
PAIRS OF INVERSE MODULES IN A SKEWFIELD 

F. W. LEVI 

Let S be a skewfield. If J and / ' are submodules of 2 such that the 
nonzero elements of J are the inverse elements of those of J7 , then 
J and J' form a "pair of inverse modules." A module admitting an 
inverse module will be called a /-module and a selfinverse module con
taining 1 will be called an 5-module. In an earlier paper1 the author 
has shown that if S is a (commutative) field of characteristic not equal 
to 2, then every 5-module is a subfield of S. Only in fields of char
acteristic 2, nontrivial 5-modules can be found. A corresponding dis
tinction of that characteristic does not hold for skewfields. Even the 
skewfield of the quaternions contains nontrivial 5-modules, for ex
amples the module generated by 1, J, k. In the present paper some 
properties of 5-modules and /-modules will be discussed. For example 
it will be proved that when an 5-module contains the elements a, b 
and aby it contains all the elements of the skewfield which is gen
erated by a and b. By a similar method it will be shown that finite 
5-modules are necessarily Galois-fields. 

1. Necessary and sufficient conditions for / -modules. 

THEOREM 1. A submodule J of 2 is a J-module if and only if a (EL J 
and Ô T ^ O G / imply ab~laÇ,J. 

PROOF. Let / be a /-module. Without loss of generality suppose 
that a9^0y b — a — c^O. Then k = a~l+c~1Ç.Jf since / ' is closed under 
addition and subtraction. As k — a~1(c+a)c~1y kr1 = cb~la; hence 
a — k~1 = ab~1a is contained in / . Let now / be a module satisfying the 
condition mentioned above. To prove that / is a /-module, we shall 
show that when a and c are nonzero elements in / , but otherwise 
arbitrary, then a~l+<rl is either 0 or the inverse of an element of / . 
The first alternative holds when & = a + c = 0; if however b^O, then 
a~1+c~l = (a — ab~1a)~l is the inverse of an element of / . Hence the 
theorem. 

COROLLARY 1. The meet of any {finite or infinite) set of J-modules in 
2 is a J-module in S. 

This corollary shows that the /-modules in S form a lattice with the 
set-inclusion as the defining order-relation. / 1 A / 2 denotes the ordi-
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nary meet, whereas J1VJ2 is the meet of all the /-modules in 2 
which contain J\ and J2. This lattice is in general not a sublattice of 
the lattice of all the submodules of S. 

COROLLARY 2. If a and b are elements of 2 and J is a J-module in 
2 , then aJb is also a J-module in 2 . 

COROLLARY 3. If the J-module J contains 1, then J is an S-module. 

PROOF. From l - ^ l G J , follows J'QJ. As l - ^ l G J ' , the in
verse inequality holds. Hence J=J' is selfinverse and contains 1. 

COROLLARY 4. If a'ÇîJ', then a'J=S is an S-module, or the zero-
module. 

Therefore every /-module which contains nonzero elements can 
be denoted by ƒ = aS, where a ^ 0 is an otherwise arbitrary element of 
/ . The S-module S depends on the selection of a. For the following 
proofs, it is important to remember that when a and b belong to an 
S-module S, then 

(1) a + b, a — by abay and, for a ^ O , a"1 

also belong to S. 

COROLLARY 5. If a 9*0 and a&J, then a J'a = J. 

PROOF. From Theorem 1 it follows that aJ'aQJ and a"1 Ja~1QJ\ 
The second formula furnishes JQaJ'a; hence the corollary. 

In S-modules (and other selfin verse modules) every element a 5*0 
of S generates a module-automorphism S—*aSa. 

2. Skewfields in ^-modules. Obviously the primefield of 2 is con
tained in every S-module of 2 . We shall investigate now the condi
tions for S to contain the skewfield 

(2) F(a, b) 

which is generated in 2 by the elements a and b (that is, the meet of 
all the sub-skewfields containing a and b). That S may contain a and 
b but not Fia, b) appears from the example mentioned above, where 
2 is the skewfield of the quaternions and S is the module generated 
by l , i , k. 

LEMMA 1. If an S-module S contains a ^ O , it contains am (for 
m = 0, ± 1 , ± 2 , • • • ) . 

PROOF. I t suffices to prove the lemma for positive exponents. S 
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contains a and ala = a2 and with am, also aama = am+2. Hence the 
lemma follows by mathematical induction. 

THEOREM 2. If an S-module S contains a, b and ab it contains all the 
elements of F(a, b). 

PROOF. Without loss of generality, suppose that a, ÔT^O. 5 con
tains a~x - ab - arx— ba~x, hence ab~l and b-ab~~x-b~ba. The supposi
tions are therefore symmetric for left and right and for a and b. 
Herefrom it follows that adb€ and bsa€ belong to S for e, 3= ± 1 . If 
arb8ES then a±rb±sES and b±9a±rC±S. To show that all the terms 
arbs belong to 5, we may therefore restrict ourselves to positive values 
of r and s. Suppose abm^S for O^m^n. This formula holds for n = 1. 
Moreover S contains b-abn~l-b = babn. As 5 is supposed to con
tain b and abm, it must also contain abn+1. Hence it follows by mathe
matical induction that abm(ES for every positive m and therefore 
bmaÇES. We can now substitute bm for a and a for b and obtain by 
the same conclusion that bmarÇ:S for every positive r and finally we 
see that for all the integral values of r and s, the elements arb8 and 
b*ar belong to S. Let now R be the ring generated by a, b, dr1, Zr1. 
The elements of R can all be represented as sums of terms 

(3) ± ariô*i • • • ar«bs", 

where the exponents take the values 0, ± 1, ± 2 , • * • . To prove that 
RQS, it suffices to show that all the elements (3) belong to S. The 
statement has been proved for w = l. Now (b~ua~v• anbn • • • 
arnj)Sn. b-ua-vyi — av]yu-snarm . . . b~81av~ribu. When u, v, ru - • • , rn, 
$!, • • • , sn run independently over all the integral numbers, then 
the same holds for the 2n+2 exponents on the right-hand side. 
Thus one obtains by mathematical induction that R is contained in 
S. For the last steps of the proof one needs the following lemmas: 

LEMMA 2. If an S-module S contains a ring R, then S contains also 
a ring in which the elements of R and their inverse elements occur. 

PROOF OF LEMMA 2. The ring generated by the elements a», a^ • • • 
of R and their inverse elements consists of sums of terms of the type 

(4) ojia2 * • • a2w^i«2»; 

the element 1 can be used as an a as well as an ce""1. To show that this 
ring is contained in S, it suffices to show that every element of type 
(4) belongs to 5. As a*, ah and aicth belong to 5, the same holds for 
aifxjT1', hence the statement is true for n = l . To prove it for an 
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arbitrary n by mathematical induction, we observe that every prod
uct of a 's is an a and tha t the corresponding holds for the inverse 
elements. Thus 

- i - l - i - l - i - i - i 

Moreover if the statement holds for any particular w > l , it follows 
that 

( « l « 2 n + l « 2 n + 2 ) («2n+2«2n+ l«2 * « 3 « 4 * * * « 2 n - ^ l « 2 n « l ) («iaJ2n4-l a2n+2) 

- 1 - 1 - 1 - 1 
== OJ10J2 -«30:4 ' * ' « 2 n - l « 2 n * «2n+l«2n+2 C O . 

Hence we have Lemma 2. 

LEMMA 3. If an S-tnodule S contains a ring R, it contains also 
a skewfield F^DR. 

PROOF OF LEMMA 3. From Lemma 2 follows the existence of a ring 
R' such tha t RQR'QS and R' contains also the elements which are 
inverse to those of R, If R' contains the inverse elements of all its 
elements, then it is a skewfield; a t any rate it is a subring of a sub-
ring R" of S which contains those inverse elements. By continuing 
this procedure, one obtains an ascending chain of subrings 
JR, Rr, R", • • • in which each ring contains the preceding rings and 
their inverse elements. The join of these rings is a skewfield F. Hence 
we have the lemma. 

As, under the suppositions of Theorem 2, 5 has a subring R which 
contains a and b, the module 5 has also a sub-skewfield F which con
tains R and therefore a and 6. Hence S^F^DF(a, b). 

COROLLARY. When a J-module J contains a, 6, c and d, where 
ab"lcd^1 — l, then J contains dF(d~lcy d~la). 

PROOF. d~xJ is an S-module which contains d~lc, d~la and d~lb 
= d~xcd~la. 

3. Finite S- and /-modules. Let 0, #i, a2 • • • be the elements of 
an S-module S in S. 

Every "word" of the type 

(5) #1^2 • • • an 

belongs to the ring A generated by S. As every —a» is also an a, 
each element of A can be represented as a sum of words (5). Further
more the sum of the two equal terms can be contracted into a single 
one, say 2a\-ai • • • an, since 2#i is also an element a. Thus we can 
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suppose that the terms in a sum which represent an element of A 
are all different. In general such a term affords different representa
tions as a word (5). For the shortest representation, the following 
lemma holds. 

LEMMA 4. In the shortest representation (5) of a product of nonzero 
elements of S all the letters ai are different. 

PROOF. Suppose that in (5) the same letter a occurs several times, 
say aai • • • ama is a portion of a product of type (5). We replace 
every a2k by aa~1a2kcr1a. Now aa2k-\(^ — okk-\ and ar^hff"*" =okh 
are also elements of S. Hence the product under consideration is re
duced to a( • • • aj, when m is odd and to a{ • • • aw' a2 when m is 
even. As a2Ç:S, the length of the product has been reduced by the 
operation. Thus in a shortest representation, no repetition of ele
ments can occur. 

I t may be mentioned that in a /-module which does not contain 1, 
no square of any element a 7*0 of J is contained, since a2 G S implies 
a-a~2'a = \.^S. The lemma therefore does not hold for /-modules. 
However one can show by the same method that when the module 
formed by the a's is selfinverse, in the shortest representation (5) no 
letter occurs more than twice. 

THEOREM 3. Every finite S-module S is a Galois field. 

PROOF. If n is the number of elements of 5 , then it follows from 
Lemma 4 that there exist only m^nn different products of such ele
ments. The ring R generated by S consists of sum of different prod
ucts and therefore R has not more than 2W elements. In a finite ring, 
every element a generates a finite multiplicative cyclic group; hence 
R contains a~x. R is therefore a skewfield and as R is finite, it is a 
Galois field.2 5 is therefore an S-module in a Galois field. 5-modules 
in (commutative) fields are known3 to be subfields, except in the case 
of characteristic 2. I t remains to prove the theorem for the case when 
S is an S-module in GF2

r. I t has been proved4 that the elements of 
GFtf which multiplied with the elements of 5 give elements of S form 
a field M{S) and that a G S implies a2 E M (S). As 1GS, we have 
M(S)QS. In a Galois field of order 2', a = a2\ Therefore a2GM(S) 
implies aE.M(S). Hence S = M(S). This finishes the proof. 

2 J. H. MaclaganWedderburn, Trans. Amer. Math. Soc. vol. 6 (1905), p. 349; see 
also E. Witt, Abh. Hamburgischen Univ. Math. Sem. vol. 8 (1931) p. 413. 

8 Loc. cit. footnote 1, Proposition 4. 
4 Loc. cit. footnote 1, Proposition 2. 
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COROLLARY. Every finite J-module is of the form aG where G is a 
Galois field. 

If in particular the finite /-module is self-inverse, then a 2 £ G . In 
the case of Galois fields of characteristic 2, this relation implies # £ G 
and therefore J = G. 

4. Additional remarks. Let S be an 5-module in 2 and a £ 5. By 
JJL(O) denote the set of those elements # £ 5 for which a # £ 5 . From 
Theorem 2 it follows that ax~l £ 5 ; moreover fx(a) is a module con
taining 1. Hence JJL(O) is an S-module. In the same way, one proves 
that /i(a) =/i(a~1) and that /x(a) is also the set of the elements # £ S 
for which xaÇ^S holds. The meet of all the modules fx(a) is a skew-
field M(S). Two modules aM(S) and bM(S) are either identical or 
they have only the element 0 in common; these modules are 
/-modules. Let c£ikf(S) and c^O, then JJL(O) = fx(ac). Furthermore 
denote the modules xM(S) by Mi, ikf2, • • • . For every particular 
CT^O of M(S) the mapping Mi—>cMi generates a permutation of the 
modules Mi which are subdivided into systems of transitivity. M (S) 
forms a system of transitivity by itself. If M% and Mi belong to the 
same system of transitivity, then Mi = cM2, where c^O, C £ . M ( S ) . 

As M(S) =M(S)c~l, Mi^cMiC1. Thus the modules belonging to the 
same system of transitivity are conjugate, the transforming element 
belonging to M(S), and conversely. To every Mi there corresponds 
a subskewfield of M{S) consisting of these elements y for which 
y Mi = Mi or yMi^O. The meet of all these skewfields is a skewfield 
which contains the prime field of 2 . 
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