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w**(N—l)ll*s/xi-a. It is shown that if D be defined as follows: (1) if Li^X^L*, 
D-V*)~u*ftL^l" exp { -y*/2]dy, (2) D=G otherwise, then \P{D£y] -<*| ap­
proaches zero as N—> » . Thus D is a large sample lower confidence limit. The extension 
to upper and two-sided limits presents no difficulty. (Received July 8, 1946.) 

T O P O L O G Y 

336. R. F. Arens: Convex topological algebras. Preliminary report. 
A convex topological algebra A is a convex topological linear space in which a 

multiplication of elements is defined, which is, as is addition and scalar multiplication 
(for definiteness, take the case of real scalars), continuous simultaneously in both fac­
tors. This is a generalization of the concept of normed rings. However, the elements 
with inverses do not form an open set, nor is inversion continuous when possible. The 
author proves that if A is a division algebra, and is complete in some metric, then A 
is finite-dimensional, and hence its structure follows from Frobenius' theorem. This 
result is fundamental for the representation theory of convex topological algebras. 
(Received June 7, 1946.) 

337. R. F. Arens: Duality in topological linear spaces. 
Let L be any topological linear space with elements x. Let L* be the set of continu­

ous linear functional ƒ defined on Lt and use in L* the topology in which convergence 
of directed sets means uniform convergence on each compact subset of L (the ^-to­
pology). Let this construction be repeated, using L* instead of L, and giving rise to £**, 
with elements X. Then for each X there is an xÇ.L such that X(f) =ƒ(#) for each 
fGL*. This natural mapping from Z,** back into L is 1-1 and continuous if L is con­
vex; if furthermore L is complete in some invariant metric (in particular, if L is a 
Banach space) then the natural mapping is bicontinuous. (Received July 10, 1946.) 

338. R. H. Bing: Skew sets. 
No plane set G contains a collection of five mutually separated sets such that the 

closure of the sum of any pair of these ûve sets is the closure of a connected subset 
of G which is open in G. (Received July 10, 1946.) 

339. G. D. Birkhoff and D. C. Lewis: Chromatic polynomials. 
The number of ways a map Pn+s of w+3 regions can be colored with X colors is 

given by a polynomial Pn+s(X) of degree w-|-3. Certain new properties of these chro­
matic polynomials are established» For instance, if P»+3 is regular and if ( — l)hah is 
the coefficient of (X — 2)n~h in the expansion of Pn+3(X)/X(X —1)(X—2) in powers of 
X—2, it is shown that binomial coefficient Cg^dh^Cg**'1. Similar results are ob­
tained for expansions in powers of X—5. Moreover, extensive numerical calculations 
indicate that bothPn+3(X)/X(X-l)(X-2)-(X-3)rtand(X-2)«~Pn+8(X)/X(X~l)(X-2) 
are positively completely monotonie for X^4. This conjecture is a very strong form 
of the usual four-color proposition that P„(4)>0. In connection with reducibility» 
reduction formulas, and the analysis of rings, the theory of Kempe chains, which has 
been applied qualitatively with considerable success to the case X=4, is generalized 
so as to yield quantitative results on chromatic polynomials for all values of X. Typical 
results on reducible configurations, previously obtained only by use of Kempe chains, 
are also obtained inductively. The present paper therefore to some extent attempts to 
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bridge the gap between two previously separated methods of attacking the four-color 
problem. (Received June 27, 1946.) 

340. Herbert Fédérer : Dimension and measure. 
According to Szpilrajn the dimension of a separable metric space X does not ex­

ceed p, dimX^p, if and only if X has a homeomorph FC-^p+i such that the (£-fl)-
dimensional Hausdorff measure of F equals zero, H* (F)«0 . (See Hurewicz and 
Wallman, Dimension theory, chap. 7.) In the present paper it is shown that the fore­
going statement remains true if the Hausdorff measure is replaced by the 
(£•+-1)-dimensional integralgeometric Favard measure F£ (For its definition see 
Fédérer, The (<f>, k) rectifiable subsets of n space, Bull. Amer. Math. Soc. Abstract 
52-5-145.) Now suppose A C^n, H*(A) < oo and B is the set of all those points of A at 
which A does not have a ifc-dimensional approximate tangent plane. Then Szpilrajn's 
theorem implies that dim B^dim A £>k. However it was proved by the writer (in 
the paper quoted above) that I^(B) =»0. Hence the new theorem implies that 
dim B£k — l. This inequality is the best possible. (Received July 10, 1946.) 

341. Witold Hurewicz: Algebraic and topological classification of 
mappings. 

Let X and F be locally finite polytopes of finite dimensions. Given an abelian 
group G, denote by Hm(X, G), Hm(Y, G) the w-dimensional cohomology groups of X 
and F, with coefficients from the group G. If/i and ƒ2 are continuous mappings of X 
into F, }i is homologous to f2 in dimension m, if for any abelian group G the mappings 
/i and /2 induce identical homomorphisms of Hm(Y, G) into Hm(X, G); and f\ is 
homotopic to j'2 in dimension m, if/i and ƒ2 are homotopic when restricted to the w-di-
mensional skeleton of X. For m ̂ 2, irm is the w-dimensional homotopy group of F, 
and Hm the w-dimensional homology group of F with integer coefficients. The natural 
homomorphism of wm into Hm induces a homomorphism of Hm(X, icm) into Hm(X, Hm). 
The following assumptions are made: (1) F is simple in dimension m (this means 
that a continuous image of the w-sphere in F determines uniquely an element of ?rm). 
(2) The natural homomorphism of Hm(X, wm) into Hm(X, Hm) is an isomorphism (be­
tween Hm(X, Tm) and a subgroup of Hm(Xt Hm)). Under these conditions the theorem 
holds: If f 1 is homotopic to f2 in dimension m — l and homologous to f2 in dimension m, 
then f 1 is homotopic to f2 in dimension m. (Received July 19, 1946.) 

342. Fred Supnick: A theorem on rectilinear deformation. 
Let Gi, t » l , • • • , w, be simple closed polygons with Gi in the interior of G<_i. 

Let rectilinear suspended chains lying in the interior of the ring bounded by Gi~i 
and Gi join a vertex of ft-i to a vertex of Gi such that no two chains have the same 
end points or intersect each other. The author proves that any such graph can be 
rectilinearly deformed so that the Gi become convex and the chains rectified. (Re­
ceived July 13, 1946.) 

343. Fred Supnick: Topology of sphere clusters. I. 
The author defines a regular n-sphere cluster as a connected set of mutually ex­

ternal, equal Euclidean w-spheres, each tangent to exactly N others. N is called the 
degree of the cluster. The regular circle clusters fall into classes of degrees 0,1, 2, and 3. 
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The structural properties of these classes are studied. The regular 3-sphere clusters 
fall into classes of degrees 0, 1, • • • , 8. Certain sets of regular 3-sphere clusters of 
degrees 2, 3, 4, and 5 are constructed and their structural properties studied. The au­
thor has constructed an infinite set of regular 3-sphere clusters of degree 6. These 
have a complicated structure. Sphere clusters of higher dimension are also considered. 
(Received July 13, 1946.) 

344. Fred Supnick: Topology of sphere clusters. II. Analogue of 
Kuratowski's theorem. 

Let a sphere cluster of equal, mutually external, Euclidean 3-spheres be given. The 
linear graph whose vertices are the centers of the spheres and whose edges are the line 
segments joining the centers of two spheres if and only if they are tangent is called 
by the author the structural graph of the cluster. The author calls a sphere cluster 
planar if the structural graph of the cluster is planar. It is proved that (1) every sphere 
cluster of less than eight spheres must be planar and (2) eight spheres are sufficient to 
obtain each of the non-planar graphs appearing in Kuratowski's theorem. (Received 
July 13, 1946.) 

345. Sister Petronia Van Straten : Toroidal and non4oroidal graphs. 
A one-dimensional complex of 10 points 0, • • • , 9, and 30 arcs 01, 02, 03, 05, 06, 

09,12,13,16,17,18,23,24, 25,28,34,37,39,45,47,48,49,56, SB, 59, 67,68, 69, 78, 79 
which are mutually disjoint except for terminal points is called a Desargues graph. 
The Desargues graph is irreducibly non-toroidal in the sense that it is not homeomor-
phic with a subset of the torus while the sum of every 29 of the 30 segments can be 
embedded into the torus. The Desargues graph can be embedded into the sphere with 
two handles. The complex of 9 points 1, • • • , 9 and 27 disjoint arcs 12, 23, 31, 45, 
56, 64, 78, 89, 97, 14, 47, 71, 25, 58, 82, 36t 69, 93, 35, 57, 73, 24, 49, 92, 68, 81, 16 is 
called a Pappus graph. The Pappus graph can be topologically embedded into the 
torus. The names of the graphs are derived from the corresponding projective con­
figurations. (Received June 28, 1946.) 

346. J. W. T. Youngs: The representation problem f or Frêchet sur­
faces. Preliminary report. 

This paper contains a solution of the representation problem for Fréchet surfaces 
in which the base space is the closure of a region on the place bounded by a finite 
number of Jordan curves. The solution is a generalization of a result announced in 
Bull. Amer. Math. Soc. Abstract 52-5-221. (Received July 5, 1946.) 


