ON APPROXIMATE ISOMETRIES
D. H. HYERS AND S. M. ULAM

In a previous paper, a problem of mathematical “stability” for the
case of the linear functional equation was studied.! It was shown that
if a transformation f(x) of a vector space E; into a Banach space E.
satisfies the inequality “ fx+y) —fx) —f()|| <e for some >0 and
all x and v in E;, then there exists an additive transformation ¢(x)
of E; into E; such that ”f(x) —¢(x)” <e.

In the present paper we consider a stability problem for isometries.
By an e-isometry of one metric space E into another E’ is meant a
transformation T'(x) which changes distances by at most ¢, where € is
some positive number; that is, I plx, ) —p(T(x), T(y))l <e for all x
and y in E. Given an e-isometry T'(x), our object is to establish the
existence of a true isometry U(x) which approximates T'(x); more pre-
cisely, to establish the existence of a constant 2 >0 depending only on
the metric spaces E and E’ such that p(T(x), U(x)) <ke for all x
in E. In this paper this result will be proved for the case in which
E=E’, where E is n-dimensional Euclidean space or Hilbert space
(not necessarily separable). The case in which E is the space C of
continuous functions will be treated in another paper.

The above problem of e-isometries is related to the problem of con-
structing space models for sets in which distances between points are
given only with a certain degree of exactness (measurements are pos-
sible only with a certain degree of precision). The question of the
uniqueness of the idealized model corresponding to the given meas-
urements and the extrapolation from the measurements to the model
could be looked upon as a problem in determining a strict isometry
from an approximate isometry.

In the case of certain simple metric spaces, for example the surface
of the Euclidean sphere, this question can be answered in the affirma-
tive, but it may be more difficult for other bounded manifolds. A
simple but interesting example showing a case where the answer is
negative has been worked out by R. Swain.

THEOREM 1. Let E be a complete abstract Euclidean vector space.?
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1 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad.
Sci. U. S. A. vol. 27 (1941) pp. 222-224.

2 A complete Euclidean vector space is a Banach space whose norm is generated
by an inner product, (¥, ¥). It includes real Hilbert space and n#-dimensional Euclidean
spaces as special cases.
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Let T'(x) be an e-isometry of E into itself such that T(0)=0. The limit
U(x) =lim,.(T(27x)/2") exists for every x in E and U(x) is an iso-
metric transformation.

PrOOF. Put 7=||«||. Then ||| T(x)|| —7| <eand ||| T(x) — T(2%)|| —7|
<e. Putalso yo=T(2x)/2, so that lr—l | [ <¢€/2. Consider the inter-
section of the two spheres: Si=[y; ||y <r+el, Se=1[y; ||ly—2yd
<r+e¢]. Now T'(x) belongs to this intersection, and for any point y
of S1N\S: we have

2|y = 2 = 2[5l + 2l 3|2 — 403, 993
Iy = 29all2 = lIoll* + dlydll2 — 43, y0) < (r + &)
and ||y||2<(r+€)2 It follows that
2y = 3ofl2 < ¢+ 92+ [[5]]2 = 2l yol|2 < 26 + 92 — 2| |2
< 2(r+ &% — 2(r — ¢/2)? = 6er + 3¢2/2.

Hence, || T'(x) — T'(2x) /2|| <2(el|#||) v2if || #|| Z ¢, and || T(x) — T'(2x) /2 ||
<2e in the contrary case.
Therefore, for all x in E the inequality

® IT(2/2) — T(®)/2)| < 2-72(| o)) /2 + 2¢

is satisfied, where & =2¢!/2, Now let us make the inductive assumption
n—1

@) ||T@ ") — 2-°T(x) || < 2“”/2k(||xu)1/2( > 2—*/2) + (1 — 27" 4e.
=0

The inequality (2) is true for #=1. Assuming it true for any particu-
lar value of #» we shall prove it for n+41.
Dividing the inequality (2) by 2 we have

|T(@2"2)/2 — 2-"1T(x)]| )
< zrenimg(aflyn (35 200) + (172 = 2w e

Replacing x by 2—"x in the inequality (1) we get
| T(21x) — T(2-"x)/2|| < 2= +D12(]| af|)1/2 + 2e.
On adding the last two inequalities we obtain
| T@12) — 21T (x)||
< 2memsormp(layor (3 209) + (1 = 270 e

This proves the induction. Therefore inequality (2) is true for all x
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in E and for n=1, 2, 3, - - - . If we put a =k2_ o2 %%, we have
ITG") — 2 T(@)| < 270 (][ ]) 72 + 4e.
Hence, if m and p are any positive integers,
|2=mT(2ma) — 2-m—pF(2mry)|
= 2| T(2moa/2p) — 277 T2 +om)|| < 27712 )72 + 2,

forallxin E.

Therefore since E is a complete space, the limit U(x)
=limy., (I'(27x)/2") exists for all ¥ in E.

To prove that U(x) is an isometry, let x and ¥ be any two points
of E. Divide the inequality

|7 @) — Ty - 27]| % — y]| [ <ee

by 2» and take the limit as #—. The result is | U(x)— U(y)||
=||#—2||. This completes the proof of Theorem 1.

THEOREM 2. Let T satisfy the hypotheses of Theorem 1 and let
u and x be any points of E such that IIuH =1 and (x, u)=0. Then

I(T(x), U(u))l <3¢, where U(x) is defined as in the statement of
Theorem 1.

Proor. For an arbitrary integer #» put z=2"u. Let y denote an
arbitrary point of the sphere S, of radius 2 and center at 2. Then
lly—2|| =||2l| and it follows that (y, u) =2-""1(y, y). Since T is an

e-isometry, “T(y)—-T(z)” =n(y, z)+“T(z)H where [n(y, z)I <2e.
The last equality may be written

2ATG), T() = (T(9), T(»)) — 2| TG)|| — =

Dividing by 2*+! and remembering that z=2"x, we obtain the
equality

T(2™u)
3 (T(y), 27°T(2")) =

2n

2n+1

[(T(), T() — n] - n“

Now let x be any point of the hyperplane (x, %) =0.
Then y=x+ru, where r=27—(22%—||«||?)"/2, is a point of the
sphere S,. For,
lly =2l = (.9 = 203, 9 + 2, %)
= (%, %) + r* — 2(x, 2) — 2(u, 2)-7 + (3, 2)
= 7= 2oy e+ e = [
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Moreover, ||y—x|| =7—0 as #— ». By Theorem 1, t =lim,_..2~"T(2"4)
exists and is a unit vector. Finally, for an arbitrary positive é and »
sufficiently large, one can easily establish the following inequalities
by means of equality (3) and the above remarks:

a1~ ZE) (0122
+| o - 1 72
et - T2 a2
T(

+ 7@ = 7O H 2:“) “ <5+ 3e(1 + 0).

2
It follows that

| (T(x), Uw)) | = | (T(x), 9| < 3e.

THEOREM 3. Let T(x) satisfy again the hypotheses of Theorem 1, and
let it take E into the whole of E. Then the transformation U(x) also
takes E into the whole of E.

Proor. For each point z of E, let T1(z) denote any point whose
T-image is 2. Then T—'(2) is an e-isometry of E. By Theorem 1, the
limit U*(2) =limy.. (T-1(272) /2") exists, and U* is an isometry of E.
Now clearly

Jovs = 7@ = || 7 (2 T2 - rewen |
T-1(273)
< 2n — U*(2) || + e

On dividing by 2” and letting »— «, we see, for each point 2 of E,
that 2= UU*(2). Therefore U(E)=E.

THEOREM 4. Let E be a complete abstract Euclidean vector space. If
T(x) is an e-isometry which takes E into the whole of E such that
T(0)=0, then the transformation U(x)=lim,.., (T(27x)/2") is an
isometry of E into the whole of itself, and the inequality “T(x) -U (x)”
<10¢ s satisfied for all x in E.

Proor. For a given point 0 let M denote the linear manifold
orthogonal to x. By Theorem 3, U is an isometric transformation
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which takes E into the whole of E. Hence U(M) is the linear mani-
fold orthogonal to U(x). Let w be the projection of T'(x) on U(M).
If w=0 put ¢=0. Otherwise put ¢=w/||%||. In either case (cf. Theo-
rem 2), the inequality | (T(x), t)| = 3eis satisfied. Putv=(1/ ”x”) Ux).
Then v is a unit vector orthogonal to ¢ and is coplanar with T'(x) and ¢.
Hence, by the pythagorean theorem we have the identity:

) |7 — U@)||2 = (T(@), H2 + (|| — (T(), 9]

Let 2,=2"x and if the projection w, of T'(2,) on U(M) is not zero,
put t,=w,/||w,||. Otherwise we shall put #,=0. In either case
(tay ) =0, and |(T'(2,), ta)| S3e. If || T(2a)|| <3e, it is obvious that
ITEN = | (T(z), v)| S3e. If ||T(za)||Z=3e, we have 0=|T()
— (TG, )| = T@)| = (| T2 = (T(z), £2)?)12 S 3.

Hence the inequality:

) izl = 1 (TGn), 9) || < 4e

is satisfied, since ||2.|| <||T'(z.)|| +e.

Two cases arise. If (T'(x), ) =20, we put #=0 in the inequality (5)
and use the identity (4) to obtain the inequality HT(x) - U(x)“ <Se.
If (T'(x), v) <0, then for some integer m =0 we must have (T'(2,), v) <0
and ((T(22.), v) 20, since (U(x), v) is positive and U(x) =limp..
(T'(z.)/2™). Hence, by inequality (2),

1722m) = TEm|| = (T(22m), v) = (T(3m), 1) > 3||2m|| — 8e.
But we know that || T'(22,) — T'(2a)|| <||2|| +¢. Therefore,
2]l < llznl] < (9/2)e, and ||T(x) — U(x)|| < 2||#]| + ¢ < 10e.

In order to prove the above theorem we had to assume that T'(x)
takes E into itself. We now show that the theorem is not always
true for e-isometric transformations of one Euclidean space into part
of another. Consider the transformation T'(x) of the real axis into a
subset of the plane defined as follows: the coordinates x, ¥ of T'(x)
are (x, 0) for x =1, and (x, ¢-log x) for x > 1. It is easy to verify that T
will be an e-isometry if we choose ¢ in such a way that e>c?

max,s1((log x)2/(2x —2)).

On the other hand, T'(x) obviously cannot approximate an isometry

in the sense of our theorem.
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