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I t can be easily seen that the graph [l , p. 9 ] , 1 of the Boolean alge­
bra Bn of 2n elements (consisting of the vertices and edges of an 
n-cube) has 2n(n\) "link-automorphisms," whereas Bn has only (n\) 
lattice-automorphisms. In an unpublished book,2 one of us has de­
veloped new operations in Bn and other distributive lattices, which 
admit such a wider group of invariance. The purpose of this note is 
to show the role of the symmetric and self-dual ternary operation 
[ l . p . 7 4 ] 

(a, b, c) « (aC\b)KJ (br\c)yj(cr\ a) 

= ( a U J ) n ( J U c ) n . ( c U a ) 

in a general distributive lattice L, with reference to the wider group 
of symmetries which it admits. 

THEOREM 1. In any metric distributive lattice [l, p. 41], the following 
conditions are equivalent: (i) ar\b^x^a\Jb, (ii) \a—x\ + \x~b\ 
= | a — b\, (iii) (a, x, b) = # . 

PROOF. V. Glivenko [3, p. 819, Theorem V] has shown the equiva­
lence of (i) and (ii) ; condition (i) says that x is metrically "between" 
a and b in the sense of Menger. But now if aC\b^x^a\Jb, then 
(a, x, b) = (anb)\J(br\x)U(xna)~(ar\b)\J[xr\(aKJb)]=x. Con­
versely, if (a, x, b) —x, then 

* « (a H 6) U (ft H *) VJ (* H a) £ a H ft, 

and dually, x^aKJb. Hence (i) and (iii) are equivalent. 

DEFINITION. The segment joining a and b is the set of x satisfying 
any (hence all) of the conditions of Theorem 1 (cf. Duthie [4]); we 
denote it [a, 6]. 

THEOREM 2. The element (a, 6, c) is the intersection of the sets 
[a, 6] [6, c] [c, a]. 

PROOF. This is obvious from condition (i) and formula (1). 

COROLLARY 1. The element (a, 6, c) minimizes 
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\x — a\+\x — b\+\x — c\. 

PROOF. In fact, \x — aj +1 x — i | ^ | a — ô| and symmetrically. Add­
ing, we get for all x 

2 { | * - a | + | * - f t | + | * - c | } 
^\o-b\ + \b-c\+\c-a\ 

By Theorems 1 and 2, equality holds if and only if x = (a, &, c). 
Since (a, &, c) can be defined in terms of distance and a, b, c, we get, 

further, the following corollary. 

COROLLARY 2. Any isometry of a metric distributive lattice preserves 
the operation (a, b, c). 

In neither nondistributive lattice of five elements, does every triple 
of elements*a, &, c, determine a unique x minimizing \x — a\ -\-\x — b\ 
+ |# — c\ ; it would be interesting to know what the lattices are in 
which this "midpoint" is uniquely determined. 

By using a weighted dimension function [l, Theorem 3.9] on 5 2 , 
we can find easily lattice-automorphisms which are not isometries. 
However, in the finite-dimensional case, we can obtain a converse to 
the preceding corollary. 

We define distance in the graph of a finite-dimensional lattice in the 
usual way, by making all segments have length one. Thus if d[x] 
is the number of "links" in the longest chain joining 0 and x, 
\x—y\ =d[x\Jy]—d[xr\y]. This makes L a metric lattice [l, Theo­
rem 3.9]. 

THEOREM 3. The isometries of the graph of a finite-dimensional dis­
tributive lattice L are precisely the automorphisms with respect to the 
ternary operation (a, &, c). 

PROOF. Corollary 2 above proves one half. To prove the converse, 
since any isometry carries "linked" elements into "linked" elements, 
it suffices to note the following lemma. 

LEMMA. In L, a and b are "linked" {that is, a covers b or b covers a) 
if and only if (a, x, b)=a or bfor all x. 

PROOF. By Theorem 1, (a, x, b) ==a or b for all x if and only if 
[a, b] consists only of a and b—that is, if and only if a and b are equal 
or linked. 

DEFINITION. We shall call elements a, a1 of a distributive lattice 
complementary if and only if (a, x, af) —x for all x. 

I t is easily seen that a given a can have only one complement. 
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For if it has two, say a' and a", then a" = (a, a", a') = (a, a', a1') = a', 
for any symmetric ternary operation. I t is also easily seen that if a 
and a' are complementary, then we have a "double algebra" with an 
"extreme pair";3 we denote xC\y~(x, a, y) and x\Jy = (x, a', y), and 
get a distributive lattice. 

More generally, the 2n mutually distributive operations introduced 
by one of us2 in Bn are the operations (x, a, y), one for each of the 2n 

different elements a of Bn. 
Added January IS, 1947. I t may be shown that distributive lat­

tices can be defined in terms of the ternary operation (a, b, c), by 
postulating 

(3.1) (0, a, I) = a for a fixed pair 0, J, 

(3.2) (a, b, a) = a, 

(3.3) (a, b, c) = (b, a, c) = (b, c, a) (symmetry), 

(3.4) ((a, b, c), d, e) = ((a, d, e), b, (c, d, e)). 

The proof is straightforward, if we try to prove the right known set 
of postulates.4 The greatest trouble comes in proving that (a, &, c) is 
actually defined by (1) in the distributive lattice defined by the binary 
operations aC\b^{a, 0, b) and a\Jb s (a, I , b). This trouble is resolved 
by using Theorem 2 above. Law (3.4), which contains both ordinary 
distributive laws as special cases, may be proved by direct substi­
tution. 

The structure of the group of automorphisms of Bn with respect to 
the ternary operation (a, &, c) is of interest for its own sake, and be­
cause it is the structure of the group of symmetries of the w-cube. 

For any fixed a, the correspondence 

(4) x -> (x C\ a') \J (%' O a) = x + a 

(here + denotes addition in the additive group of the corresponding 
Boolean ring) is an automorphism for (a, 6, c) ; this defines a simply 
transitive, elementary Abelian subgroup of order 2n, of symmetries of 
the w-cube; the case a = J, x—>x' gives the "antipodal reflection" gen­
erating the center of the group. We also have the subgroup "of 

3 Cf. M . H . A. Newman, A characterization of Boolean lattices and rings, J . London 
M a t h . Soc. vol. 16 (1941) p . 257. 

4 Namely, those of p . 7 of Distributive postulates for systems like Boolean algebras, 
by G. D . Birkhoff and G. Birkhoff, T rans . Amer. M a t h . Soc. vol. 60 (1946) pp . 3 -11 . 
I t might be possible t o base postulates on the conditions of §§8-10 of E . Pitcher and 
M . F . Smiley, Transitivities of betweenness, T rans . Amer. M a t h . Soc. vol. 52 (1942) 
pp . 95-114. 
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stability" leaving the vertex O fixed, and consisting of the lattice-
automorphisms of Bn. The entire group is the product of these two 
subgroups. 

There is an obvious analogy between the ternary operation (1) and 
the ternary operation ab~lc of a group G; in the latter case, the group 
of automorphisms for ab~lc is the holomorph5 of G. This similarly is 
the product of the subgroup of group-automorphisms and a simply 
transitive subgroup of right-translations x—>xa. I t would be interest­
ing to extend our ternary operation to Newman's "double systems" 
(reference of footnote 2). 

However, it should be noted that in doing this, we should not use 
the ternary operation a+b+c of Baer-Certaine. For with respect to 
this, Bn has 2n (2n — l) • • • (2n — 2n~x) automorphisms; hence we can­
not even define (a, b, c) in terms of it. 
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