PAIRS OF INVERSE MODULES IN A SKEWFIELD

F. W. LEVI

Let Σ be a skewfield. If J and J^{\prime} are submodules of Σ such that the nonzero elements of J are the inverse elements of those of J^{\prime}, then J and J^{\prime} form a "pair of inverse modules." A module admitting an inverse module will be called a J-module and a selfinverse module containing 1 will be called an S-module. In an earlier paper ${ }^{1}$ the author has shown that if Σ is a (commutative) field of characteristic not equal to 2 , then every S-module is a subfield of Σ. Only in fields of characteristic 2 , nontrivial S-modules can be found. A corresponding distinction of that characteristic does not hold for skewfields. Even the skewfield of the quaternions contains nontrivial S-modules, for examples the module generated by $1, j, k$. In the present paper some properties of S-modules and J-modules will be discussed. For example it will be proved that when an S-module contains the elements a, b and $a b$, it contains all the elements of the skewfield which is generated by a and b. By a similar method it will be shown that finite S-modules are necessarily Galois-fields.

1. Necessary and sufficient conditions for J-modules.

Theorem 1. A submodule J of Σ is a J-module if and only if $a \in J$ and $b \neq 0 \in J$ imply $a b^{-1} a \in J$.

Proof. Let J be a J-module. Without loss of generality suppose that $a \neq 0, b-a=c \neq 0$. Then $k=a^{-1}+c^{-1} \in J^{\prime}$ since J^{\prime} is closed under addition and subtraction. As $k=a^{-1}(c+a) c^{-1}, k^{-1}=c b^{-1} a$; hence $a-k^{-1}=a b^{-1} a$ is contained in J. Let now J be a module satisfying the condition mentioned above. To prove that J is a J-module, we shall show that when a and c are nonzero elements in J, but otherwise arbitrary, then $a^{-1}+c^{-1}$ is either 0 or the inverse of an element of J. The first alternative holds when $b=a+c=0$; if however $b \neq 0$, then $a^{-1}+c^{-1}=\left(a-a b^{-1} a\right)^{-1}$ is the inverse of an element of J. Hence the theorem.

Corollary 1. The meet of any (finite or infinite) set of J-modules in Σ is a J-module in Σ.

This corollary shows that the J-modules in Σ form a lattice with the set-inclusion as the defining order-relation. $J_{1} \wedge J_{2}$ denotes the ordi-
${ }^{1}$ Pairs of inverse moduls, J. Indian Math. Soc. N.S. vol. 3 (1936) pp. 295-306.
nary meet, whereas $J_{1} \bigvee J_{2}$ is the meet of all the J-modules in Σ which contain J_{1} and J_{2}. This lattice is in general not a sublattice of the lattice of all the submodules of Σ.

Corollary 2. If a and b are elements of Σ and J is a J-module in Σ, then aJb is also a J-module in Σ.

Corollary 3. If the J-module J contains 1 , then J is an S-module.
Proof. From $1 \cdot b^{-1} \cdot 1 \in J$, follows $J^{\prime} \subseteq J$. As $1^{-1}=1 \in J^{\prime}$, the inverse inequality holds. Hence $J=J^{\prime}$ is selfinverse and contains 1.

Corollary 4. If $a^{\prime} \in J^{\prime}$, then $a^{\prime} J=S$ is an S-module, or the zeromodule.

Therefore every J-module which contains nonzero elements can be denoted by $J=a S$, where $a \neq 0$ is an otherwise arbitrary element of J. The S-module S depends on the selection of a. For the following proofs, it is important to remember that when a and b belong to an S-module S, then

$$
\begin{equation*}
a+b, \quad a-b, \quad a b a, \quad \text { and, for } \quad a \neq 0, \quad a^{-1} \tag{1}
\end{equation*}
$$

also belong to S.
Corollary 5. If $a \neq 0$ and $a \in J$, then $a J^{\prime} a=J$.
Proof. From Theorem 1 it follows that $a J^{\prime} a \subseteq J$ and $a^{-1} J a^{-1} \subseteq J^{\prime}$. The second formula furnishes $J \subseteq a J^{\prime} a$; hence the corollary.

In S-modules (and other selfinverse modules) every element $a \neq 0$ of S generates a module-automorphism $S \rightarrow a S a$.
2. Skewfields in S-modules. Obviously the primefield of Σ is contained in every S-module of Σ. We shall investigate now the conditions for S to contain the skewfield

$$
\begin{equation*}
F(a, b) \tag{2}
\end{equation*}
$$

which is generated in Σ by the elements a and b (that is, the meet of all the sub-skewfields containing a and b). That S may contain a and b but not $F(a, b)$ appears from the example mentioned above, where Σ is the skewfield of the quaternions and S is the module generated by $1, j, k$.

Lemma 1. If an S-module S contains $a \neq 0$, it contains a^{m} (for $m=0, \pm 1, \pm 2, \cdots)$.

Proof. It suffices to prove the lemma for positive exponents. S
contains a and $a 1 a=a^{2}$ and with a^{m}, also $a a^{m} a=a^{m+2}$. Hence the lemma follows by mathematical induction.

Theorem 2. If an S-module S contains a, b and $a b$ it contains all the elements of $F(a, b)$.

Proof. Without loss of generality, suppose that $a, b \neq 0 . S$ contains $a^{-1} \cdot a b \cdot a^{-1}=b a^{-1}$, hence $a b^{-1}$ and $b \cdot a b^{-1} \cdot b=b a$. The suppositions are therefore symmetric for left and right and for a and b. Herefrom it follows that $a^{\delta} b^{\epsilon}$ and $b^{\delta} a^{\epsilon}$ belong to S for $\epsilon, \delta= \pm 1$. If $a^{r} b^{s} \in S$ then $a^{ \pm r} b^{ \pm s} \in S$ and $b^{ \pm s} a^{ \pm r} \in S$. To show that all the terms $a^{r} b^{s}$ belong to S, we may therefore restrict ourselves to positive values of r and s. Suppose $a b^{m} \in S$ for $0 \leqq m \leqq n$. This formula holds for $n=1$. Moreover S contains $b \cdot a b^{n-1} \cdot b=b a b^{n}$. As S is supposed to contain b and $a b^{m}$, it must also contain $a b^{n+1}$. Hence it follows by mathematical induction that $a b^{m} \in S$ for every positive m and therefore $b^{m} a \in S$. We can now substitute b^{m} for a and a for b and obtain by the same conclusion that $b^{m} a^{r} \in S$ for every positive r and finally we see that for all the integral values of r and s, the elements $a^{r} b^{s}$ and $b^{s} a^{r}$ belong to S. Let now R be the ring generated by a, b, a^{-1}, b^{-1}. The elements of R can all be represented as sums of terms

$$
\begin{equation*}
\pm a^{r_{1}} b^{s_{1}} \cdots a^{r_{n}} b^{s_{n}} \tag{3}
\end{equation*}
$$

where the exponents take the values $0, \pm 1, \pm 2, \cdots$. To prove that $R \subseteq S$, it suffices to show that all the elements (3) belong to S. The statement has been proved for $n=1$. Now $\left(b^{-u} a^{-v} \cdot a^{r_{1}} b^{s_{1}} \ldots\right.$ $\left.a^{r_{n}} b^{s_{n}} . b^{-u} a^{-v}\right)^{-1}=a^{v} b^{u-s_{n}} a^{-r_{n}} \cdots b^{-s_{1}} a^{v-r_{1}} b^{u}$. When $u, v, r_{1}, \cdots, r_{n}$, s_{1}, \cdots, s_{n} run independently over all the integral numbers, then the same holds for the $2 n+2$ exponents on the right-hand side. Thus one obtains by mathematical induction that R is contained in S. For the last steps of the proof one needs the following lemmas:

Lemma 2. If an S-module S contains a ring R, then S contains also a ring in which the elements of R and their inverse elements occur.

Proof of Lemma 2. The ring generated by the elements $\alpha_{i}, \alpha_{k}, \ldots$ of R and their inverse elements consists of sums of terms of the type

$$
\begin{equation*}
\alpha_{1} \alpha_{2}^{-1} \cdots \alpha_{2 n-1} \alpha_{2 n}^{-1} \tag{4}
\end{equation*}
$$

the element 1 can be used as an α as well as an α^{-1}. To show that this ring is contained in S, it suffices to show that every element of type (4) belongs to S. As α_{i}, α_{k} and $\alpha_{i} \alpha_{k}$ belong to S, the same holds for $\alpha_{i} \alpha_{k}{ }^{-1}$; hence the statement is true for $n=1$. To prove it for an
arbitrary n by mathematical induction, we observe that every product of α 's is an α and that the corresponding holds for the inverse elements. Thus

$$
\left(\alpha_{1} \alpha_{3} \cdot \alpha_{4}^{-1}\right)\left(\alpha_{4} \cdot \alpha_{3}^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1}\right)\left(\alpha_{1} \alpha_{3} \cdot \alpha_{4}^{-1}\right)=\alpha_{1} \alpha_{2}^{-1} \alpha_{3} \alpha_{4}^{-1} \in S
$$

Moreover if the statement holds for any particular $n>1$, it follows that

$$
\begin{aligned}
\left(\alpha_{1} \alpha_{2 n+1} \alpha_{2 n+2}^{-1}\right)\left(\alpha_{2 n+2} \alpha_{2 n+1}^{-1} \alpha_{2}^{-1}\right. & \left.\cdot \alpha_{3} \alpha_{4}{ }^{-1} \cdots \alpha_{2 n-1} \alpha_{2 n}^{-1} \alpha_{1}^{-1}\right)\left(\alpha_{1} \alpha_{2 n+1} \alpha_{2 n+2}^{-1}\right) \\
& =\alpha_{1} \alpha_{2}^{-1} \cdot \alpha_{3} \alpha_{4}^{-1} \cdots \alpha_{2 n-1} \alpha_{2 n}^{-1} \cdot \alpha_{2 n+1} \alpha_{2 n+2}^{-1}
\end{aligned} \in S .
$$

Hence we have Lemma 2.
Lemma 3. If an S-module S contains a ring R, it contains also a skewfield $F \supseteq R$.

Proof of Lemma 3. From Lemma 2 follows the existence of a ring R^{\prime} such that $R \subseteq R^{\prime} \subseteq S$ and R^{\prime} contains also the elements which are inverse to those of R. If R^{\prime} contains the inverse elements of all its elements, then it is a skewfield; at any rate it is a subring of a subring $R^{\prime \prime}$ of S which contains those inverse elements. By continuing this procedure, one obtains an ascending chain of subrings $R, R^{\prime}, R^{\prime \prime}, \cdots$ in which each ring contains the preceding rings and their inverse elements. The join of these rings is a skewfield F. Hence we have the lemma.

As, under the suppositions of Theorem $2, S$ has a subring R which contains a and b, the module S has also a sub-skewfield F which contains R and therefore a and b. Hence $S \supseteq F \supseteq F(a, b)$.

Corollary. When a J-module J contains a, b, c and d, where $a b^{-1} c d^{-1}=1$, then J contains $d F\left(d^{-1} c, d^{-1} a\right)$.

Proof. $d^{-1} J$ is an S-module which contains $d^{-1} c, d^{-1} a$ and $d^{-1} b$ $=d^{-1} c d^{-1} a$.
3. Finite S - and J-modules. Let $0, a_{1}, a_{2} \cdots$ be the elements of an S-module S in Σ.

Every "word" of the type

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{n} \tag{5}
\end{equation*}
$$

belongs to the ring A generated by S. As every $-a_{i}$ is also an a, each element of A can be represented as a sum of words (5). Furthermore the sum of the two equal terms can be contracted into a single one, say $2 a_{1} \cdot a_{2} \cdots a_{n}$, since $2 a_{1}$ is also an element a. Thus we can
suppose that the terms in a sum which represent an element of A are all different. In general such a term affords different representations as a word (5). For the shortest representation, the following lemma holds.

Lemma 4. In the shortest representation (5) of a product of nonzero elements of S all the letters a_{i} are different.

Proof. Suppose that in (5) the same letter a occurs several times, say $a a_{1} \cdots a_{m} a$ is a portion of a product of type (5). We replace every $a_{2 k}$ by $a a^{-1} a_{2 k} a^{-1} a$. Now $a a_{2 k-1} a=a_{2 k-1}^{\prime}$ and $a^{-1} a_{2 k} a^{-1}=a_{2 k}^{\prime}$ are also elements of S. Hence the product under consideration is reduced to $a_{1}^{\prime} \cdots a_{m}^{\prime}$ when m is odd and to $a_{1}^{\prime} \cdots a_{m}{ }^{\prime} a^{2}$ when m is even. As $a^{2} \in S$, the length of the product has been reduced by the operation. Thus in a shortest representation, no repetition of elements can occur.

It may be mentioned that in a J-module which does not contain 1 , no square of any element $a \neq 0$ of J is contained, since $a^{2} \in S$ implies $a \cdot a^{-2} \cdot a=1 \in S$. The lemma therefore does not hold for J-modules. However one can show by the same method that when the module formed by the a 's is selfinverse, in the shortest representation (5) no letter occurs more than twice.

Theorem 3. Every finite S-module S is a Galois field.

Proof. If n is the number of elements of S, then it follows from Lemma 4 that there exist only $m \leqq n^{n}$ different products of such elements. The ring R generated by S consists of sum of different products and therefore R has not more than 2^{m} elements. In a finite ring, every element a generates a finite multiplicative cyclic group; hence R contains a^{-1}. R is therefore a skewfield and as R is finite, it is a Galois field. ${ }^{2} S$ is therefore an S-module in a Galois field. S-modules in (commutative) fields are known ${ }^{3}$ to be subfields, except in the case of characteristic 2 . It remains to prove the theorem for the case when S is an S-module in $G F_{2}{ }^{r}$. It has been proved ${ }^{4}$ that the elements of $G F_{2^{r}}$ which multiplied with the elements of S give elements of S form a field $M(S)$ and that $a \in S$ implies $a^{2} \in M(S)$. As $1 \in S$, we have $M(S) \subseteq S$. In a Galois field of order $2^{r}, a=a^{2^{r}}$. Therefore $a^{2} \in M(S)$ implies $a \in M(S)$. Hence $S=M(S)$. This finishes the proof.

[^0]Corollary. Every finite J-module is of the form $a G$ where G is a Galois field.

If in particular the finite J-module is self-inverse, then $a^{2} \in G$. In the case of Galois fields of characteristic 2, this relation implies $a \in G$ and therefore $J=G$.
4. Additional remarks. Let S be an S-module in Σ and $a \in S$. By $\mu(a)$ denote the set of those elements $x \in S$ for which $a x \in S$. From Theorem 2 it follows that $a x^{-1} \in S$; moreover $\mu(a)$ is a module containing 1. Hence $\mu(a)$ is an S-module. In the same way, one proves that $\mu(a)=\mu\left(a^{-1}\right)$ and that $\mu(a)$ is also the set of the elements $x \in S$ for which $x a \in S$ holds. The meet of all the modules $\mu(a)$ is a skewfield $M(S)$. Two modules $a M(S)$ and $b M(S)$ are either identical or they have only the element 0 in common; these modules are J-modules. Let $c \in M(S)$ and $c \neq 0$, then $\mu(a)=\mu(a c)$. Furthermore denote the modules $x M(S)$ by M_{1}, M_{2}, \cdots. For every particular $c \neq 0$ of $M(S)$ the mapping $M_{i} \rightarrow c M_{i}$ generates a permutation of the modules M_{i} which are subdivided into systems of transitivity. $M(S)$ forms a system of transitivity by itself. If M_{1} and M_{2} belong to the same system of transitivity, then $M_{1}=c M_{2}$, where $c \neq 0, c \in M(S)$. As $M(S)=M(S) c^{-1}, M_{1}=c M_{2} c^{-1}$. Thus the modules belonging to the same system of transitivity are conjugate, the transforming element belonging to $M(S)$, and conversely. To every M_{i} there corresponds a subskewfield of $M(S)$ consisting of these elements y for which $y M_{i}=M_{i}$ or $y M_{i}=0$. The meet of all these skewfields is a skewfield which contains the prime field of Σ.

Calcutta, India

[^0]: ${ }^{2}$ J. H. Maclagan Wedderburn, Trans. Amer. Math. Soc. vol. 6 (1905), p. 349; see also E. Witt, Abh. Hamburgischen Univ. Math. Sem. vol. 8 (1931) p. 413.
 ${ }^{3}$ Loc. cit. footnote 1, Proposition 4.
 ${ }^{4}$ Loc. cit. footnote 1, Proposition 2.

