PAIRS OF INVERSE MODULES IN A SKEWFIELD

F. W. LEVI

Let Σ be a skewfield. If J and J' are submodules of Σ such that the nonzero elements of J are the inverse elements of those of J', then J and J' form a "pair of inverse modules." A module admitting an inverse module will be called a *J*-module and a selfinverse module containing 1 will be called an S-module. In an earlier paper¹ the author has shown that if Σ is a (commutative) field of characteristic not equal to 2, then every S-module is a subfield of Σ . Only in fields of characteristic 2, nontrivial S-modules can be found. A corresponding distinction of that characteristic does not hold for skewfields. Even the skewfield of the quaternions contains nontrivial S-modules, for examples the module generated by 1, j, k. In the present paper some properties of S-modules and J-modules will be discussed. For example it will be proved that when an S-module contains the elements a, band ab, it contains all the elements of the skewfield which is generated by a and b. By a similar method it will be shown that finite S-modules are necessarily Galois-fields.

1. Necessary and sufficient conditions for J-modules.

THEOREM 1. A submodule J of Σ is a J-module if and only if $a \in J$ and $b \neq 0 \in J$ imply $ab^{-1}a \in J$.

PROOF. Let J be a J-module. Without loss of generality suppose that $a \neq 0$, $b-a=c \neq 0$. Then $k=a^{-1}+c^{-1} \in J'$ since J' is closed under addition and subtraction. As $k=a^{-1}(c+a)c^{-1}$, $k^{-1}=cb^{-1}a$; hence $a-k^{-1}=ab^{-1}a$ is contained in J. Let now J be a module satisfying the condition mentioned above. To prove that J is a J-module, we shall show that when a and c are nonzero elements in J, but otherwise arbitrary, then $a^{-1}+c^{-1}$ is either 0 or the inverse of an element of J. The first alternative holds when b=a+c=0; if however $b\neq 0$, then $a^{-1}+c^{-1}=(a-ab^{-1}a)^{-1}$ is the inverse of an element of J. Hence the theorem.

COROLLARY 1. The meet of any (finite or infinite) set of J-modules in Σ is a J-module in Σ .

This corollary shows that the J-modules in Σ form a lattice with the set-inclusion as the defining order-relation. $J_1 \wedge J_2$ denotes the ordi-

Received by the editors March 4, 1947.

¹ Pairs of inverse moduls, J. Indian Math. Soc. N.S. vol. 3 (1936) pp. 295-306.

nary meet, whereas $J_1 \lor J_2$ is the meet of all the *J*-modules in Σ which contain J_1 and J_2 . This lattice is in general not a sublattice of the lattice of all the submodules of Σ .

COROLLARY 2. If a and b are elements of Σ and J is a J-module in Σ , then aJb is also a J-module in Σ .

COROLLARY 3. If the J-module J contains 1, then J is an S-module.

PROOF. From $1 \cdot b^{-1} \cdot 1 \in J$, follows $J' \subseteq J$. As $1^{-1} = 1 \in J'$, the inverse inequality holds. Hence J = J' is selfinverse and contains 1.

COROLLARY 4. If $a' \in J'$, then a'J = S is an S-module, or the zero-module.

Therefore every J-module which contains nonzero elements can be denoted by J=aS, where $a \neq 0$ is an otherwise arbitrary element of J. The S-module S depends on the selection of a. For the following proofs, it is important to remember that when a and b belong to an S-module S, then

(1) a+b, a-b, aba, and, for $a \neq 0$, a^{-1}

also belong to S.

COROLLARY 5. If $a \neq 0$ and $a \in J$, then a J'a = J.

PROOF. From Theorem 1 it follows that $aJ'a \subseteq J$ and $a^{-1}Ja^{-1} \subseteq J'$. The second formula furnishes $J \subseteq aJ'a$; hence the corollary.

In S-modules (and other selfinverse modules) every element $a \neq 0$ of S generates a module-automorphism $S \rightarrow aSa$.

2. Skewfields in S-modules. Obviously the primefield of Σ is contained in every S-module of Σ . We shall investigate now the conditions for S to contain the skewfield

$$(2) F(a, b)$$

which is generated in Σ by the elements a and b (that is, the meet of all the sub-skewfields containing a and b). That S may contain a and b but not F(a, b) appears from the example mentioned above, where Σ is the skewfield of the quaternions and S is the module generated by 1, j, k.

LEMMA 1. If an S-module S contains $a \neq 0$, it contains a^m (for $m=0, \pm 1, \pm 2, \cdots$).

PROOF. It suffices to prove the lemma for positive exponents. S

1178

1947]

contains a and $a1a = a^2$ and with a^m , also $aa^ma = a^{m+2}$. Hence the lemma follows by mathematical induction.

THEOREM 2. If an S-module S contains a, b and ab it contains all the elements of F(a, b).

PROOF. Without loss of generality, suppose that $a, b \neq 0$. S contains $a^{-1} \cdot ab \cdot a^{-1} = ba^{-1}$, hence ab^{-1} and $b \cdot ab^{-1} \cdot b = ba$. The suppositions are therefore symmetric for left and right and for a and b. Herefrom it follows that $a^{b}b^{\epsilon}$ and $b^{b}a^{\epsilon}$ belong to S for $\epsilon, \delta = \pm 1$. If $a^{r}b^{s} \in S$ then $a^{\pm r}b^{\pm s} \in S$ and $b^{\pm s}a^{\pm r} \in S$. To show that all the terms $a^{r}b^{s}$ belong to S, we may therefore restrict ourselves to positive values of r and s. Suppose $ab^{m} \in S$ for $0 \leq m \leq n$. This formula holds for n = 1. Moreover S contains $b \cdot ab^{n-1} \cdot b = bab^{n}$. As S is supposed to contain b and ab^{m} , it must also contain ab^{n+1} . Hence it follows by mathematical induction that $ab^{m} \in S$ for every positive m and therefore $b^{m}a \in S$. We can now substitute b^{m} for a and a for b and obtain by the same conclusion that $b^{m}a^{r} \in S$ for every positive r and finally we see that for all the integral values of r and s, the elements $a^{r}b^{s}$ and $b^{s}a^{r}$ belong to S. Let now R be the ring generated by a, b, a^{-1}, b^{-1} . The elements of R can all be represented as sums of terms

$$(3) \qquad \pm a^{r_1}b^{s_1}\cdots a^{r_n}b^{s_n},$$

where the exponents take the values $0, \pm 1, \pm 2, \cdots$. To prove that $R \subseteq S$, it suffices to show that all the elements (3) belong to S. The statement has been proved for n=1. Now $(b^{-u}a^{-v} \cdot a^{r_1}b^{s_1} \cdots a^{r_n}b^{s_n} \cdot b^{-u}a^{-v})^{-1} = a^v b^{u-s_n}a^{-r_n} \cdots b^{-s_1}a^{v-r_1}b^u$. When $u, v, r_1, \cdots, r_n, s_1, \cdots, s_n$ run independently over all the integral numbers, then the same holds for the 2n+2 exponents on the right-hand side. Thus one obtains by mathematical induction that R is contained in S. For the last steps of the proof one needs the following lemmas:

LEMMA 2. If an S-module S contains a ring R, then S contains also a ring in which the elements of R and their inverse elements occur.

PROOF OF LEMMA 2. The ring generated by the elements $\alpha_i, \alpha_k, \cdots$ of R and their inverse elements consists of sums of terms of the type

(4)
$$\alpha_1 \alpha_2^{-1} \cdots \alpha_{2n-1} \alpha_{2n}^{-1};$$

the element 1 can be used as an α as well as an α^{-1} . To show that this ring is contained in S, it suffices to show that every element of type (4) belongs to S. As α_i , α_k and $\alpha_i \alpha_k$ belong to S, the same holds for $\alpha_i \alpha_k^{-1}$; hence the statement is true for n=1. To prove it for an

arbitrary n by mathematical induction, we observe that every product of α 's is an α and that the corresponding holds for the inverse elements. Thus

 $(\alpha_{1}\alpha_{3} \cdot \alpha_{4}^{-1})(\alpha_{4} \cdot \alpha_{3}^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1})(\alpha_{1}\alpha_{3} \cdot \alpha_{4}^{-1}) = \alpha_{1}\alpha_{2}^{-1}\alpha_{3}\alpha_{4}^{-1} \in S.$

Moreover if the statement holds for any particular n>1, it follows that

$$(\alpha_{1}\alpha_{2n+1}\alpha_{2n+2}^{-1})(\alpha_{2n+2}\alpha_{2n+1}\alpha_{2}^{-1}\alpha_{3}\alpha_{4}^{-1}\cdots\alpha_{2n-1}\alpha_{2n}^{-1}\alpha_{2n}^{-1}\alpha_{1}^{-1})(\alpha_{1}\alpha_{2n+1}\alpha_{2n+2}) = \alpha_{1}\alpha_{2}^{-1}\alpha_{3}\alpha_{4}^{-1}\cdots\alpha_{2n-1}\alpha_{2n}^{-1}\alpha_{2n+1}\alpha_{2n+2}^{-1} \in S.$$

Hence we have Lemma 2.

LEMMA 3. If an S-module S contains a ring R, it contains also a skewfield $F \supseteq R$.

PROOF OF LEMMA 3. From Lemma 2 follows the existence of a ring R' such that $R \subseteq R' \subseteq S$ and R' contains also the elements which are inverse to those of R. If R' contains the inverse elements of all its elements, then it is a skewfield; at any rate it is a subring of a subring R'' of S which contains those inverse elements. By continuing this procedure, one obtains an ascending chain of subrings R, R', R'', \cdots in which each ring contains the preceding rings and their inverse elements. The join of these rings is a skewfield F. Hence we have the lemma.

As, under the suppositions of Theorem 2, S has a subring R which contains a and b, the module S has also a sub-skewfield F which contains R and therefore a and b. Hence $S \supseteq F \supseteq F(a, b)$.

COROLLARY. When a J-module J contains a, b, c and d, where $ab^{-1}cd^{-1}=1$, then J contains $dF(d^{-1}c, d^{-1}a)$.

PROOF. $d^{-1}J$ is an S-module which contains $d^{-1}c$, $d^{-1}a$ and $d^{-1}b = d^{-1}cd^{-1}a$.

3. Finite S- and J-modules. Let 0, $a_1, a_2 \cdots$ be the elements of an S-module S in Σ .

Every "word" of the type

$$(5) a_1a_2\cdots a_n$$

belongs to the ring A generated by S. As every $-a_i$ is also an a_i , each element of A can be represented as a sum of words (5). Furthermore the sum of the two equal terms can be contracted into a single one, say $2a_1 \cdot a_2 \cdot \cdot \cdot a_n$, since $2a_1$ is also an element a. Thus we can

1180

suppose that the terms in a sum which represent an element of A are all different. In general such a term affords different representations as a word (5). For the shortest representation, the following lemma holds.

LEMMA 4. In the shortest representation (5) of a product of nonzero elements of S all the letters a_i are different.

PROOF. Suppose that in (5) the same letter a occurs several times, say $aa_1 \cdots a_m a$ is a portion of a product of type (5). We replace every a_{2k} by $aa^{-1}a_{2k}a^{-1}a$. Now $aa_{2k-1}a = a'_{2k-1}$ and $a^{-1}a_{2k}a^{-1} = a'_{2k}$ are also elements of S. Hence the product under consideration is reduced to $a'_1 \cdots a'_m$ when m is odd and to $a'_1 \cdots a'_m a^2$ when m is even. As $a^2 \in S$, the length of the product has been reduced by the operation. Thus in a shortest representation, no repetition of elements can occur.

It may be mentioned that in a *J*-module which does not contain 1, no square of any element $a \neq 0$ of *J* is contained, since $a^2 \in S$ implies $a \cdot a^{-2} \cdot a = 1 \in S$. The lemma therefore does not hold for *J*-modules. However one can show by the same method that when the module formed by the *a*'s is selfinverse, in the shortest representation (5) no letter occurs more than twice.

THEOREM 3. Every finite S-module S is a Galois field.

PROOF. If *n* is the number of elements of *S*, then it follows from Lemma 4 that there exist only $m \leq n^n$ different products of such elements. The ring *R* generated by *S* consists of sum of different products and therefore *R* has not more than 2^m elements. In a finite ring, every element *a* generates a finite multiplicative cyclic group; hence *R* contains a^{-1} . *R* is therefore a skewfield and as *R* is finite, it is a Galois field.² *S* is therefore an *S*-module in a Galois field. *S*-modules in (commutative) fields are known³ to be subfields, except in the case of characteristic 2. It remains to prove the theorem for the case when *S* is an *S*-module in GF_{2^r} . It has been proved⁴ that the elements of GF_{2^r} which multiplied with the elements of *S* give elements of *S* form a field M(S) and that $a \in S$ implies $a^2 \in M(S)$. As $1 \in S$, we have $M(S) \subseteq S$. In a Galois field of order 2^r , $a = a^{2^r}$. Therefore $a^2 \in M(S)$ implies $a \in M(S)$. Hence S = M(S). This finishes the proof.

² J. H. Maclagan Wedderburn, Trans. Amer. Math. Soc. vol. 6 (1905), p. 349; see also E. Witt, Abh. Hamburgischen Univ. Math. Sem. vol. 8 (1931) p. 413.

³ Loc. cit. footnote 1, Proposition 4.

⁴ Loc. cit. footnote 1, Proposition 2.

COROLLARY. Every finite J-module is of the form aG where G is a Galois field.

If in particular the finite J-module is self-inverse, then $a^2 \in G$. In the case of Galois fields of characteristic 2, this relation implies $a \in G$ and therefore J=G.

4. Additional remarks. Let S be an S-module in Σ and $a \in S$. By $\mu(a)$ denote the set of those elements $x \in S$ for which $ax \in S$. From Theorem 2 it follows that $ax^{-1} \in S$; moreover $\mu(a)$ is a module containing 1. Hence $\mu(a)$ is an S-module. In the same way, one proves that $\mu(a) = \mu(a^{-1})$ and that $\mu(a)$ is also the set of the elements $x \in S$ for which $xa \in S$ holds. The meet of all the modules $\mu(a)$ is a skewfield M(S). Two modules aM(S) and bM(S) are either identical or they have only the element 0 in common; these modules are J-modules. Let $c \in M(S)$ and $c \neq 0$, then $\mu(a) = \mu(ac)$. Furthermore denote the modules xM(S) by M_1, M_2, \cdots . For every particular $c \neq 0$ of M(S) the mapping $M_i \rightarrow cM_i$ generates a permutation of the modules M_i which are subdivided into systems of transitivity. M(S)forms a system of transitivity by itself. If M_1 and M_2 belong to the same system of transitivity, then $M_1 = cM_2$, where $c \neq 0$, $c \in M(S)$. As $M(S) = M(S)c^{-1}$, $M_1 = cM_2c^{-1}$. Thus the modules belonging to the same system of transitivity are conjugate, the transforming element belonging to M(S), and conversely. To every M_i there corresponds a subskewfield of M(S) consisting of these elements y for which $yM_i = M_i$ or $yM_i = 0$. The meet of all these skewfields is a skewfield which contains the prime field of Σ .

CALCUTTA, INDIA

1182