J. MARCINKIEWICZ AND A. ZYGMUND 1. On the differentiability of functions and summability of trigonometrical series, Fund. Math. vol. 26 (1936) pp. 1-43. ## S. Saks Theory of the integral, Monografie Matematyczne, vol. 7, Warsaw and New York (Stechert), 1937. Illinois Institute of Technology and Brown University ## INTEGRAL DISTANCES NORMAN H. ANNING AND PAUL ERDÖS In the present note we are going to prove the following result: For any n we can find n points in the plane not all on a line such that their distances are all integral, but it is impossible to find infinitely many points with integral distances (not all on a line). PROOF. Consider the circle of diameter 1, $x^2+y^2=1/4$. Let p_1, p_2, \cdots be the sequence of primes of the form 4k+1. It is well known that $$p_i^2 = a_i^2 + b_i^2, \quad a_i \neq 0, \quad b_i \neq 0.$$ is solvable. Consider the point (on the circle $x^2+y^2=1/4$) whose distance from (-1/2, 0) is b_i/p_i . Denote this point by (x_i, y_i) . Consider the sequence of points (-1/2, 0), (1/2, 0), (x_i, y_i) , $i=1, 2, \cdots$. We shall show that any two distances are rational. Suppose this has been shown for all i < j. We then prove that the distance from (x_i, y_i) to (x_i, y_i) is rational. Consider the 4 concyclic points (-1/2, 0), (1/2, 0), (x_i, y_i) , (x_i, y_i) ; 5 distances are clearly rational, and then by Ptolemy's theorem the distance from (x_i, y_i) to (x_i, y_i) is also rational. This completes the proof. Thus of course by enlarging the radius of the circle we can obtain n points with integral distances. It is very likely that these points are dense in the circle $x^2+y^2=1/4$, but this we can not prove. It is easy to obtain a set which is dense on $x^2+y^2=1/4$ such that all the distances are rational. Consider the Received by the editors February 20, 1945. ¹ Anning gave 24 points on a circle with integral distances. Amer. Math. Monthly vol. 22 (1915) p. 321. Recently several authors considered this question in the Mathematical Gazette. point x_1 whose distance from (-1/2, 0) is 3/5; the distance from (0, 1/2) is of course 4/5. Denote (-1/2, 0) by P_1 , (1/2, 0) by P_2 , and let α be the angle $P_2P_1X_1$. α is known to be an irrational multiple of π . Let x_i be the point for which the angle $P_1P_2X_i$ equals $i\alpha$; the points X_i are known to be dense on the circle $X^2 + y^2 = 1/2$, and all distances between x_i and x_j are rational because if $\sin \alpha$ and $\cos \alpha$ are rational, clearly $\sin i\alpha$ and $\cos i\alpha$ are also rational. To give another configuration of n points with integral distances, let m^2 be an odd number with d divisors, and put $$m^2 = x_i^2 - y_i^2.$$ This equation has clearly d solutions. Consider now the points $$(m, 0), (0, y_i)$$ $i = 1, 2, \cdots.$ It is immediate that all the distances are integral. These configurations are all of very special nature. Several years ago Ulam asked whether it is possible to find a dense set in the plane such that all the distances are rational. We do not know the answer. Now we prove that we cannot have infinitely many points P_1, P_2, \cdots in the plane not all on a line with all the distances P_iP_j being integral. First we show that no line L can contain infinitely many points Q_1, Q_2, \cdots . Let P be a point not on L, Q_i and Q_i two points very far away from P and very far from each other. Put $d(PQ_i) = a$, $d(Q_iQ_j) = b$, $d(PQ_j) = c$. (d(A, B) denotes the distance from A to B.) $$(1) c \leq a+b-1.$$ Let Q_iR be perpendicular to PQ_i . We have $$a < d(PR) + (d(Q_iR))^2/d(PR), \qquad b < d(Q_iR) + (d(Q_iR))^2/d(Q_iR).$$ Thus from (1) $$(d(Q_iR))^2 \left(\frac{1}{d(PR)} + \frac{1}{d(Q_iR)}\right) > 1$$ which is clearly false for a and b sufficiently large. $(d(Q_iR))$ is clearly less than the distance of P from L.) This completes the proof. There clearly exists a direction P_1X such that in every angular neighborhood of P_1X there are infinitely many P_i . Let P_2 be a point not on the line P_1X . Denote the angle XP_1P_2 by α , $0 < \alpha < \pi$. Evidently the P_i cannot form a bounded set. Let Q be one of the P_i sufficiently far away from P_1 , where the angle QP_1X equals ϵ (ϵ sufficiently small). Denote $d(P_1, P_2) = a$, $d(P_1, Q) = b$, $d(P_2, Q) = c$. We evidently have $$c^2 = a^2 + b^2 - 2ab \cos (\alpha - \epsilon).$$ a, b, c all are integers. From this we shall show that if b and c are sufficiently large, ϵ sufficiently small, then $$(2) c = b - a \cos \alpha.$$ Put $$c = b - a \cos \alpha + \delta,$$ $\delta > 0.$ Then $$(b - a\cos\alpha + \delta)^2 = b^2 - 2ab\cos\alpha + a^2\cos^2\alpha + 2\delta(b - a\cos\alpha) + \delta^2 > a^2 + b^2 - 2ab\cos(\alpha - \epsilon)$$ if b is sufficiently large and ϵ sufficiently small. Similarly we dispose of the case $\delta < 0$. Thus (2) is proved. From (2) we have $$a^2 + b^2 - 2ab \cos(\alpha - \epsilon) = b^2 - 2ab \cos\alpha + a^2 \cos^2\alpha$$ or $$\cos (\alpha - \epsilon) - \cos \alpha = \frac{a^2 \sin^2 \alpha}{2b}.$$ Thus we clearly obtain $$\epsilon < c_1/b$$. Thus clearly all the points Q_i have distance less than c_2 from the line P_1X . Let Q_1 , Q_2 , Q_3 be three such points not on a line, where $d(Q_iQ_i)$ are large. Let Q_1Q_3 be the largest side of the triangle $Q_1Q_2Q_3$. Let Q_2R be perpendicular to Q_1Q_3 . We have as before $$d(Q_1Q_3) \leq d(Q_1, Q_2) + d(Q_2Q_3) - 1;$$ also $$d(Q_1Q_2) - d(Q_1R) < \epsilon, \qquad d(Q_2Q_3) - d(Q_3R) < \epsilon$$ an evident contradiction; this completes the proof. By a similar argument we can show that we cannot have infinitely many points in *n*-dimensional space not all on a line, with all the distances being integral. University of Michigan