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1. Introduction. We shall present here some theorems concerning 
the trajectories of a particle moving in a given smooth surface when 
acted upon only by a generalized field of force and free of the pres­
sure of the surface. 

Kasner has developed the differential geometry of the dynamical 
trajectories of general positional fields of force on a plane, in space, 
and on a surface, in his Princeton Colloquium Lectures.1 Recently 
Kasner and DeCicco have introduced the concept of generalized 
fields of force which depend not only upon the position of the point 
but also upon the direction through the point. Positional fields may be 
described as isotropic and generalized fields as anisotropic.2 

Consider a generalized field of force defined in a certain region of 
ordinary space.3 Let S be a smooth surface in this particular region. 
The trajectories described by a particle constrained to move in 2 and 
acted upon only by this generalized field of force are oo8 in number, 
just as is the case for a plane. 

In general curvilinear coordinates (u, v) of S, these trajectories are 
defined by a differential equation of the form 

(F) z/" = F(u, v, v') + G(u, v, W + H(u, v, *>"*• 

Conversely any differential equation of this form which is satisfied 
by the totality of geodesies of 2 represents the trajectories of a 
particle constrained to move in S, which is acted upon only by a 
generalized field of force. 

Kasner has proved that in the (u, v)-plane, the curves defined by 
a differential equation of third order of the form (F) may be char­
acterized in the following manner.4 The locus of the foci of the 
osculating parabolas constructed to the oo1 trajectories passing 
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1 Kasner, Differential-geometric aspects of dynamics, Amer. Math. Soc. Collo­
quium Publications, vol. 3, 1913, 1934 (referred to as the Princeton Colloquium). Also 
see series of papers in Trans. Amer. Math. Soc. vols. 7-11 (1906-1910). 

2 Kasner and DeCicco, A generalized theory of dynamical trajectories. Trans. 
Amer. Math. Soc. vol. 54 (1943) pp. 23-38. 

3 Kasner and DeCicco, Generalized dynamical trajectories in space, Duke Math. 
J. vol. 4 (1943) pp. 733-742. 

4 See the Princeton Colloquium, pp. 104-107. 
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through a given lineal-element is a special quartic curve. 
If the special quartic curve degenerates into a circle passing 

through the point of the given lineal-element, then S is a developable 
surface, which is represented on the (u, v)-plane by an unrolling of 2 
followed by an affinity. In this event, the trajectories are represented 
as those of a positional field of force in the (u, v)-plane. 

More generally, if the motion on the surface 2 is pictured in the 
(u, v) -plane by a motion due to a positional field together with a 
resistance depending on the velocity components and acting in the 
direction of the motion, then 2 is of constant curvature and the repre­
sentation is geodesic. 

For any generalized field of force on a surface 2 , the oo1 trajec­
tories starting from a given lineal-element of 2 have osculating 
spheres a t the common point, whose centers lie on a general conic in 
the plane normal to the element. This conic passes through the center 
of curvature of the normal section of the surface 2 determined by the 
given lineal-element. If the element is in one of the principal direc­
tions of the surface 25, the conic touches the normal to 2 . 

Although Kasner first obtained the preceding property for a posi­
tional field of force, it is found to be valid also for generalized fields. 

After discussing the differential equation of third order defining 
generalized dynamical trajectories on the surface 2 , we shall compare 
the oo1 lines of force and the oo2 rest trajectories. Let a particle 
which is initially a t rest start from a point 0 . The rest trajectory 
will be tangent to the line of force at 0 . We study the ratio p of the 
departure of the rest trajectory to that of the line of force at 0. In 
the positional case, Kasner showed that p = l / 3 in the case of first 
order contact. For the generalized case of the plane, Kasner and De-
Cicco obtained a more general formula. In the present paper, we 
shall prove that this more general formula is valid also for a surface 
2 . 

2. The acceleration vector. Let a particle be constrained to move 
in a surface 2 which is defined parametrically by the equations 

(1) x = x(u, v), y = y(u, v), z = z(u, v). 

Of course, a t least two of these three functions of (w, v), are func­
tionally independent in a certain region of the (u, v)-plane. 

The rectangular components of the velocity vector are given by 
the expressions 

(2) x = xuû + xvv, y = yuû + yvv, z = zuu + zvi. 

The speed co is defined by the formula 
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(3) a>2 = Eu2 + 2Fùv + Gv\ 

The rectangular components of the acceleration vector are 

(4) 3/ = ;yM^ + 3 ^ + y«Mw2 + 2;yWÎ/m) + y*^2, 

2 = £M# + ZVV + 2MWÛ2 + 2ZuvÙV + ZVVV2. 

The length am of the projection of the acceleration vector along 
any direction (ôu> dv) on 2 is found to satisfy the equation 

[Eôu2 + 2Fôuôv + Gbv2Yi2am 

= \EÜ + Fv H û2 + Evùt + (FV J v2 du 

+ \ FU + Gv+ (FU j ù2 + Guûi) + —v2 L . 

Before proceeding further with our work, let us recall that the 
geodesic curvature k of a curve on the surface 2 is 

H[v" - nvn - (2m - v)v'2 - (I - 2M>' + X] 
(6) k = 

[E + 2ZV +GV 2 ] 3 / 2 

where 

1 = "2ÏP(GEu ~ 2FFu + FEv)' x~~2¥{2EEu ~ £ E v " F E w ) ' 
1 1 

<7> w = - ^ 7 <GE» "" F G ^> " = T ^ (E G w "" F£*)« 
2Hl 2HZ 

n = (2GFV - GGW - *£,)» y = (EGV - 2FFV + FGU). 
2H2 2H2 

Of course, H=(EG-F2)V2. 
Let #i denote the component of the acceleration vector parallel 

to the direction defined by Fou+G8v = 0, and let a2 denote the com­
ponent of the acceleration vector parallel to the direction defined by 
E5u+Fôv = 0. By (5) and (7), we obtain 

1 r . 
a = \u + lu2 + 2mùi) + nv2\j 

(8) 1 

a2 = \v + Aw2 + 2uùv + vi*]. 
EmH

 L ^ T ** 1 j 
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If at is the tangential component and an the normal component 
on the surface 2 of the acceleration vector, then from (5) and (6) 
can be deduced the well known formulas 

dv v2 

(9) at = v = v — ; an = kv2 = — • 
ds r 

3. The differential equations of the generalized dynamical trajec­
tories on the surface 2 . Let G~1/2iJ~"1< (̂w, v, v') denote the component 
of the generalized force vector parallel to the direction defined by 
Fdu+Gdv = 0, and let E~ll2H~hp(u, v* v') denote the component of 
the force vector parallel to the direction defined by E8u+F8v = 0. By 
(8), it is found that the differential equations of motion of a particle 
of unit mass, constrained to move in the surface 2 and acted upon only 
by a generalized field of force, are5 

(10) ü = # — lu2, — 2mùv — ni2, v = ^ — \û2 — 2/JLÙV — vv2. 

I t is desirable to find $ and \p in terms of the original force vector 
defined by the rectangular components X(u, v, vf)9 Y(u, v, vf), 
Z(u, v, v'). The values are 

0 = G(Xxu + Yyu + Zzu) - F(Xxv + Yyv + Zzv), 

(11) I = - F(Xxu + Yyu + Zzu) + E(Xxv + Yyv + Zzv). 

Substituting (10) into (5) where 8u:8v = u:v, we find that the 
tangential component T of the force vector along a trajectory is 

T = (E<l>+Ft) + (F<I>+W)v' ^ 

(E + 2Fv' +Gv'2yt2 

Substituting the normal direction 8v/8u = — (E+Fv')/(F+Gv') 
into (5), we discover the normal component N of the force vector to be 

(13) N= w w 
(£ + 2Fv' + Gz/2)1/2 

From (6), (9), and (13), it is seen that the square of the speed co 
is 

GA - v'<j>)(E + 2Fv' +Gv'2) 
(14) 

(2m - v)v'2 - (J - 2n)v' + X 
6 These could have been easily obtained by means of the Lagrangian equations. 

However, we prefer to derive the differential equations of motion from fundamental 
principles. For an analogous discussion, see Whittaker, Analytical dynamics, Dover 
Publications, 1944, pp. 99-109. 



i947l CONSTRAINED MOTION UPON A SURFACE 997 

The direction of the projected force vector on the surface 2 is the 
one which yields the maximum value of T in (12). For this, it is 
necessary and sufficient that iV=0. Thus the lines of force on the 
surface 2 {if they exist) are given by the differential equation of first order 

(15) \p{u, v, v') - v'<j>{u, v} v') = 0. 

Substituting this into (12), the magnitude a of the projected 
force vector is 

(16) a2 = E<t>2 + 2FM + Gty\ 

From (12), (13), and (16), we find 

(17) a2 = T2 + N2. 

We proceed to eliminate the time t from the equations (10) repre­
senting the trajectories on the surface S. For this purpose, it is found 
useful to introduce the quantity A defined by the equation 

(18) A = v" - nvn - {2m - v)v'2 - (/ - 2/*K + X. 

Thus A = 0 only along the geodesies of S. 
Upon substituting (10) into the formulas 

(19) v = v'û, v = v"ù2 + v'ü, 

we find 

(20) û2 = (f - ity)/A • 

Differentiating this with respect to u and eliminating ii, we find the 
equation of third order 

rdA I 
(& - v'<t>) 2A(J + 2mv' + nv'2) 

Ldu J 
(21) d 

= - 2tf>A2 + A — 6A - v'4>). 
du 

Thus the differential equation of third order representing the oo3 dy­
namical trajectories on the surface 2 is 

dA 

du 

(22) + [(i/v - v?4>v> - <t>) {nvfz + {2m - v)v'2 + {I - 2M>' - XJ 

+ 2(^ - ity)(J + 2mvf + nv'2) 

+ tu + v'tyv - 4>u) - v'2<l>v]A. 
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THEOREM 1. Any differential equation of third order of the form 

dA 
(23) = GO, v, v')A + H(u, v, v')A\ 

du 
where A is given by (18), represents a dynamical family of trajectories 
of a generalized field of force, constrained to move on a surface S. 

The remarkable similarity between this differential equation and 
that of the type (G) which has been studied extensively by Kasner 
should be noticed. Of course, this reduces to the G-type when 2 is 
developable and the mapping on the (w, p)-plane *s a n unrolling of 2 
followed by an affinity. 

In the case of a positional field of force, the functions G and H ap­
pearing in (23) must be restricted further. 

We prove the above theorem. First note that there is a one-to-one 
correspondence between the functions (iV, T) and the functions 
($, \f/). This correspondence is given by (12) and (13). 

Let P and Q be defined by the expressions 

IT N 
(24) P = , Q = — (E + 2Fv' + Gv'*yi\ 

(E + 2/V + G 0 1 ' 2 H 
Thus if (0, \f/) are known, the quantities (P, Q) can be calculated, 
and conversely. 

If we use the equations (9) and (24), it is found that the differential 
equation of the dynamical family may be written in the form 

(25) 

The expansion of this is 

du \ A / 

dA A PA2 

(26) — = (6„ + v'Qv + v"Qv.) - - - - -
du Q Q 

Now (Qu-\-v'Qv)/Q can represent any function of (u, v, v') say 
R(u, v, v'). Finally let 

G = R + — [nvn + (2m - v)vn + (I - 2M>' - \ ] , 

(27) Q 

Q.'-P 
H = -

Q 

From these equations, it is seen that G and H can be any pair of 
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arbitrary functions of (u, v, v'). 
Substituting (27) into (26) and making use of (18), we obtain the 

equation (23). This completes our proof of Theorem 1. 

THEOREM 2. In the auxiliary (u, v)-plane, any differential equation 
of third order of the type (F) which is satisfied by the oo2 geodesies of the 
surface 2 can represent the dynamical trajectories on 2 when acted 
upon only by a generalized field of f or ce. 

This result is an immediate consequence of Theorem 1. For upon 
expanding the differential equation (23) by means of (18), we find the 
type (F). This must be satisfied by the oo2 geodesies of 2 since A = 0 
is a solution of (23). Conversely, if A = 0 is a solution of a differential 
equation of third order of the type (F), then it must be written in 
the form (23). Thus Theorem 2 follows. 

4. The generalization upon a surface 2 of Kasner's theorem con­
cerning one-third of the curvatures. In this section, we shall study, 
in the motion of a particle constrained to move on a surface 2 when 
acted upon only by a generalized field of force, the ratio p of the depar­
ture of the rest trajectory to that of the line of force at a given 
point 0 . For the positional case, Kasner showed that p = l / 3 . In the 
generalized type on a plane,6 Kasner and DeCicco obtained a more 
general formula for p in terms of the angular rate X. We shall show 
that this more general formula is valid also upon a surface S.7 

At this point, we shall define the angular rate X which is associated 
to any lineal-element E on the surface X for the motion of a particle 
constrained to move on 2 when acted upon by a generalized field of 
force. As the lineal-element E rotates about its point 0 , the pro­
jection F on 2 of the corresponding force vector also rotates about 0. 
The angular rate X is the instantaneous rate of change of the inclina­
tion of F with respect to the inclination of £ . I t is given by the formula 

(E + 2Fv' + &>'*) W v - M*) 
IZo) A = • 

E02 + 2F<t>* + GV 

6 In space there is, in general, no analogous formula for generalized fields of force. 
See DeCicco, Extensions of certain dynamical theorems of Halphen and Kasner, Bull. 
Amer. Math. Soc. vol. 49 (1943) pp. 736-744. 

7 For a generalization to acceleration fields of higher order, see Kasner and Mittle-
man, A general theorem on the initial curvature of dynamical trajectories, Proc. Nat. 
Acad. Sci. U.S.A. vol. 28 (1942) pp. 48-52. Also Extended theorems in dynamics, Sci­
ence vol. 95 (1942) pp. 249-250. Also Kasner and Fialkow, Trans. Amer. Math. Soc. 
vol. 41 (1937). Fialkow, Initial motion in fields of force, Trans. Amer. Math. Soc. 
vol. 40 (1936) pp. 495-501. 
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For any ordinary positional field of force, X = 0. However, there 
are also certain generalized fields of force for which the angular rate 
X = 0. These are such that the direction of the force vector a t any 
point 0 does not vary, but its magnitude may. 

Since along any line of force \f/ = v'<f>, it is found that along any lineal-
element E of a line of force, the angular rate X is 

(29) X = îlLZ^L. 

Thus the condition that the angular rate XT^I is equivalent to stating 
that there exists a function v' =f(u, v) which satisfies the differential 
equation (15) identically. Thus, in general there are oo1 lines of force. 

A rest trajectory is defined as the path described by a particle, con­
strained to move in the surface 2 when acted upon only by a gen­
eralized field of force, which starts at rest from a given point 0. 

From the equations (19) together with the initial conditions w = 0, 
v = 0, it is deduced that a rest trajectory is initially tangent to the 
line of force through the given point 0. 

Since, on any rest trajectory, there is only one such point 0 where 
the particle is a t rest, there are oo2 rest trajectories on a surface S. 

At the point 0 , let E0 be the lineal-element of the line of force. 
The rest trajectory described by a particle initially at rest at 0 will be 
tangent to the line of force along E0. 

In the present paper, we shall assume that the geodesic curvature 
of the rest trajectory is not zero at the point 0 . The case of higher 
order contact with JE0 will be discussed elsewhere. Since our rest 
trajectory is tangent to the line of force at 0, the first derivative 
must satisfy (15). Therefore from this and (22), it is found that the 
second derivative v" of the rest trajectory a t 0 is given by the ex­
pression 

Wv — v'<t>v* — 3<£)A 

(30) + tyv. - ify,, - <j!>) {m/3 + (2m - v)v'* + (I - 2/i)t>' - X} 

+ tu + (&v - 4>uW - <M'2 = 0. 

If A denotes the analogous expression (18) for the line of force, we 
find, by differentiating (15), the following expression 

G/v — v'bv* — 0)A 

(31) + (t/v - J4>v> - *) {nv'* + (2m - v)vn + (/ - 2M>' - x} 

+ tu + (*• - 4>uW - <5M'2 = 0. 
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Subtracting the above two equations and using the formula (29) 
wherein <£= 0̂ since the force vector by assumption is not zero, we 
obtain 

(32) (3 - X)A = (1 - X)A. 

As p = A/A is the ratio of the geodesic curvature of the rest trajec­
tory to that of the line of force, we have proved the following result. 

THEOREM 3. The ratio p of the geodesic curvatures at E0 of the rest 
trajectory and the line of force is given by the formula 

(33) p = (1 - X)/(3 - X). 

By this result, it is seen that if p = l / 3 , then the angular rateX = 0 
at the lineal-element E0. 

THEOREM 4. All generalized fields of f or ce for which the ratio of de­
partures p = l / 3 must be such that the éliminant with respect to v' of 
the equations 

(34) ^ - v'4> = 0, i/v - v'4>v> = 0, 

be identically zero. 

This general class of generalized fields of force includes the posi­
tional fields as special cases. 
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