
SEMI-SIMPLE EXTENSIONS OF RINGS 

OSCAR GOLDMAN 

In this paper we investigate the conditions under which a given 
ring is a sub-ring of a semi-simple ring.1 For convenience, we say 
that a ring A is an extension of a ring B, if B is a sub-ring of A. It is 
found that the existence of a semi-simple extension is equivalent to 
the vanishing of the extension radical, a two-sided ideal defined analo­
gously to the ordinary radical. In Theorem II we give an intrinsic 
characterization of the extension radical, where we find that the lat­
ter is determined by the addition in the ring and is independent of the 
multiplication. This result is summarized in Theorem III. 

For the convenience of the reader, we reproduce here some of the 
definitions given in the paper mentioned in footnote 1. The radical 
of a ring A is obtained as the intersection of the annihilators of all 
simple A -modules. When the radical consists only of the zero element 
of A, we say that the ring is semi-simple. The radical as defined here 
contains the ideal classically known as the radical (the sum of all 
nilpotent left ideals) and is equal to it if one assumes tht A satisfies 
the descending chain condition on left ideals. A ring which is semi-
simple in the present sense has then no nilpotent ideals. 

In order to define the extension radical, we must first introduce the 
auxiliary notion of a quasi-simple module. If 9ft is an abelian group, 
denote by £(9ft) the ring of all endomorphisms of 9ft. We say that 9ft 
is a quasi-simple group if 9ft is a simple E(9ft)-module. An A -module 
2ft is a quasi-simple module if the underlying additive group of 9ft 
is quasi-simple. We shall find the following two lemmas useful. 

LEMMA I. If 9ft is a simple A -module, then 9ft is a quasi-simple 
module. 

Let 31 denote the annihilator of 2ft. It is clear that 9ft is a simple 
i4/2ï-module, and furthermore that A/%C.E(W). Thus 9ft is certainly 
simple for £(9ft). 

LEMMA II. Every quasi-simple group is the underlying additive group 
of a vector space over afield and conversely. 

Let Z be the center of £(9ft). Since 9ft is a simple E(9ft)-module, Z is 
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1 For the definitions and elementary properties of the concepts involved in the 

study of semi-simple rings, see my previous paper, A characterization of semi-simple 
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a field by Schur's lemma, and 90? can be considered as a vector space 
over Z. (The precise form of Schur's lemma used here is given in the 
reference cited in footnote 1.) 

If 2)? is a vector space over a field K, let JE' be the ring of all linear 
transformations of SDt. It can easily be seen2 that 9D? is a simple £ ' -
module; but E'C-E(3)?), so that 2)? is a simple E(2Jt)-module, and is 
therefore a quasi-simple group. 

By Lemma II we can associate an integer, either zero or a prime, 
to each quasi-simple group, 3D?, namely, the characteristic of those 
fields over which ffll can be considered as a vector space. 

The following fact will be found useful : If every element of an ad­
ditive group 93? has the same order p, with p a prime, then 90? is a 
quasi-simple group since it can be considered as a vector space over 
the primitive field of characteristic p. 

We now define the extension radical of a ring A to be the intersec­
tion of the annihilators of all quasi-simple A -modules. It is clear that 
the extension radical is a two-sided ideal in A. By Lemma I, the ex­
tension radical of A is contained in the radical of the ring. 

In order to make use of the notion just introduced, it is necessary 
to review some elementary facts about simple and semi-simple rings. 
We say that a ring A is simple if there exists a faithful simple A -mod­
ule. From our definitions it is clear that E(9tt) is a simple ring if 3D? 
is a quasi-simple group. We call a ring £($D?), where 3D? is quasi-simple, 
a full linear ring. If {A\\ is a set of rings, we construct the product 
of the A\ by forming the Cartesian product of the underlying sets 
(the unrestricted product) and defining the ring operations to be co­
ordinate-wise. (The ring formed in this way is sometimes referred to 
in the literature as the direct sum of the A\.) We have the following 
lemmas. 

LEMMA III. Let {A\} be a set of simple rings, then the product A 
of the A x is semi-simple. 

Let 2)?x be a faithful simple -4\-module. We can consider 2)?x as an 
A -module, by writing ( • • • , ax, • • • , ax', • • • )x = a\x, for all 
#E2)?x. As an A -module, 2)?x is still simple; the annihilator of 2)?x is 
the set of all elements of A whose X-coordinate is zero. The intersec­
tion of the annihilators of all the modules 99? x considered as A -modules 
is then {0}, so that A is semi-simple. 

2 The statement made is equivalent to the fact that given a subspace 3? of 9ft, 
there exists a basis for 9ft, a subset of which is a basis for 91. See for example, S. Lef-
schetz, Algebraic topology f Amer. Math. Soc. Colloquium Publications, vol. 27, 1942, 
p. 73. 
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LEMMA IV. Every semi-simple ring is contained in the product of full 
linear rings. 

Let A be a semi-simple ring, {9ftx} a system of simple A -modules, 
the intersection of whose annihilators is {0}. Since 9ft x is a simple 
A -module, £(9ftx) is a full linear ring, let £=]lx£(2Wx). If Six is the 
annihilator of Sftx, we have a homomorphism cr\ of A into £(9ftx) 
whose kernel is Six» If ^x is the projection of E onto £(9ftx), define the 
homomorphism r of A into E by 7rxr ~O*X. It is clear that the kernel of 
r is the intersection of the kernels of the <r\ which we know to be {0}. 
Thus A is isomorphically contained in Ex the product óf full linear 
rings. 

We are now in a position to prove the following theorem. 

THEOREM I. Let A be a ring and 8Î its extension radical. Then a 
necessary and sufficient condition that A has a semi-simple extension is 
that 9Î reduces to {0}. 

Suppose that B is a semi-simple extension of A ; by Lemma IV, 
B is contained in the product IIxE(9ftx) of full linear rings. The 9ftx 
are quasi-simple A -modules. By an argument similar to the one used 
in the proof of Lemma III, the intersection of the annihilators of the 
9ftx is {0}, and therefore the extension radical of A reduces to {0}. 

If on the other hand, the extension radical of A is {O}, let {9ftx} 
be a system of quasi-simple A -modules, the intersection of whose an­
nihilators is {0}. Defining E to be the product of the £(9ftx), we know 
that £ is semi-simple. Exactly as in the proof of Lemma IV, we can 
construct an isomorphism of A into £. Thus A has a semi-simple ex­
tension. 

If n is an integer, define nA to be the set of all elements of A which 
are of the form na for some a £-4. It is clear that nA is a two-sided 
ideal in A. Denote by T the set of all elements of A which are of finite 
order in the underlying additive group of A. Again T is a two-sided 
ideal. We have the following theorem. 

THEOREM II. Let A be a ring, and dt its extension radical. Then 
%t~Tr\f\ppA> taken over all prime numbers p. 

If the characteristic of a quasi-simple A -module 9ft is p7*0, it is 
clear that pA is contained in the annihilator of 9ft. Again if 9ft is of 
characteristic zero and a(~T, so that »a = 0 for some »?^0, we have 
ax~na-n~~lx~0 for all x£9ft, so that T is contained in the annihila­
tor of 9ft. Thus we have dtDTr\f\ppA. 

We now consider the special case in which A has a unit element. 
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We shall first show that it is sufficient to consider only quasi-simple 
A -modules in which the unit element acts like the identity automor­
phism. To be precise, if 3W is a quasi-simple A -module, 21 the annihila-
tor of -SDî, then there is a quasi-simple A -module 9Î, such that the unit 
element of A acts like the identity in 9Î, the annihilator of 31 is St 
and the characteristic of 5ft is the same as that of SDÎ. Let 9ft r be the 
trivial sub-module of 9ft, that is, the set of all #£9ft for which 
Ax~ {o}. If Z is the center of JS(9ft), Z is a field, all elements of Z 
commute with the elements of A modulo SI, so that the elements of Z 
map 9ft r into itself. Then the factor module 9ft/9ftr is a quasi-simple 
A -module of the same characteristic as 9ft. Since, for all #£9ft, 
1#—*€:9ftr, the unit element of A acts like the identity in 9ft/9W:r. 
IfaGStit is obvious thata9ft/9ftr = {0}. If a9ft/9ft* = {0},ora9ftC9ftr, 
we have Aa,m~ {O} or aWl~ {o}. Thus the annihilator of 2K/3)?r 
is H. 

If p is a prime, the factor group A/pA has a natural structure as 
an -4-module. Furthermore, each element of A/pA has the same 
prime order so that A/pA is a quasi-simple module. If aA/pA = {0} 
or aACZpA we have aÇzpA. Thus the annihilator of A/pA is con­
tained in pA and is therefore equal to pA. 

If T~A, that is, if wl=0, for some w?^0, all nontrivial quasi-
simple modules have finite characteristic which divides n. For, if 
#£9ft, lx~x, nx~nlx=*0 so that the characteristic of 9ft divides n. 
In that case, by the results of the above paragraph, $tCTC\{)ppA 
and therefore dt « THf) p£<4. 

If TT*A, A/T is a nontrivial A -module. It is clear that no element 
of 9ft o —A/T has finite order. Consider the tensor product8 of the field 
of rationals K with 9ft0, jRTXSfto- By the preceding remark, we know 
that, if 1 Xâ^O, then 5=0. 2£X9fto is a vector space over K, and has 
a natural structure as an A -module; we define a'(l Xa) *= 1 Xa'û, line­
arity defines the operations of A on jail of i£X2fto. If now_ai£X9fto 
» {o}, we have in particular, a ( lXl ) s =lXal s =0, or a l = 0 whence 
a 6 T . Thus the annihilator of KXWlo is contained in T and is there­
fore equal to T. We find then again that SRCTV f̂l ppA, so that in the 
general case, provided A has a unit element, 9t « T H f l p ^ . 

If -4 is any ring, we introduce the ring A* in the following way: 
A* consists of all pairs {(a, n)}, a£-4, n any integer. We define 

(d, w) + (0', »') • (tf + <*', w + #')> 
(a, nXa', n') » (aa' + na' + n'a, nn'). 

3 For the definition of the tensor product, see H. Whitney, Tensor products of 
abelian groups, Duke Math. J. vol. 4 (1938) pp. 495-528. 
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I t is clear that (0,1) is the unit element of A*. If 9K* is an -4*-module, 
it is immediately an A -module. Conversely, if 93Î is an A -module, 
33Î can be made into an ^4*-module by writing (0, l)x = #, for all # £ 9 # . 
If SI* and 3t are the annihilators in A* and A, it is clear that 
2ï*D(3ï, 0). We have then that the extension radical of A* contains 
(9Î, 0). But A* has a unit element, so that its extension radical is 
T*r\()ppA*. However, T* = (T, 0) and Ç) PpA* = (ft ppA, 0), so that 
the extension radical of A* is equal to (Tr\(\ppA, 0). This together 
with the preceding remark gives 9Î C TC\{\ ppA, so that 9Î = THfl PpA, 
concluding the proof of the theorem. 

The condition that the extension radical reduces to {0} is equiva­
lent to the statement that there are no elements of order p2 in the 
additive group of A, for all primes p.4 For, suppose first that 
Tr\f]ppA = {o}, and p2a = 0 for some p and some a. Then for any 
prime q, we can write pa = qra, where r is any solution of the congru­
ence p=qr (mod p2) (that such an r exists follows from the fact that 
q and p2 are relatively prime when q^p; in the remaining case r = l 
will suffice), pa is then in the extension radical, so that pa = 0. Con­
versely, suppose that aÇzTr\()ppA. Let n be the order of a, and let p 
be any prime factor of n; we have then pma = 0, where ptn is the small 
est positive integer with this property. Since a is in the extension 
radical, we have, for some b} a=pb. But then £2ra& = 0, so that , if 
there are no elements of order p2, we have already pmb = 0 or ma = 0, 
contradicting the supposition that pm is the order of a. Thus # = 0, 
and hence the extension radical is {0}. 

Combining this result with Theorems I and II, we see that we have 
already proved the following theorem. 

THEOREM I I I . Let G be an abelian group, and let T be the set of all 
rings having G as underlying additive group. Then, a necessary and suffi­
cient condition that each element of T has a semi-simple extension is that 
G have no element of order p2 for any prime number p. 

PRINCETON UNIVERSITY 

4 1 am indebted to the referee for calling my attention to this fact. 


