is almost con­
gruent by finite partition with the other and that disjoint subsets Ah 
of A and elements gk of G were chosen so that the sets g^Au^Bk are 
disjoint subsets of B for & = 1, 2, • ••• ,#. 

Then both sets A — U2.i Ak, B — UJ.i Bk are of positive measure. 
Therefore the function 

Fn+1(g)^mïr1U - Û Ak\n(B - Ü Bk 

has, by Lemma 2(a), a positive upper bound Mn+i. We define gn+i 
to be any element g in G with Fn+i(g) > Mn+i/2 and put 

2 W " f t * i M - Û Akjn(B - Ü Bk\ An+i - gn+iBn+i. 

4 Indeed, the relations (3.1) and (3.2) for the new group operation * are identical 
with the relations (3.2) and (3.1), respectively, for the old group operation. 

) 
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Thus an infinite sequence of disjoint measurable subsets Ah of A and 
a corresponding sequence of elements g& of G has been defined by 
induction so that the sets g^Au—Bk are disjoint subsets of B. 

If 
eo oo 

m(A - U A*)-m(B- U Bh) 

were positive, the function 

Fig) = « [ r 1 ^ - G i l*)n(5 - U 5* 

would have a positive upper bound M and as F*(g) à ^(g) and 
ilf*îS M > 0 for every g in G, k = 1, 2, • • • , the series X X î -"* would 
be divergent. This is in contradiction to the inequalities Mk/2 t* i'fc(gfc) 
= m(Bk), X £ i m(J5») ̂ m(B) < oo. 

Hence either A — [)£mlAk or J3 —U£.iJ3* is of measure 0, which 
proves the assertion. 

4.1. PROOF OF THEOREM 1. As tn(Xg) is an invariant measure for 
every fixed g in G, it can differ from m(X) only by a multiplicative 
constant and is, therefore, an absolutely continuous function of the 
measurable set X. 

First case: m(A) is finite. The inequality m(A) ^m(B) and the in­
variance of m exclude the existence of a subset A ' of A almost con­
gruent with B by either finite or denumerable partition (symbolically: 
Af^B) and such that m(Af) <m(A). Therefore there is, by the 
auxiliary theorem, a subset B' of B with -4«j3'. If m(B)~m(A)y 

then we have tn(B—B') =0, which implies A «J5. 
Second case. m(A) is infinite. Then A is the union of a sequence of 

disjoint measurable sets At of finite measure, and there is a subset Bi 
of B with Ai^Bv The measure of B—Bi being infinite, there is a 
subset JS2 of B—Bi with A%^B^ By continuing this reasoning one 
proves the existence of a measurable subset B' of B with A^B'. 
As m(JB) is infinite too, there is also a subset A' oi A with jB»-4'. 
From A **BfCB and 22 «-4 'CS one deduces A « 5 by replacing in 
the proof of F. Bernstein's equivalence theorem [3, p. 27] the equiva­
lence relation by the relation « . This is legitimate as the transitivity 
of the relation « is not difficult to prove. 

5. Proof of Theorem 2. 
Necessity. See §4. 
Sufficiency. Let m{X) and n(X) be invariant measures and m{Xg) 

an absolutely continuous function of the measurable set X for every 
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g in G. Let Xo be a measurable set with 0<m(Xo)< oo and with 
c = n(Xo)/m(Xo) < °°. 

(5.1) n(Z) = 0 implies w(Z) = cw(Z). 
In fact, by (3.1) (with A = Z, B=*G), m(Zx~l) vanishes for some xf 

which implies m(Z) = m[(Zx"l)x] = 0. 
(5.2) 0<tt(Z) < oo awrf n(Z) = dm(Z) implies d^c. 
Indeed, one sees from Lemma 2(b) that m(Z) =0 implies n(Z) =0. 

Therefore n(Y) is an absolutely continuous additive function of the 
measurable set YCZZUXQ. By the theorem of Radon-Nikodym [l, p. 
36] there is, therefore, a function ƒ(y) such that we have n(Y) 
885fyf(y)din(y) for every measurable set YCZZUXo* 

Assume that c is less than d. Then there are numbers a, b>a be­
tween c and d and the sets 

A=X,C\E [f(y) ga], B-ZHE [f(y) £ 6] 
2/ 2/ 

are of positive measure. Therefore, there is (by Lemma 2(a)) an ele­
ment g of G such that m{g~lAC\B) >0. As g"lAC\B = C is a subset of 
B, we have 

n ( 0 = f f(y)dm(y) ^ Jm(C). 
•J c 

On the other hand, gC being a subset of A, we have 

J oc 

Hence n(gC)<n(C), although-n is invariant. 
(5.3) 0<n(Z)<*> implies n(Z)=cm(Z). 
Indeed, by (5.2) the relations n(Xo) =cm(Xo), n(Z) =dm(Z) imply 

d^c. By interchanging Z and Xo we get c = d. 
Finally, if Z is an arbitrary measurable set, it is the union of a 

sequence of disjoint sets Zt-, with n(Zi) < oo. By (5.1) and (5.3) we 
have n(Zi) =cm(Zi) hence n(Z) ~cm(Z), which was to be proved. 

6. Proof of Theorems 3 and 3*, Extension to transformation 
groups. 

(6.1) If the measure m satisfies the condition M 2 resp. M 2*, then A £ S 
implies the relation 

(6.2) I m{xA~l)dm{x) = I m(yA)dm(y) 
J 0 J Q 

resp. 
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(6.2*) f m(A-xx)dm(%) « f tn(Ay)dtn(y). 
J Q J G 

Indeed, let H be the image of the set A XG by the transformation 
[(x, y)-*(yx, y)] resp. [(x, y)-*(xy, y)]. The evaluation of the 
integral of the characteristic function of H over GXG by the gen­
eralized theorem of Fubini furnishes the above relations. 

If m is an invariant measure which satisfies the condition M2, then 
m(A)=0 implies m(A~l)—Q on account of (6.2). Hence we have 
m{g~'1A~'1) ^miAr1) = 0 and m{Ag) =w[(g~"1^4~1)"~1] = 0 for every g in 
G, which—according to Theorem 2—proves Theorem 3. 

If m and n are two invariant measures, which both satisfy the 
condition M2*, then AGS implies -4~1G5 (by (6.2*) and the funda­
mental assumption).5 Then the functions of A, m*(A) =>ni(A~l), 
n*(A) — niA"1), are readily seen to be measures invariant under the 
group operation x*y = yx. As M2* is the condition M2 for this group 
operation, n* differs from m* only by a multiplicative constant. There­
fore n differs from m by the same constant. 

(6.3) The above results can be extended to measures invariant 
under any transitive group G of transformations operating on a 
measure space M, by inducing either a measure structure in G or a 
group structure in M. 

To do this one denotes by t% the transformation which sends a fixed 
element xo in M into x in M. Then the images tx {A} of the measurable 
subsets A of M by the mapping tx of M onto G form a <r-field, on 
which one defines a measure ix by the relation 

v(f.{A}) =w(^).6 

A group structure can be induced in M by putting either xy~txy or 
xy = tyx. 
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