A NOTE ON SYSTEMS OF HOMOGENEOUS ALGEBRAIC EQUATIONS

RICHARD BRAUER

1. Introduction. Consider a system of algebraic equations

where f_i is a homogeneous polynomial of degree r_i with coefficients belonging to a given field K. We interpret x_1, x_2, \dots, x_n as homogeneous coordinates in an (n-1)-dimensional projective space. When n > h, the system (1) has non-trivial solutions (x_1, x_2, \dots, x_n) in an algebraically closed extension field of K, but there may not exist any such solutions in K itself. It is, in general, extremely difficult to decide whether adjunction of irrationalities of a certain type to K is sufficient to guarantee the existence of non-trivial solutions of (1) in the extended field. However, the situation is much simpler, when n is very large, in the sense that n lies above a certain expression depending on the number of equations h and the degrees r_1, r_2, \dots, r_h .

We shall show:

THEOREM A. For any system of h positive degrees r_1, r_2, \dots, r_h there exists an integer $\Phi(r_1, r_2, \dots, r_h)$ such that for $n \ge \Phi(r_1, r_2, \dots, r_h)$ the system (1) has a non-trivial solution in a soluble extension field K_1 of K. The field K_1 may be chosen such that its degree N_1 over K lies below a value depending on r_1, r_2, \dots, r_h alone and that any prime factor of N_1 is at most equal to $\max(r_1, r_2, \dots, r_h)$.

This Theorem A is evidently contained in the following theorem.

THEOREM B. For any system of positive integers r_1, r_2, \dots, r_h and any integer $m \ge 0$, there exists an integer $\Phi(r_1, r_2, \dots, r_h; m)$ with the following property: For $n \ge \Phi(r_1, \dots, r_h; m)$, there exists a soluble extension field K_2 of K such that all points (x_1, x_2, \dots, x_n) of an m-dimensional linear manifold L, defined in K_2 , satisfy the equations (1). Here K_2 may be chosen so that its degree N_2 over K lies below a bound depending on r_1, r_2, \dots, r_h and m and that no prime factor of N_2 exceeds $\max(r_1, r_2, \dots, r_h)$.

Presented to the Society, September 17, 1945; received by the editors July 17, 1945.

At the same time, we shall prove the theorem:

THEOREM C. Assume that the field K has the following property:

(*) For every integer r>0, there exists an integer $\Psi(r)$ such that for $n \ge \Psi(r)$ every equation

(2)
$$a_1x_1^r + a_2x_2^r + \cdots + a_nx_n^r = 0$$

with coefficients a; in K has a non-trivial solution in K.

Then, for every system of positive degrees r_1, r_2, \dots, r_h and every integer $m \ge 0$, there exists an expression $\Omega(r_1, r_2, \dots, r_h; m)$ with the following property: For $n \ge \Omega(r_1, r_2, \dots, r_h; m)$, there exists an m-dimensional linear manifold M, defined in K, whose points satisfy the equations (1).

We shall prove Theorem C in §2. The changes necessary in order to obtain Theorem B are obvious. In §3, some applications are given. One of them is concerned with Hilbert's resolvent problem. We prove here a recent conjecture of B. Segre.¹

2. Proof of Theorem C. 1. Assume that Theorem C is not true. We choose a system r_1, r_2, \dots, r_h ; m for which no $\Omega(r_1, \dots, r_h; m)$ exists. We select this system such that max $(r_1, \dots, r_h) = s$ has the smallest possible value, and that for fixed s the number h has the smallest possible value. If $r_1', r_2', \dots, r_{h'}$ is any system of positive integers and m' a non-negative integer, then $\Omega(r_1', r_2', \dots, r_{h'}; m')$ exists, if either

(3a)
$$\max(r'_1, r'_2, \cdots, r'_{h'}) < s$$

or if

(3b)
$$\max (r'_1, r'_2, \cdots, r'_{h'}) = s, \qquad h' < h.$$

Assume first that h>1. We may assume that $r_h=s$. It follows that $\Omega(r_1, r_2, \dots, r_{h-1}; m)$ exists (cf. the conditions (3a) and (3b)) and also that $\Omega(s; m'-1)$ exists for any integer m'>0. We set $m'=\Omega(r_1, \dots, r_{h-1}; m)$. If $n\geq \Omega(s; m'-1)$, the equation $f_h=0$ is satisfied by all points of an (m'-1)-dimensional linear manifold M_1 . If we restrict ourselves to points of M_1 , we may express x_1, \dots, x_n linearly and homogeneously by m' parameters $y_1, \dots, y_{m'}$ with coefficients in K. Then $f_i(x_1, \dots, x_n)$ becomes a homogeneous polynomial g_i of $y_1, \dots, y_{m'}$. The degree of g_i is r_i ; the coefficients of g_i belong to K. In particular, g_h vanishes identically. In order to solve

¹ B. Segre, Ann. of Math. vol. 46 (1945) p. 287. Added September 10: In the meantime, I learned from Mr. Segre that he also found Theorem A from which the proof of the conjecture can be derived.

(1), we have to solve

(4)
$$g_1 = 0, g_2 = 0, \dots, g_{h-1} = 0.$$

Since $m' = \Omega(r_1, \dots, r_{h-1}; m)$, the equations (4) will be satisfied by all points of an m-dimensional manifold M_2 of the $(y_1, \dots, y_{m'})$ -space. This then gives an m-dimensional linear manifold of the (x_1, \dots, x_n) -space for which the equations (1) hold. But this shows that the expression $\Omega(r_1, \dots, r_h; m)$ exists; we may take

$$\Omega(r_1, \cdots, r_h; m) = \Omega(\max(r_1, \cdots, r_h); \Omega(r_1, \cdots, r_{h-1}; m) - 1).$$

Hence the case h > 1 is impossible.

2. We now consider the case h=1. The system (1) consists of only one equation

$$f(x_1, x_2, \cdots, x_n) = 0$$

of degree $r_1 = s$.

From the way the number s was chosen it follows that $\Omega(s; m)$ does not exist while for every system $r'_1, r'_2, \dots, r'_{h'}$ with $r'_1 < s$, $r'_2 < s$, \dots , $r'_{h'} < s$ and all m' the existence of $\Omega(r'_1, r'_2, \dots, r'_{h'}; m')$ may be assumed.

We first discuss the case m = 0. Denoting the point (x_1, x_2, \dots, x_n) by \mathfrak{x} , we write $f(x_1, x_2, \dots, x_n) = f(\mathfrak{x})$.

If g_1, g_2, \dots, g_n are n points whose coordinates are independent indeterminates and if u_1, u_2, \dots, u_n are n further independent indeterminates, we may set

$$(5) f(u_1 \xi_1 + u_2 \xi_2 + \cdots + u_n \xi_n) = \sum_{n=1}^{\mu} u_1^{r} \cdots u_n^{r} f_{\mu \nu \dots r}(\xi_1, \xi_2, \dots, \xi_n),$$

where the sum on the right side extends over all systems of n non-negative integers (μ, ν, \cdots, τ) with

$$(5a) \mu + \nu + \cdots + \tau = s.$$

The expressions $f_{\mu,\nu,\ldots,\tau}$ ($\mathfrak{x}_1, \mathfrak{x}_2, \cdots, \mathfrak{x}_n$) (the polar forms of f) are homogeneous polynomials in the coordinates of each \mathfrak{x}_i . As is easily seen, $f_{\mu,\nu,\ldots,\tau}$ ($\mathfrak{x}_1, \mathfrak{x}_2, \cdots, \mathfrak{x}_n$) is of degree μ in the coordinates of \mathfrak{x}_1 , of degree ν in the coordinates of \mathfrak{x}_2, \cdots , of degree τ in the coordinates of \mathfrak{x}_n .

Let $a_1 \neq 0$ be a fixed point.² Choose n-1 points e_1, e_2, \dots, e_{n-1} which together with a_1 form a full linearly independent system, and set $y = y_1 e_1 + y_2 e_2 + \dots + y_{n-1} e_{n-1}$ where the coefficients y_1, y_2, \dots, y_{n-1} are indeterminates.

Consider the system of equations

² We denote by \mathfrak{o} the row $(0, 0, \dots, 0)$ consisting of n numbers 0.

These equations are homogeneous in y_1, y_2, \dots, y_{n-1} ; the degrees are $1, 2, \dots, s-1$ respectively.

From the remarks above it follows that the expression $\Omega(1, 2, \dots, s-1; 0)$ exists. Hence for sufficiently large³ n the equations (6) will have a non-trivial solution. Let $n = n_2$ be the corresponding point n. Then n_1 and n_2 are linearly independent.

Let e'_1 , e'_2 , \cdots , e'_{n-2} be a system of points which together with a_1 and a_2 form a full linearly independent system and set

$$z = z_1 e'_1 + \cdots + z_{n-2} e'_{n-2}$$

with indeterminate coefficients z_1, z_2, \dots, z_{n-2} . Consider next the equations

$$(7) f_{\mu,\nu,\rho,0,\ldots,0}(\mathfrak{a}_1,\,\mathfrak{a}_2,\,\mathfrak{z},\,\mathfrak{o},\,\cdots,\,\mathfrak{o}) = 0,$$

where μ , ν , ρ range over all systems of non-negative integers with

$$\mu + \nu + \rho = s, \qquad 0 < \rho < s.$$

Again, $\Omega(r_1', \dots, r_h'; 0)$ exists for the degrees $r_1', \dots, r_{h'}$ of these equations in z_1, z_2, \dots, z_{n-2} . It follows for sufficiently large n that the system (7) has a non-trivial solution (z_1, \dots, z_{n-2}) . Let $z = a_3$ be the corresponding point. Then a_1 , a_2 , a_3 are linearly independent.

Set $t=\Psi(s)$.⁴ Assuming that n is sufficiently large we continue with our procedure until we obtain t linearly independent points a_1, a_2, \dots, a_t such that⁵

$$f_{\mu,\nu,\ldots,\tau}(\mathfrak{a}_1,\,\mathfrak{a}_2,\,\cdots,\,\mathfrak{a}_t,\,\mathfrak{o},\,\cdots,\,\mathfrak{o})=0$$

for every system of n non-negative indices (μ, ν, \dots, τ) with $\mu + \nu + \dots + \tau = s$ in which the first t of our indices are all less than s.

For
$$\mathfrak{x}_1 = \mathfrak{a}_1$$
, $\mathfrak{x}_2 = \mathfrak{a}_2$, \cdots , $\mathfrak{x}_t = \mathfrak{a}_t$, $\mathfrak{x}_{t+1} = \mathfrak{o}$, \cdots , $\mathfrak{x}_n = \mathfrak{o}$, the identity

⁸ In part 2 of the proof we mean by "sufficiently large n" all values of n which lie above a suitable lower bound $\Lambda(s)$ depending only on s.

⁴ In the case of Theorem B, we take t=2. The equation (8) will have a solution if we extend the field K by the adjunction of an sth root.

⁵ If one of the last n-t indices in (μ, ν, \dots, τ) does not vanish, this equation is trivial, since the left side then contains an $x_i = 0$ to a positive degree.

(5) gives a relation

$$f(u_1\alpha_1 + u_2\alpha_2 + \cdots + u_t\alpha_t) = \sum_{i=1}^t a_iu_i^t,$$

where a_i is a certain number of K. Actually, $a_i = f(a_i)$. Since $t = \Psi(s)$, the equation

$$\sum_{i=1}^t u_i^* a_i = 0$$

has a non-trivial solution (u_1, u_2, \dots, u_t) in K. The corresponding point $\mathfrak{x} = \sum u_i \mathfrak{a}_i$ then yields a non-trivial solution of the equation $(\mathfrak{x}) = 0$ in K.

This argument shows the existence of $\Omega(s; 0)$.

3. We assume that the existence of $m' = \Omega(s; m-1)$ has already been shown. If n is sufficiently large, the result of 2 shows that we may find a point $a_1 \neq 0$ such that

$$(9) f(\mathfrak{a}_1) = 0.$$

Consider again the equations (6) where \mathfrak{y} has the old significance. Again, $\Omega(1, 2, \dots, s-1; m'-1)$ exists. If $n \ge \Omega(1, 2, \dots, s-1; m'-1)$, it follows that there exists an (m'-1)-dimensional linear space M_0 such that the equations (6) hold for all points \mathfrak{y} of M_0 , and that M_0 does not contain \mathfrak{a}_1 .

The identity (5) for $\mathfrak{x}_1 = \mathfrak{a}_1$, $\mathfrak{x}_2 = \mathfrak{y}$, $\mathfrak{x}_3 = \mathfrak{o}$, \cdots , $\mathfrak{x}_n = \mathfrak{o}$ yields

$$f(u_1\mathfrak{a}_1 + u_2\mathfrak{h}) = u_2^{\bullet}f(\mathfrak{h}),$$

on account of (6) and (9). Restricting the point \mathfrak{y} to the linear manifold M_0 , we may consider the coordinates of \mathfrak{y} as linear homogeneous functions of m' parameters $z_1, z_2, \dots, z_{m'}$. Since $m' = \Omega(s; m-1)$, it follows that there exists an (m-1)-dimensional linear subspace M_1 of M_0 such that $f(\mathfrak{y}) = 0$ for all points \mathfrak{y} of M_1 . But (10) shows that \mathfrak{a}_1 and M_1 together span an m-dimensional linear space M which consists entirely of solutions of $f(\mathfrak{x}) = 0$. This proves the existence of $\Omega(s; m)$ which contradicts the assumptions made above.

This finishes the proof of Theorem C. The same method yields the proof of Theorem B, and hence the Theorem A.

3. Applications. Consider the general algebraic equation of degree

⁶ In part 3 of the proof we shall say that n is sufficiently large if it lies above a suitable lower bound M(s, m), depending on s and m only.

⁷ For Hilbert's resolvent problem, see the paper by Segre quoted in footnote 1 and the literature mentioned in this paper, also A. Wiman, Nova Acta Uppsala (1927).

n in one unknown

$$f(x) = x^n + a_1 x^{n-1} + \cdots + a_n = 0.$$

If the roots are $\omega_1, \omega_2, \cdots, \omega_n$ and if we set

$$\theta_i = u_0 + u_1\omega_i + \cdots + u_{n-1}\omega_i^{n-1}$$

then the θ_i are the roots of an equation

$$g(x) = x^n + b_1 x^{n-1} + \cdots + b_n = 0$$

and it is well known that the coefficient b_i of this Tschirnhaus transformation is a homogeneous polynomial $B_i(u_0, u_1, \dots, u_{n-1})$ of degree i in the u_0, u_1, \dots, u_{n-1} . For a fixed k, we determine the quantities u_0, u_1, \dots, u_{n-1} as a non-trivial solution of the equations

$$B_1(u_0, u_1, \cdots, u_{n-1}) = 0,$$

$$B_2(u_0, u_1, \cdots, u_{n-1}) = 0, \cdots, B_k(u_1, u_2, \cdots, u_{n-1}) = 0.$$

It follows from Theorem A that for sufficiently large n it is possible to take u_0, u_1, \dots, u_{n-1} in a field obtained from the field of the rational functions of a_1, a_2, \dots, a_n by adjunction of a finite number of radicals. The equation g(x) then has the form

$$x^n + b_{k+1}x^{n-k-1} + \cdots + b_n = 0.$$

Its roots then may be considered as algebraic functions of n-k quantities b_{k+1} , b_{k+2} , \cdots , b_n . Since ω_i can be expressed in terms of θ_i , it follows that the solution of the general equation of nth degree can be expressed in terms of the coefficients if we use radicals and one algebraic function of n-k arguments. Here k was a fixed number and n was to be taken sufficiently large.

Hilbert's resolvent problem deals with the question of finding the smallest number l_n for given n such that the roots of the general equation of degree n may be expressed in terms of the coefficients by means of algebraic functions of at most l_n parameters. Our above remark shows that $l_n \le n-k$ for fixed k and sufficiently large n. In other words, we have shown that

⁸ Since we can make $b_n=1$ through a simple transformation, we could replace the last function by one depending on n-k-1 arguments.

⁹ This result shows that in Segre's notation an infinite series of theorems H_i exists. The same is true for the theorems B_i, if in the statement beside the adjunction of square roots and cube roots the adjunction of a finite number of other radicals is admitted. On the other hand, icosahedral irrationalities are superfluous. The existence of these infinite series of theorems H_i and B_i had been stated as a conjecture in Segre's paper.

$$\lim_{n\to\infty} (n-l_n) = \infty.$$

Hilbert's observation that $l_n \le n-5$, at least for $n \ge 9$, and Segre's observation that $l_n \le n-6$, at least for $n \ge 157$, ocan be supplemented by an infinite number of analogous observations. The method of §2 would allow us to find explicit values n_k such that $l_n \le n-k$ for $n \ge n_k$. However, the values obtained would probably be far too large.

As an example of a field which satisfies the assumption (*) of Theorem C, we may take any field K which is closed with regard to forming radicals $a^{1/m}$, a in K, $m=2, 3, 4, \cdots$. We have here $\Psi(r)=2$ for all r. In particular, any homogeneous equation $f(x_1, x_2, \cdots, x_n)=0$ of degree r has a non-trivial solution, provided that n lies above a certain number depending on r only.

An example of a somewhat less trivial nature is obtained by considering a p-adic field K. As is well known the multiplicative group of all α^r ($\alpha \neq 0$, α in K) is of finite index in the group of all α ($\alpha \neq 0$, α in K). From this it follows at once that the assumption (*) of Theorem C is satisfied, and the statement of Theorem C holds for K. In particular, a homogeneous equation $f(x_1, \dots, x_n) = 0$ of degree r in a p-adic field has a non-trivial solution (x_1, x_2, \dots, x_n) , if n is sufficiently large, say $n \geq N(r)$.

University of Toronto

¹⁰ The somewhat rough method of our proof does not allow us to derive this result. The bound obtained for n would be much larger.

¹¹ E. Artin has remarked that it follows at once from the existence of normal division algebras of rank r^2 over K that $N(r) > r^2$.