## GENERALIZATIONS OF TWO THEOREMS OF JANISZEWSKI. II

## R. H. BING

The purpose of this note is to strengthen Theorems 5 and 6 of [1]<sup>1</sup> and to make corrections regarding assumptions of compactness in that paper. The following theorems hold in the plane.

THEOREM 1. If neither of the domains  $D_1$ ,  $D_2$  separates the point A from the point B, the boundary of  $D_1$  is compact and the common part of  $D_2$  and each component of  $D_1$  is connected or does not exist, then  $D_1+D_2$  does not separate A from B.

PROOF. Assume that  $D_1+D_2$  separates A from B. Considering there to be a point P at infinity, we find that  $D_1+D_2+P$  contains a simple closed curve J separating A from B. Let  $d_2$  be a component of  $D_2$  intersecting J. We find [1, Theorem 4] that  $J-J\cdot d_2$  contains a continuum M cutting A from B in the complement of  $d_2$  and such that any open arc of J containing M separates A from B in the complement of  $d_2$ . Let  $d_1$  be a component of  $D_1$  covering a point of M on the boundary of  $d_2$ . Now  $d_1$  covers M or else it would intersect two components of  $D_2$ . But by Theorem 5 of [1],  $d_1+d_2$  does not separate A from B.

Instead of assuming that the boundary of  $D_1$  is compact, we could assume that the part of  $D_1$  in the complement of  $D_2$  is compact.

THEOREM 2. If neither of the domains  $D_1$ ,  $D_2$  cuts the point A from the point B, the boundary of  $D_1$  is compact and the common part of  $D_2$  and each component of  $D_1$  is connected or does not exist, then  $D_1+D_2$  does not cut A from B.

PROOF. Let  $C_i$  (i=1,2) be the component of the complement of  $D_i$  containing A+B, let  $D_i'$  be the complement of  $C_i$  and let  $D_2''$  be the sum of all components of  $D_2'$  that are not covered by  $D_1'$ . Neither  $D_1'$  nor  $D_2''$  separates the plane. The boundary of  $D_1'$  is a subset of the boundary of  $D_1$  and is therefore compact. If d' is a component of  $D_1'$ , we shall show that  $d' \cdot D_2''$  is connected or does not exist. It will follow from Theorem 1 that  $D_1' + D_2''$  does not separate the plane. Hence, its complement is a continuum containing A+B and its subset  $D_1+D_2$  does not cut A from B.

Presented to the Society, February 23, 1946; received by the editors January 7, 1946.

<sup>&</sup>lt;sup>1</sup> Number in brackets refers to the reference cited at the end of the paper.

Assume that  $d' \cdot D_2''$  contains two components  $c_1$  and  $c_2$ . There exist an arc in d' from a point of  $c_1$  to a point of  $c_2$  and a simple closed curve J in  $D_1$  separating this arc from the boundary of d'. Let d be the component of  $D_1$  containing J and let  $P_iQ_i$  be an arc in J irreducible from a point  $P_i$  of  $J \cdot c_i$  to the boundary of  $c_i$ . Since  $Q_i$  is a point of  $C_2$ ,  $P_iQ_i$  must contain a point of  $D_2$ . Then both  $c_1$  and  $c_2$  contain points of  $d \cdot D_2$ . But it is contrary to a hypothesis of this theorem that  $d \cdot D_2$  not be connected. Hence,  $d' \cdot D_2'$  is connected or does not exist.

Example. Theorem 2 would not be true if instead of assuming that the boundary of  $D_1$  is compact, we assume that the part of  $D_1$  in the complement of  $D_2$  is compact. Let  $D_1 \cdot D_2$  be the set of all points having positive ordinates less than 1 other than those on the lines joining (1, 1/n) to (n, 1/n), (n, 1/n) to (1, 1), (-1, 1/n) to (-n, 1/n) and (-n, 1/n) to (-1, 1) for  $n = 2, 3, \cdots$ ; let  $D_i$  (i = 1, 2) be the sum of  $D_1 \cdot D_2$  and the interior of a unit circle with center at  $([-1]^i, 1)$ . Neither  $D_1$  nor  $D_2$  cuts (0, 0) from (0, 1) but their sum does.

THEOREM 3. Suppose that neither of the sets H, K cuts the point A from the point B, that the boundary of H is compact, that the junction of H and K is equal to  $H \cdot K$  and that H is the sum of a collection of mutually exclusive sets no one of which contains either a limit point of the sum of the others or two components of  $H \cdot K$ . Then H + K does not cut A from B.

PROOF. We note that H is contained by a domain D, no component of which contains two components of  $H \cdot K$ . Let  $C_H$  and  $C_K$  be two continua in the complements of H and K respectively such that each contains A+B. Let  $D_0$  be a subdomain of D with a compact boundary such that  $D_0$  contains  $H \cdot K$  but no point of  $C_H + C_K$  and each component of  $D_0$  contains a point of  $H \cdot K$ . There exist domains  $D_1$  and  $D_2$  such that  $D_1$  is a subset of D having a compact boundary and containing  $H - H \cdot D_0$  but no point of  $C_H$ ,  $D_2$  contains  $K - K \cdot D_0$  but no point of  $C_K$  and  $D_1 \cdot D_2$  is a subset of  $D_0$ . Considering  $D_0 + D_1$  and  $D_0 + D_2$  as the domains of Theorem 2, we find that  $D_0 + D_1 + D_2$  does not cut A from B. Hence, its subset H + K does not.

THEOREM 4. If H is a compact closed set cutting the point A from the point B in the complement of the connected set K, then H contains a subset H' irreducible with respect to being a closed set cutting A from B in the complement of K. If K is compact, H' is a continuum that is not separated by any subset of the closure of K.

The proof is as given in Theorem 7 of [1]. If K is not compact, H' need not be a continuum as is shown by the following example.

480 R. H. BING

Let H be the sum of the points (1, 1) and (-1, 1); let K be the common part of domains  $D_1$  and  $D_2$  described in the example in Theorem 2; let A and B be the points (0, 0) and (0, 1).

Corrections to [1]. The example given in Theorem 2 shows that 6, 7, 10 should have been omitted from the third footnote of [1]. As pointed out in Theorem 4, it is necessary to suppose that K is compact in Theorem 7 of [1]. Accordingly, D must be assumed compact in the fourth footnote of [1].

## REFERENCE

1. R. H. Bing, Generalizations of two theorems of Janiszewski, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 954-960.

THE UNIVERSITY OF TEXAS