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Introduction. It is well known that in three-dimensional elliptic or 
spherical geometry the so-called Clifford's parallelism or parataxy has 
many interesting properties. A group-theoretic reason for the most 
important of these properties is the fact that the universal covering 
group of the proper orthogonal group in four variables is the direct 
product of the universal covering groups of two proper orthogonal 
groups in three variables. This last-mentioned property has no ana­
logue for orthogonal groups in n ( > 4 ) variables. On the other hand, 
a knowledge of three-dimensional elliptic or spherical geometry is 
useful for the study of orientable Riemannian manifolds of four di­
mensions, because their tangent spaces possess a geometry of this 
kind. I t is the purpose of this note to give a study of a compact orient-
able Riemannian manifold of four dimensions at each point of which 
is attached a three-dimensional spherical space. This necessitates a 
more careful study of spherical geometry than hitherto given in the 
literature, except, so far as the writer is aware, in a paper by 
E. Study [2] . 2 0ur main result consists of two formulas, which express 
two topological invariants of a compact orientable differentiable 
manifold of four dimensions as integrals over the manifold of differ­
ential invariants constructed from a Riemannian metric previously 
given on the manifold. These two topological invariants have a linear 
combination which is the Euler-Poincaré characteristic. 

1. Three-dimensional spherical geometry. We consider an ori­
ented Euclidean space of four dimensions E 4 with the coordinates 
xo, Xi, x2, X3. In EA let S* be the oriented unit hypersphere defined by 
the equation 

2 2 2 2 

(1) Xo + Xl + X2 + #3 = I-

Three-dimensional spherical geometry is concerned with properties 
on 5 s which remain invariant under the rotation group (that is, the 
proper orthogonal group) of E 4 leaving the origin fixed. 

Received by the editors June 22, 1945. 
1 The content of this paper was originally intended to be an illustration in the 

author's article, Some new viewpoints in differential geometry in the large, which is due 
to appear in this Bulletin. Later it appeared more advisable to publish these results 
separately, but a comparison with the above-mentioned article, in particular §7, is 
recommended. 

2 Numbers in brackets refer to the references cited at the end of the paper. 
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We call a frame an ordered set of four mutually perpendicular unit 
vectors eo, Ci, C2, 63. There exists one and only one rotation carrying 
one frame to another. The coordinates Xof X\, &2, Xz of a point ï & S 3 

with respect to the frame eo, ei, C2, e3 are defined by the equation 

(2) % = XQCO + Xtfi + X2t2 + Xst3. 

Let eo*, ei*, e2*, e3* be a frame related to eo, ei, e2, e3 by means of the rela­
tions 

3 

(3) e«* = ]F) daftp, a = 0, 1, 2, 3, 

where (aap) is a proper orthogonal matrix, and let #0*, #1*, #2*, #3* 
be the coordinates of the same point x with respect to the frame 
eo*, ei*, e2*, e3*. Then we have 

3 
(3a) x* = X) a<*p%p, ot = 0, 1, 2, 3. 

The properties of spherical geometry are those which, when expressed 
in terms of coordinates with respect to a frame, remain invariant 
under change of the frame. 

Let 
# o , #1» ^ 2 , # 3 be the coordinates of a point £ with respect to a 

frame Co, ei, e2, e3, as defined by (2). To these coordinates we associate 
a unit quaternion 

(4) X = XQ + xii + X2J + xzk, N(X) = 1, 

where N(X) denotes the norm of X. Let 
(4a) X* = x* + x*i+ x*j + x?k. 

Then the following theorem is well known [l ] : 

THEOREM 1. The proper orthogonal group (3a) can be expressed in 
the quaternion notation in the form 

(5) X* = AXB, 

where A, B are unit quaternions. It contains the two subgroups 

(6a) X* = AX, 

(6b) X* = XB, 

called the subgroups of left and right translations respectively. A left 
translation is a right translation when and only when it is X* = ± X. 

I t is important to give a distinction between the left and right 
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translations. We shall show that this is possible when S3 is oriented. 
When Xi,i = l, 2, 3, 4, are four quaternions, we introduce the notation 
| XiX%X*Xi\ to denote the value of the determinant formed by their 
components. Then we have the following theorem : 

THEOREM 2. For any three quaternions X, X', A the inequalities 

(7) | XX', AX, AX' | g 0, | XX', XA, X'A | ^ 0 

hold. Equality sign holds only when A = ± 1 or when X, X', A are lin-
early dependent. 

To prove this theorem we assume the quaternions to be different 
from zero and hence, without loss of generality, to be unit quater­
nions. By a change of frame, which does not affect the values of the 
determinants in question, we can suppose X = l. Let 

A = 0o + aii + a2j + a%k, X' = XQ + x{ i + x2j + x% k. 

We get then 

| XX', AX, AX'\ = - (axxi - a2x{)2 - (a2xi - azxi)2 

— (a3x[ — aixl)2 S 0, 

| XX', XA, X'A | - (a&i - a2x{)2 + (a2xj - asxi)2 

+ {azx{ - aixi ) 2 ̂  0. 

From these equations the theorem follows. 
This theorem gives a criterion to distinguish between the left and 

the right translations. A reversal of orientation of Sz interchanges the 
left and right translations. 

We now put 

(8) A = 0o + a\i + a2j + a*k, B = bo + hi + b2j + bsk, 

and write out in detail the transformations (6a) and (6b) : 

#0#0 ~~ #1#1 ~ #2#2 -"" #3#3> 

#i#o + &oXi — a$x2 + a2xz, 

a2Xo + GzX\ + ÜQX2 "~ dlXZf 

azXo — a2X\ + a\X2 + #o#3> 

boXo •— biXi — b2x2 — bzxz, 

biXo + hxi + hx2 — 62^3, 

#2^0 — &3#1 + boX2 + Ô1X3, 

&3#0 H" ^2#1 ~~ #1#2 + #0#3. 

X? = 

(9a) 
Xi 

x2* 

X* 

XQ* 

(%) 
X\ = 

x2* = 

^3 
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Let 21 and 93 be respectively the matrices of these transformations. 
The associativity of quaternion multiplication implies that 

(10) 2193 = 

We then define 

(11) <g <g* = 

eo* 

e2* 

k e 3 J 

so that (g and (g* are one-columned matrices whose elements are vec­
tors. From Theorem 1 we see that the rotation (3) can always be 
written 

(12) (g* = 2l93(g = 932l(g. 

We call two frames (g and (g* left (right) equivalent if 

(i3) <g* = m (<g* = see). 
I t is evident that this equivalence relation is reflexive, symmetric, and 
transitive. We now introduce as new figures in spherical geometry 
classes of left (right) equivalent frames and shall call them the left 
(right) Clifford figures. 

With respect to a given frame (go a left (right) Clifford figure con­
sists of all frames 2l93(go, where 93 (21) remains fixed and 21 (93) varies. 
As its coordinate we can therefore take the matrix 93 (21), or the corre­
sponding unit quaternion B (A). From Theorem 1 it follows that two 
quaternions determine the same Clifford figure, when and only when 
one is the negative of the other. For our purpose we shall, however, 
make a distinction between the Clifford figures determined by +B 
and — B (+A and —A). The new figure will then be called an ori­
ented left (right) Clifford figure. With a natural topology the space 
of all Clifford figures is homeomorphic to the real projective space of 
three dimensions and the space of all oriented Clifford figures to the 
three-dimensional sphere. 

With a differentiable family of frames we define 

(14) Ü>a/J = dta'tfr 05, /3 = 0, 1, 2, 3 , 

where 

(14a) CO a/3 + COfla = 0. 

The differential forms œap satisfy the following equations of structure 
of our spherical space : 
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(15) duaf) = ]C W«YW^> a, /3 = 0, 1, 2, 3. 

I t is easy to verify that when the frames of the family belong to a 
left equivalence class we have 

( 1 6 ) 0 1 SE- Wol ~- û>23 = 0 , 0 2 = W02 "" &>31 = 0 , 0 3 S G>03 ~ CO12 = 0 . 

Similarly, when the frames of the family belong to a right equivalence 
class, we have 

• , „ v ^ x === — «01 "-" w 23 = 0 , \f/2 = — W02 — W31 = 0 , 

(17) 
^ 3 == ~ C003 — ^12 = 0 . 

Using the forms 0», ^,-, i = l, 2, 3, instead of œa^ a, /S = 0, 1, 2, 3, the 
equations of structure (15) can be replaced by the equations 

dtfri = 0203» d<j>2 = 0301» <̂ 03 = 0102» 
(18) 

# 1 = ^2^3, # 2 = Mh # 3 = ^1^2-

The form 010203 is a volume element in the space Ri of oriented 
left Clifford figures and the same is true of the form 1/^2^3 in the 
space Rr of oriented right Clifford figures. Let Ri, Rr denote also the 
fundamental cycles on the manifolds Ri, Rr. We easily find 

(19) f 010203 = f ^ 2 ^ 3 = 2TT2. 
J Rl J Rr 

I t follows tha t if Z is a three-dimensional cycle of Ri which is homolo­
gous to mRu we shall have 

(20) -— f 010203 = m. 

A similar statement holds for Rr. 

2. Riemannian manifolds of four dimensions. Let M be a compact 
orientable Riemannian manifold of four dimensions. With M as base 
space is defined the tangent sphere bundle of unit vectors, on each 
fibre of which operates the rotation group in four variables. The ge­
ometry of a fibre of M is the three-dimensional spherical geometry. 
The construction of the last section defines two new fibre bundles $t 
and %r over M, namely the bundles of oriented left and right Clifford 
figures. 

The equations of structure of M are 
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(21) dtoafi = Jj ^ctyOiyP + S2a0, <X, 0 = 0, 1, 2, 3. 

We put 

(22a) 01 = 0>oi — W23> 02 = ^02 — W31, 0 3 = Q>03 — <0i2, 

and 

( 2 2 b ) ^ 1 = — COoi — 0>23i ^2 = ~ C002 ~ C031, ^3 = — CO03 ~ CO12. 

Equations (21) then become 

d(f>i = 0203 + $1, d<f)2 = 0301 + $2, ^03 = 0102 + $3, 

# 1 = ^2^3 + ^1 , # 2 = ^3^1 + ^2, # 3 = ^1^2 + ^3, 

where 

$ 1 = Ooi — ^23» $ 2 = = ^02 — ^31i $ 3 ^ ^03 — ^12» 

(24) 
^f\ — — Ooi — ^23» ^ 2 — — ^02 — O31, ^ 3 = — Qo3 — ^12« 

Consider the fibre bundle %i. Each fibre being homeomorphic to 
a three-dimensional sphere, the characteristic class of $1 in M is an 
integral cohomology class Wi of dimension four. Similarly, g r gives 
rise also to an integral cohomology class Wr of dimension four. By 
the multiplication of the homology group and the cohomology group, 
we put 

(25) Ii^WvM, Ir=Wr-M, 

which are topological invariants of M (they are in fact invariants of 
the differential structure of M under consideration). We shall express 
Ih Ir as integrals over M of differential invariants of the Riemannian 
metric in M. 

THEOREM 3. Let M be a compact orientable Riemannian manifold of 
dimension f our and let fia/3, a, /? = 0, 1, 2, 3, and <!>,, SP",-, i = l, 2, 3, be 
the curvature forms of the Riemannian metric constructed according to 
the equations (21), (24). Then the following formulas hold: 

(26) — f * î + * ; + * î = J,, — f * ; + *22 + *3 = Ir. 
2T2JM 2TT J M 

If X is the Euler-Poincarê characteristic of My we have 

(27) - 7, + Ir = 8X. 

To prove this theorem we find from (23) 
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^(010203) = $10203 + $20301 + $30102» 

dl ^ 0 i $ t ) = — ($10203 + $20301 + $30102) + £ $*» 
\ i = l / »=1 

which gives 

( 3 \ 3 

010203+ Z0*$O = E $ -
By a standard procedure in the theory of fibre bundles we see that 
it is always possible to define a mapping of M into $i> with a finite 
number of singular points, such that the image of a point P of M is 
an oriented left Clifford figure attached to that point. The sum of the 
indices a t the singular points is equal to I*. The first formula in (26) 
then follows immediately from (20) and (28). A similar argument ap­
plies to the second formula. 

From (26) we get, by subtraction, 

2 r 
Il — Ir = I O01O23 4" Oo2^31 ""f" 0()3^12» 

By the formula of Allendoerfer-Weil we have 

l r 
X == : I ^01^23 + ^02^31 + 12Q3^12. 

4TT2 J M 

Consequently, we have 

- /, + h = 8X. 

Hence the theorem is proved. 
The theorem shows that by the consideration of the fibre bundles 

$*, §r over M we have introduced, besides the Euler-Poincaré char­
acteristic, essentially one new topological invariant of M. We denote 
this invariant by 

(29) n = (/« + J r)/2, 

which is an integer. Then we have 

2 ^ * 2 2 2 2 2 2 

(30) 2 T 7] = I Qoi + ^02 + &03 + ^12 + &23 + O31. 
J M 

If M is the toroidal space, then 77 = 0, for a locally Euclidean Rie-
mannian metric can then be defined in M. If M is the four-dimen­
sional sphere, the induced metric of M obtained by imbedding it as 
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a unit hypersphere in the five-dimensional Euclidean space is of con­
stant positive Riemannian curvature. We have then 

&«/3 = ~ COaCO/3, « , j3 = 0, 1, 2, 3 . 

I t follows that rj(M) = 0, if M is a sphere. 
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