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According to a theorem of Bochner [l, p. 498 ] l the function e*~*\ 
for any fixed value of X in 0 <X < 1, is completely monotonie and ad­
mits a unique representation 

er^ = I e~xtdax(t), 0 g x < oo, 
Jo 

where a\(/) is bounded and increasing. It follows further from a cri­
terion of Hille and Tamarkin [2, p. 903] that the function also has 
the form 

ƒ 00 

One can conclude therefore, since ax (t) «̂ xCO» that <f>\(t) is positive 
almost everywhere and that 

ƒ." fa(f)dt < °°. 

For this last integral is the total variation of ot\(t), suitably normal­
ized. 

Further information concerning <j>\(t) may be derived from some 
general results of Post. Let 7 be the contour 

x y\ 
a b 

where a and b are fixed and positive; their precise values are a matter 
of indifference. The principal branch of e~^ is holomorphic in the sec­
tor to the right of 7, and is moreover of zero type there since 0 <X < 1. 
If er* is denoted by ƒ(2), the theory of Post [3, p. 730] shows that 
the limit 

L\J; t] - Km ^ — - *-*-*ƒ<*> (-^) - — f e"r-\fe 
ft»-»i,»-HH- kl \h/ 2iriJ y 

exists for all £>0; 7 must be traced so that the origin is at the left. 
But according to the Post-Widder inversion theorem [4, p. 288] 
L[f;t] is the inverse Laplace transform of er^, and so must be equal 
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to #x(0 almost everywhere. Explicitly then 

(2) «x(0 = — : I e«<r* dz 
2irtJ y 

almost everywhere. 
A further advantage of the approach we have used is this. Post has 

shown [3, p. 733] that the existence everywhere of L[f; t] implies its 
continuity. I t follows that by altering <j>\(t) on a set of measure zero 
a t most it becomes continuous for t>0. With this alteration (2) is 
valid for all t>0. The explicit evaluation of the contour integral in 
(2) is of considerable interest, and this is our next problem. 

Certain special cases already appear in the literature in one form 
or another. For example, if X = 1/2 it is known [5, pp. 401-402] that 

(3) *!/,(*) = - f <r" sin u"*du = - — — e~^. 
7T J o 27T1/Z r ' 2 

Very recently Humbert [ó] has discussed the problem of representing 
the derivative of e~"xX as a Laplace integral. His method, which is 
purely formal, leads to the following expression for <f>\(f) : 

1 * ( - 1)* r(Xfe+l) 
(4) M» = - - E ^ - 7 T - sin TrXfe \ • 

In particular, if X = 2/3 

1 1 

2(3TT)1/2 1 
* • / » « - - - ^ 7 7 7 - ^ - 2 / 2 7 < W - i / 2 . - i / 6 ( ~ - ~ ) . 

The present note provides a rigorous justification for the formula (4) 
We shall prove first that (1) is inverted by 

1 f00 x 
(5) <t>\(t) = — I e~tueru ooa** sin (wx sin w\)du, 

7T J 0 

the proof being the simple matter of demonstrating the equality of 
the right-hand members of (2) and (5). To this end consider a contour 
ô defined as follows. Let A and B be the intersections in the second 
and third quadrants respectively of the contour 7 = 7 ( 0 , b) with a 
circle fi, center at the origin, radius R > m a x (<z, b). Let f2 be a circle of 
radius p <ab(a*+b2)~112, center also at the origin. The intersections 
of f 1 and f2 with the negative real axis will be denoted by C and D re­
spectively. 8 is then the contour obtained by starting at C, following 
the negative real axis to the right as far as D, circumnavigating the 
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origin once around the circle f2, retracing the negative axis from D 
back to C, then tracing in order the arc CB of fi, the portion of 7 
between B and the point (a, 0), then between (a, 0) and A, returning 
finally to C along the arc A C of fi. Then for any t > 0 

(6) — : I ezter* dz « 0. 
2wi J a 

Now let i?—><*>, p-*0. The parts of the integrals taken along the 
curved portions of S vanish. What is left is the integral along 7, and 
along the negative real axis traced twice. The first of these is the right-
hand member of (2). The second, taking into account the fact that 
£~*x changed branches when the origin was circumnavigated, is pre­
cisely the negative of the right-hand member of (5). In view of (6) 
the two right-hand members in question must therefore be equal. 
This completes the proof of (5). 

To derive (4) observe that by (5) 

<h(t) = — ii f <rtu<r<*~iir^du 

where "I" denotes "imaginary part of." 
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