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In a previous paper, a problem of mathematical "stability" for the 
case of the linear functional equation was studied.1 I t was shown that 
if a transformation f(x) of a vector space E\ into a Banach space £2 
satisfies the inequality \\f(x+y)—f(x)—f(y)\\<e for some e > 0 and 
all x and y in £1, then there exists an additive transformation <j>(x) 
of £1 into E2 such that ||/(*) - 0 ( a ) | | <e . 

In the present paper we consider a stability problem for isometries. 
By an e-isometry of one metric space E into another E' is meant a 
transformation T{x) which changes distances by at most e, where e is 
some positive number; that is, \p(x, y)—p(T(x)1 T(y))\ < e for all x 
and y in E. Given an e-isometry T(x), our object is to establish the 
existence of a true isometry U(x) which approximates T(x) ; more pre­
cisely, to establish the existence of a constant k > 0 depending only on 
the metric spaces E and E' such that p(T(x), U(x))<ke for all x 
in E. In this paper this result will be proved for the case in which 
£ = £ ' , where E is n-dimensional Euclidean space or Hubert space 
(not necessarily separable). The case in which E is the space C of 
continuous functions will be treated in another paper. 

The above problem of €-isometries is related to the problem of con­
structing space models for sets in which distances between points are 
given only with a certain degree of exactness (measurements are pos­
sible only with a certain degree of precision). The question of the 
uniqueness of the idealized model corresponding to the given meas­
urements and the extrapolation from the measurements to the model 
could be looked upon as a problem in determining a strict isometry 
from an approximate isometry. 

In the case of certain simple metric spaces, for example the surface 
of the Euclidean sphere, this question can be answered in the affirma­
tive, but it may be more difficult for other bounded manifolds. A 
simple but interesting example showing a case where the answer is 
negative has been worked out by R. Swain. 

THEOREM 1. Let E be a complete abstract Euclidean vector space.2 

Presented to the Society, September 5, 1941; received by the editors October 10, 
1944. 

1 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. 
Sci. U. S. A. vol. 27 (1941) pp. 222-224. 

2 A complete Euclidean vector space is a Banach space whose norm is generated 
by an inner product, (x, y).lt includes real Hubert space and ^-dimensional Euclidean 
spaces as special cases. 
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Let T(x) be an e-isometry of E into itself such that T(0) = 0. The limit 
U(x) =limn^O0(T(2nx)/2n) exists f or every x in E and U(x) is an iso­
metric transformation. 

PROOF. Put r = \\x\\. Then | | | r ( * ) | | - r | <eand | | | r (* ) - r (2*) | | - r | 
yo\\ | <e/2. Consider the inter-
Ml <'+«], S2=[y; ||y~2y0|| 

< e. Put also y o = T{2x) /2, so that | r -1 
section of the two spheres: 5 i=[y; 
< r + e ] . Now T(x) belongs to this intersection, and for any point y 
of SiC\S2 we have 

2 | | y - y o | | 2 = 2||y||2 + 2 | |y 0 | | 2 -4 (y ,yo) ; 

b - 2yo||2 = Ml2 + 4||y0||
2 - 4(y, y0) < (r + e)2 

and | |y| |2<(r+€)2. It follows that 

2||y - yo||2 < (r + e)2 + ||y||2 - 2||y0||
2 < 2(r + e)2 - 2||y0||

2 

< 2(r + €)2 - 2(r - e/2)2 = 6er + 3€
2/2. 

Hence, || T(x) - r(2*)/2|| <2(€||^||)1/2if \\x\\ è e, and || T(x) - r(2*)/2 || 
<2e in the contrary case. 

Therefore, for all x in E the inequality 

(1) \\T(x/2) - T(x)/2\\ < 2-1/2£(||s||)1'2 + 2e 

is satisfied, where k = 2e1/2. Now let us make the inductive assumption 

(2) Hr(2—a:) — 2-«^(^) || < 2—^^CH^II)1/2^ X2 2-"*/2>\ H~ ( 1 - 2 — ) - 4 e . 

The inequality (2) is true for n = 1. Assuming it true for any particu­
lar value of n we shall prove it for n+1. 

Dividing the inequality (2) by 2 we have 

||r(2-"*)/2 - 2-w-1:r(tf)|| 

< 2-<»+1>/2iK|MI)1/2( £ 2-*/^ + (1/2 - 2-"^)/4€. 

Replacing x by 2~nx in the inequality (1) we get 

II7X2-"-1*) - 2T(2-»*)/2 || < 2-<n+1»2k(\\x\\yi2 + 2e. 

On adding the last two inequalities we obtain 

II2X2-*-1*) - 2—*T(x)\\ 

< 2-<n+»!2k(\\x\\y'2( Ê 2r*A + (1 - 2—i).4e. 

This proves the induction. Therefore inequality (2) is true for all # 
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in E and for w = l, 2, 3, • • • . If we put a = &XXo2~i/2, we have 

| |r(2-»*) - 2- n r (*) | | < 2-»/2a(||*||)1/2 + 4e. 

Hence, if m and p are any positive integers, 

\\2-™T(2mx) - 2-m-*>T(2m+2>x)\\ 

= 2r"\\T(2*+*x/2p) - 2-PT(2m+*>x)\\ < 2~™/2a(||*||)1/2 + 22~™€, 

for all x in E. 
Therefore since £ is a complete space, the limit U(x) 

«lirrin^oo (T(2nx)/2n) exists for all x in E. 
To prove that U(x) is an isometry, let x and y be any two points 

of E. Divide the inequality 

| | | r (2»*) -r (2«y) | | - 2 - | | * -y | | |<« 

by 2n and take the limit as n—>oo. The result is \\U(x)-U(y)\\ 
= \\x—y\\. This completes the proof of Theorem 1. 

THEOREM 2. Let T satisfy the hypotheses of Theorem 1 and let 
u and x be any points of E such that ||«|| = 1 and (x, w)=0. Then 
| (T(x), U(u))\ g3€, where U(x) is defined as in the statement of 
Theorem 1. 

PROOF. For an arbitrary integer n put z~2nu. Let y denote an 
arbitrary point of the sphere Sn of radius 2n and center at z. Then 
II?—*|| = | H | and it follows that (y> u)~2~n~1(y, y). Since T is an 
e-isometry, \\T(y)~-T(z)\\=r](y, z) + \\T(z)\\ where |iy(y, z)\ <2e. 

The last equality may be written 

2(T(y), T(z)) = (T(y), T(y)) - 2„||r(z)|| - „». 

Dividing by 2 n + 1 and remembering that 3 = 2*% we obtain the 
equality 

(3) (T(y), 2-T(2-«)) - - J - [(r(y), T(y)) - ,«] - „ 
2n+i 

T(2ww) 

2n 

Now let # be any point of the hyperplane (x, u) = 0. 
Then y=x+ru, where r = 2 n - (2 2 w - | | # | | 2 ) 1 / 2 , is a point of the 

sphere Sn. For, 

Il y - *ll2 = (y, y) - 2(y, *) + (*, 2) 
= (*, x) + r2 — 2(*, z) — 2(M, 2) r + (z, z) 

= f 2 - 2 » + V + ||a;|h + ||z||2 = ||z||2. 
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Moreover, \\y—x\\ = r—>0 as n—»<*>. By Theorem 1, t^\imn^2^nT{2nu) 
exists and is a unit vector. Finally, for an arbitrary positive S and n 
sufficiently large, one can easily establish the following inequalities 
by means of equality (3) and the above remarks : 

(T(x), t) =S | (T(X), 

+ 

<l|r(*)|| 

r(2»«)\ i i / 

/rlv00, 

* ) \ 

T(2nu) 

2" 

T(y), \T(x) -

\t -
T(2nu) 

2» 
+ l + 2' 

?)' 

T(2nu) 

2» 

+ | |r(*)- r(y)||-
T(2*u) 

2n 
< è + 3c(l + 8). 

It follows that 

\(T(x),U(u))\ - | ( r ( * ) f 0 | S3«. 

THEOREM 3. Let T(x) satisfy again the hypotheses of Theorem 1, and 
let it take E into the whole of E. Then the transformation U(x) also 
takes E into the whole of E. 

PROOF. For each point z of E, let T~l(z) denote any point whose 
T-image is z. Then T~~l(z) is an c-isometry of E. By Theorem 1, the 
limit U*(z) ̂ lim^oo (r~1(2w2)/2w) exists, and U* is an isometry of E. 
Now clearly 

| |2*«- 2T(2»tf*(*))|| - II7Y2» 
T~\2nz) 

< 2n\ 
r~i(2w2) 

2» 

J - T(2"U*{z)) 

On dividing by 2n and letting w—»oo, we see, for each point z of £, 
that 2= UU*(z). Therefore U(E) =E. 

THEOREM 4. Let E be a complete abstract Euclidean vector space. If 
T(x) is an e-isometry which takes E into the whole of E such that 
7\0)=0, then the transformation U(x) =limn^oo (T(2nx)/2n) is an 
isometry of E into the whole of itself, and the inequality \\T(x) — U(x)\\ 
<10e is satisfied for all x in E. 

PROOF. For a given point XT&O let M denote the linear manifold 
orthogonal to x. By Theorem 3, U is an isometric transformation 
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which takes E into the whole of E. Hence U(M) is the linear mani­
fold orthogonal to U(x). Let w be the projection of T(x) on U(M). 
If w = 0 put / = 0 . Otherwise put / = w/||ze;||. In either case (cf. Theo­
rem 2), the inequality | (T(x), t)\ £3e is satisfied. Put v = (1/||*||) U(x). 
Then v is a unit vector orthogonal to t and is coplanar with T(x) and L 

Hence, by the pythagorean theorem we have the identity: 

(4) ||T(*) - U(x)\\* = (T(x), ty + [||*|| - (T(x), v)]\ 

Let zn = 2nx and if the projection wn of T(zn) on f/(M) is not zero, 
put /n = w„/ | |wj | . Otherwise we shall put tn = 0. In either case 
(tn, » )=0 , and \(T(zn), / n ) | g3e. If | |r(s»)| | <3e, it is obvious that 
| | r ( s n ) | H ( r ( s n ) , » ) | S 3 c . If | | r ( 2 n ) | | ^ 3 € , we have 0 ^ | | r ( s w ) | | 

-|(r(*), *)J =||r(^)||-(||r(^)H2-(^(^), W 2 ^ . 
Hence the inequality : 

(5) | |W|- | (r ( 2 n ) , . ) | |<4 E 

is satisfied, since ||s»|| < | | r (^ r l ) | |+6 . 
Two cases arise. If (T(x), v) ^ 0 , we put n = 0 in the inequality (5) 

and use the identity (4) to obtain the inequality | | r (x)— U(x)\\ <5e. 
If (T(x), v) < 0 , then for some integer w ^ O we must have (T(zm), v)<0 
and ((T(2zm), v)^0f since (U(x), v) is positive and U(x) =limn^00 

(T(zn)/2
n). Hence, by inequality (2), 

| |r(2«w) - T(zm)\\ ^ (T(2zm), v) - ( r (sw) , i) > 3||sM|| - 8e. 

But we know that \\T(2zm)~T(zm)\\ < | |aw | |+€. Therefore, 

||*|| ^ IWI < (9 /2>, and ||T(a?) - U(x)\\ < 2\\x\\ +e£ 10e. 

In order to prove the above theorem we had to assume that T(x) 
takes E into itself. We now show that the theorem is not always 
true for e-isometric transformations of one Euclidean space into part 
of another. Consider the transformation T(x) of the real axis into a 
subset of the plane defined as follows: the coordinates x, y of T(x) 
are (x, 0) for x :g 1, and (#, c • log x) for x > 1. I t is easy to verify that T 
will be an e-isometry if we choose c in such a way that e>c2 

max,>i((log * ) V ( 2 * - 2 ) ) . 
On the other hand, T(x) obviously cannot approximate an isometry 

in the sense of our theorem. 
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